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Quantization of the hydrodynamic modes in superfluid He with a free surface*
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Quantization of the hydrodynamic modes in superfluid ~He with a free surface is carried out. A
complete and orthonormal set of eigenfunctions for both ripplons and surface-reflected phonons is
constructed. Applications of the formalism to the calculation of the thermal energy density near the
surface„ the temperature-dependent part of the surface tension, and the rate at which power is absorbed

by the surface from an incident phonon beam are given,

I. INTRODUCTION

In recent years there has been considerable in-
terest' ' in the properties of the elementary exci-
tations (ripplons) associated with the presence of a
free surface of superfluid He. Of that work which
has dealt with the longer-wavelength excitations,
much" has followed the original idea of Atkins'
in treating the excitations as quantized capillary
waves in an incompressible fluid. One exception
is the work of Edwards et aL. ,

' who did account for
the effect of phonons on the temperature-dependent
part of the surface tension. Another is a calcula-
tion by the author, ' utilizing a response-function
technique of inelastic neutron scattering from the
superfluid 4He free surface. Nowhere, however,
has there appeared the complete, unified treatment
of all the hydrodynamic modes of the 'He system
necessary for the calculation of such quantities as
transition rates arising from interactions between
the modes. ' It is the primary puxpose of this
paper to provide such a treatment.

In Sec. II we solve the hydrodynamic equations for
an ideal compressible fluid with a planar free sur-
face and obtain an orthonormal and complete set
of modes. In Sec. III we construct a Lagrangian
and Hamiltonian and then quantize the Hamiltonian
in oscillator form using the complete set of oscil-
lator modes found in Sec. II. Finally, in Sec. IV
we present some applications of the formalism.
We first calculate the temperature-dependent part
of the energy density near the surface and from
this the temperature-dependent part of the surface
tension, including contributions from both ripplons
and phonons. Secondly, we derive an expression
for the power 1ost to the surface (in the form of
rippions) by phonons incident on the surface and
show that the power loss might well be observable
for very energetic (phonon temperature -7 K)
phonons.

II. CONSTRUCTION OF AN ORTHONORMAL

AND COMPLETE SET OF MODES

The construction of the modes begins with the
set of linearized hydrodynamic equations describing
zero-temperature 4He with a free surface. We
shall assume that the surface is located a z =0, the
bulk of the unperturbed liquid being in the half-
space s +0. The linearized hydrodynamic equa-
tions for the bulk are

s&p(rt) -
( )

+&V(rt) =o.

Here &p(rt) is the deviation of the density from its
equilibrium value po v(rt) ls the superfluid veloc-
ity, and p, (rt) is the chemical potential. Equations
(1) and (2) must be solved subject to the boundary
conditions'

~I'(rt)l. =, = -&P'li &(rishi, t),

po6p (rt) = 6&(rt) = &'6p(r~), (6)

where s is the zero-temperature sound velocity.
It is now a straightforward matter to use Eqs.
(1)-(6) to obtain the wave equation

where g(r, ~, t) is the position, relative to z =0, of
the surface at the point r~~ =xi + yj, o, is the (zero-
temperature) surface tension, 6P(rt) is the devia-
tion of the px'essux'e from its equilibrium value
and &~~—= 8'/Bx' 8~/+&p'. It is convenient to intro-
duce the velocity potential y(rt) via

v(rt) =V@(rt), (6)

and to use the relation
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"«") .V, (;t)=0gt2

for qp(rt} and the boundary condition

8'q)(rt) (x„V2(( By(rt)

(7)

(8)

From this it follows that

S2
«V,*( (z}q.((z)+ 2 V,*( (0)9,((0) =o,

g q2 ql

(16)

which q)(rt) must obey.
Our problem now is to obtain a complete set of

orthonormal eigenfunctions satisfying (7}and (8).
We search for functions y(rt) having the form

q.((rt) =q, (z()e"'((e '""' (9

where q is a wave vector parallel to the surface
and t is an index which will describe the z depen-
dence. Clearly, solutions with different q's will
be orthonormal. Inserting (9) into (7) and (8)
yields

Q2 4/2„.- q' q „(z)=-;.' 9 „(z),

sq ((((z) ~e(&()
(0)

The solutions to (10) and (11)have some important
general properties. To discover these we multiply
(10) by y,*,r(z) and integrate over z,

+q'(", .(z)p, , (z)) =0; (17)

To proceed further, we will need explicit ex-
pressions for the eigenfunctions qr„(z) and eigen-
frequencies +„. There are two types of solutions
to (10) and (11). We will just state them; the fact
that they are solutions is easily checked. The
first corresponds to a capillary wave (indexed by
1=0) and is

q), (z) =[2((b,/(q'+b, ')'~'] e"'. (i8)

The quantity b, , the inverse decay length z, and
the ripplon frequency , 0 are determined from

0' gb = ' z= b+(q'+-b')'~'
p S2 q t

0

if +'„4 ', , i. This is the desired orthogonality
relation between the modes. We see from (13}that
this also implies

r

�sr.
*i (z) &q.((z)
Bz Bz

~2 0

dZ CP li Z g7 l Z . 12
Here q)„(z) is normalized according to

(IS)

Integrating the first term in large parentheses on
the left-hand side by parts, assuming that the con-
tribution at z =-~ is zero, and using (11) to eval-
uate the contribution at z =0, allows one to write
(12) in the form

0 S2
dzlq„(z)I2+ ', lv„(0)l'=I, (20)

as is suggested by (16). The second type of solu-
tion corresponds to a phonon reflected at the sur-
face and is

q) (z) =e'" —R,„e '"', k&0. (21)

The reflection coefficient A„and phonon frequency
„are given by

From this result, taken for the case 1 =1', it is
clear that +', , is both real and positive, i.e.,

40 = CO CV ~~0
q l ql s ql (14)

2 ~ SPO

0

0

+ dzy l'z y lz =0

Next, if we take the complex conjugate of (13), in-
terchange l and l', and subtract the result from
(13), we obtain [using (14)]

(22}

The z component k of the phonon wave vector is
restricted to have positive values. Otherwise, the
set of eigenfunctions (18) and (21) would be over-
complete. This is easily seen if one notes that a
reflected wave with wave vectors q and 0 is equiva-
lent to one with wave vectors q and -&.

Now, it is easy to show that +,„&sq for all finite
Hence, phonon and ripplon frequencies are

never equal, and the phonon and ripplon eigen-
functions are orthogonal via (16}. The same holds
for phonon eigenfunctions with different values of
k. There remains the question of the normaliza-
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tion of the phonon eigenfunctions. In fact, these
functions, as given in (21), obey the relation

2

+ P,o &*,(0)q) „,(0) =2((|)(k—b').
0

To prove this, note that

up the pole at 0 = ix [K is defined in (19)] to find

J,(z+z') =[2(ib,/(b'+q')'~'] e"'"' '. (28)

The phonon part of the completeness sum is thus

5(Z Zt) [2(ib /(q2+bk)1t2] ZK(z+z )

the second term of which is canceled [see (18)] by
the ripplon contribution. Hence, (25) is proven.

dz pqp 8 pqpi 8 III. QUANTIZATION OF THE MODES

«ezz(e-ikz Its)t zikz)
~ ~

e- ik'z)

where & ls a posltlve lnflnlteslnlal introduced to
make the integral well defined. The integral is
simply done, and making use of the relation

1/(x+ ie) =-i w&{x)+P/x, (24)

the fact that k and &' are positive, and the defini-
tions (19) and (22) of b, and R,k leads immediately
to the verification of (23).

Finally, we prove that the ripplon and phonon

eigenfunctions (18) and (21) form a complete set.
The question, of completeness as regards the x
andg coordinates is obviously handled by the
e'q'I] factors in the eigenfunctions. Hence, all
we really need do is show that

Q q).*)(z')q, ((z) =~(z -z')

The phonon part of the sum in (25} is (e =0' is a
convergence factor}

(25)

8- k(e-zik fzts)s eikz )(S(kz ft e-ikz)
~" dk

JQ 2'

5( t) (lent)t
ik(z+z ) ft -ik(z+z ))

2m
+ qA

Q

g ( Zs) — (Ittk eik(z+z') ft e-ik(z+z ))
2 qA + qk

Q
77

(28)

where we have used {24) and the property I&„I'=1.
Using the property A,*„=&, „, the integral on the
right-hand side of (26) may be put in the form

The procedure we follow here is the standard
one of first constructing a Lagrangian and then a
Hamiltonian for the set of field equations (7) and
(8). The Hamiltonian will then be quantized in
terms of creation and annihilation operators for
the orthonormal and complete set of modes con-
structed in Sec. II.

We multiply (7) by a variation &q)(rt) and inte-
grate over the volume of the Quid and over a time in-
terval f„ to t, . Imposing the conditions 5())(r, t, )
=5q)(r, t, ) =0, carrying out some parts integra-
tions, and expressing the result in terms of Fou-
rier components of y(rt) defined by

+&' dt's &9)-*(zt) q)-„{zt)
q gz q

(30)

«e o«he bound»y condition {8) in the last term
of (30), doing a parts integration hi time,
multiplying by a factor P /s leads to the principle
of least action for the system,

L dt=O, (31)

where the Lagrangian L is given by

t.=EJ «(s;. Iz;(«)I — 's Is;(*t)I''

~s ss;( t) ')
2

q)(rt) = g e II q) («) q) (zt) =q)-{zt) (29)
q

we obtain

I@s)(zt)l s q
I ( t)Ik0'q

1

s' st-(st) ')
2

+k —2&5k ~( ~ )
„2m q'+k'+ 2 jb,k ++

2
'. Iq-, (0, t)l'.

2g q2 (32)

(27)

Since z + a' & 0, we can evaluate the integral by
closing the contour in the upper half-plane, picking

It ls easy to verify that varlatlon of the action
with respect to y-{zt) leads to the Fourier-trans-
formed version of (7), while variation with respect
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2

'2 t-q(0, t)
+ q2

Consequently, the Hamiltonian for our system is

) 0 p PQH= d 2P;. l~;(t)l" P2q ly;{t)l
~ oo

&n(«) ')
8Z

+Q 2
', IP-, (o, t)l'.

Recalling that y, is a velocity potential, we see
that the second two terms in square brackets in

(35)

to (p,*(0, t) leads to the Fourier-transformed equa-
tion (8). Thus p(, (zt) and (p, (0, t) are, in fact, in-
dependent variables coupled by the constraint of
continuity at z =0, The momentum conjugate to
(p-„(zt) is

w-(zt) = . ——= ~2 (p-(zt) = a, y -(zt), (33)
5I p . ~ p

6jo-, (zt) s' q s'

while that conjugate to (p-„(0, t) is
2

[(pq{zt), sq {z't)]= i16q qi6(z —z'),

[v;(«), v;. (z't)l =[v-„(«),~-, .(z't)1 =0,
(3V)

leads, via (33), (35) and the orthonormality results
of Sec. II, to

(38)
g yl

and the fact that the annihilation and creation
operators Cq, and Cq &

obey the usual Bose com-
mutation relations, as expected.

Operator expressions for the velocity v„(zt), the
density deviation &p, (zt), and the surface displace-
ment f, ( zt) will be useful in subsequent calcula-
tions. Utilization of (36), (5), (2), (6), and (4)
leads to

(35) are just what we would write down for the
kinetic energy of the fluid, thus justifying our
above multiplication by po/s2.

Introducing the transformation

eS2
W;(«) = g t „[~„,(-V *;({z,)s'""

ql

—~- gm- &(z)&
' "') (36)

and imposing the canonical commutation relations,

X/2

«=, («)=Q( it)+e, —)[(:q,, t);,, (s)e'""-(:„rp-,, , (z)s"""],
o «

i/2
6P-(zt)=++ "P" [c'- y*- (z)s'"('+c- y- (z)s-*")'1

8
{39)

@@2 Qp
I /2

IV. APPLICATIONS

As a first example, we calculate the energy associated with the free surface at temperature T. From

(35) and (39), the energy density s(z) is

n,vq(z)'v;(t:) s'
~ t( )~ ( )

vq'
~( )

t
)2p q

2 8 z Q2

,",s. „,„. e'lv, )(z)l'+,", +le, ((z)l'+, l Iq, ((0)l'6(z),
ql 0

(4o)

where P=—1/ksT. The energy associated with the
surface is just e(- ) = @~((( sr ~e «-1

ql
(42)

dZ CZ (41) is the energy density deep in the bulk of the liquid. '
The prime on the summation sign indicates that
the ripplon mode is omitted. The surface energy
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is most conveniently expressed in terms of sepa-
rate contributions from the phonons and ripplons
e3 and e,", respectively. Combination of (18),
(19), and (40)-(42) yields

A 00a0
(43)

Similarly, combination of (21), (22), and (40}-
(42) leads to"

1 ~ Ssq
s 4 ~ Shgq

q

While the integrals involved in (43) and (44) cannot
be done analytically for all temperatures, at low
temperatures an expansion in powers of the phonon
thermal wave number times the length oq/Pqsa
=0.45 A proves useful. We find

(44)

+gP

k TB
g (3) 0(T10/3) (45)

8m I's

Consequently, the temperature-dependent part of
the surface tension ~o (Helmholtz free energy per
unit area for the surface) is

— '. (-:)'"(")"'(-') (-')
kT3B g(3) +O(T10/3)

16m hs (46)

A more interesting application of the results of
Secs. II and III involves the calculation of transi-
tion rates. To the harmonic Hamiltonian which
we have derived we add perturbations whose form
is determined via standard quantum hydrodynamic
arguments. The Hamiltonian, valid to third order
in small quantities, is

H=H +H +H,

(48)6C(x, y) =-Vll g(xiy).

Here and in (47), Vll is the gradient operator in the
two-dimensional space parallel to the surface.
The quantity so0/sC has not been measured for
'He, but an estimate based on a model calcula-
tion" gives Soq/SC =3.7x10 ' erg/cm. The small-
ness of this result can easily be shown to justify
the neglect of the curvature term in the above-
mentioned ripplon damping calculation for ripplon
wavelengths larger than a few interatomic spac-
ings.

As an example, we now use (47) to obtain the
fractional power lost to the surface (via ripplon
creation) by a beam of phonons incident on the
surface. It is not difficult to show that for incom-
ing phonon wavelengths large compared to the
characteristic length aq/Pqsq =0.45 A, the only
important process involved is one where the pho-
non breaks up into a ripplon plus another phonon
and that the dominant matrix element is governed
by the first part of H3 in (47). If we characterize
the incoming phonon by wave vectors q and k, the
outgoing phonon by wave vectors q" and k", and
the ripplon by the single wave vector q', the rele-
vant matrix element becomes, using (39}and (47),

2 3/2
(q'; q", k

~ H, +H3~ q, k) = —v 2 p,kk" Mq'
Po

5 -l/~a~ ~(+a3+a"3"+a'Oj "q, q "+q'

Here H, is the harmonic Hamiltonian, H, is the
third-order perturbation commonly used for uni-
form systems, and H, contains the perturbations
localized at the surface. The first part of H, has
been used previously by the author' to calculate
ripplon damping in the approximation that the
liquid is incompressible. The second part gives
the contribution arising from curvature dependence
of the surface tension. The deviation &C(x, y) in

the curvature C is related to the surface displace-
ment by

00 0 p s
Ho= dxdy dz ~v~ r + 6p r

1
+ —J) dx dx o0[Vllg (x, y) j ',

v(r) ~ &p(r) v(r)
dg

(47)

(49)

Consequently, the transition rate for the process
phonon - ripplon+ phonon, where we sum over
final states of the outgoing phonon is, assuming
the liquid temperature to be sufficiently low that
the normal fluid may be ignored,

1 8 s'
+ — [6p(&)j

~P P
q".a" &o

~
&q'; q", k~H, +83~ q, k& ('

H3= dxdy ~ v(r) l'(x, S)v(r)
2

1 acro
+ 6C(xg) [Vll~(xV)1 .

2 8C 8 o

x 5 ((11 3 (11 i3v QPaill)

ks' k q'k"
Po (de~q'o

Here, k" &0 is determined by

(50)
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Z/2
Oo I 3/2 I~ I x2

s pos
(51)

1 dP 0.17kq'
&A d&q q(q, ,=. po&

(54)

Since we are assuming that the incoming phonon

wave vector is small compared to p,s'/o„(51)
may be replaced by

kll [~2 /s2 (q q/)2]l/2

From (50) and (52), the differential power dP being
transmitted to the surface per unit, ripplon solid
angle is

dp hk

CfQ
q

i 277 pop) qg

q ~2 3 /P,

q12 ok
(q ( !)2 dq

I

0 S

where I', =I+,„s(sk/&o,„) is the incoming power per
unit area, & is the surface area, and qo is de-
termined by the condition that the quantity in

large parentheses in (53) be zero. While the inte-

gral in (53) may be done analytically, the resulting
expression is complicated. For the case where
the incoming phonon wave vector makes an angle
of 45' (i.e., q = k) with the surface and q' is paral-
lel to q, we obtain

Consequently, we obtain as an estimate of the
fraction of the incoming energy deposited on the
surface just 2m times the right-hand side of (54).
For one-degree phonons (i.e., &2q=k~/hs) this
fraction is 0.72&&10 4, so that very little enexgy
is transferred to the surface, a result consistent
with experimental observations. " However, since
the fractional energy transferred is proportional
to the fourth power of the phonon temperature, the

effect might well be observable for, say, 7 'K
phonons. At higher energies competing processes
involving desorption of a helium atom from the
surface or roton creation at the surface may be-
come important. Of course,

'

neither of these
processes can be dealt with using the theory pre-
sented here.

An interesting related problem would be to de-
velop quantum hydrodynamics, along the lines
presented here, for the case of thin films of ~He

(in which case the modes become discr'ete") in
order to see if the theory would yield the attenua-
tion seen by Anderson and Sabisky. '4

*Research supported in part by National Science Foun-
dation Grant No. GH-31650A-l.

~M. W. Cole, Phys. Rev. A 1, 1838 {1970).
'W. F. Saam, Phys. Rev. A 8, 1918 (1973).
3W. F. Saam, Phys. Rev. A 8, 1048 (1973).
4D. O. Edwards, J. R. Eckardt, and F. M. Gasparini,

Phys. Rev. A 9, 2070 {1974).
5C. C. Chang and M. CoI|en (Unpublished). These authors

provide an approximate microscopic calculation of the
short-wavelength part of the ripplon spectrum.

6K. R. Atkins, Can. J. Phys. 31, 1165 (1953).
~A microscopic treatment of a similar problem for a

simple-cubic crystal has been given by A. A. Maxadudin

and D. L. Mills [Phys. Rev. 173, 881 (1968)]. These
authors calculate the damping of a Rayleigh surface
mode due to interactions with bulk phonons. Another
calculation for solids, more closely related to the one
presented here, is given by H. Ezawa [Ann. Phys.
(N. Y.) 67, 438 (1971)] who quantizes (using the continu-

um approximation) the elastic waves in a semi-infinite
solid.

8See, e.g. , I. M. Khalatnikov, An Introduction to the
Theory of Super/ luidity (Benjamin, New York, 1965),
Chap. 15.

Oscillatory factoxs e '" in the phonon parts of e(~) give
vanishing contributions to c(—~).

~OEquations (43) and (44) may also be derived from the
xesults of Ref. 4. However, the approach taken there
does not afford one the possibility of actually calculat-
ing the energy density.
C. Ebner and W. F. Saam (unpublished).

~20. O. Edwards (px'ivate communication) has observed
no measurable attentuation of 1-2-K phonons at the

surface for liquid temperatures of the order of 30 mK.

W. F. Saam and M. W. Cole, Phys, Rev. B 11, 1086
(1975).

'4E. S. Sabisky and C. H. Anderson, Phys. Rev. A 7, 790
(1973).


