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A simple matrix generalization of the effeg8ve-medium approach to the coherent-potential approximation

(CPA) permits the inclusion of off-diagonal disorder in a straighforward fashion. This derivation has the
advantages of simplicity and ease of generalization to the n-site CPA. Results are obtained for electrons and
for phonons in a disordered binary alloy. The electronic derivation reduces to the solution obtained by
Blackman et al. while phonon results are new.

I. INTRODUCTION

The simple one-band tight-binding model with
diagonal disorder has been popular in treatments
of the theory of disordered systems. Inclusion of
off-diagonal randomness adds a limited amount of
realism to this model. Various generalizations of
the coherent-potential approximation (CPA) exist
for this model, ~ with certain restrictions on the
model parameters. These generalizations are all
special cases of the theory developed by Blackman
et al. ' (to be referred to as the BEB theory). How-

ever, the latter theory was derived by a relatively
complicated diagrammatic summation and, further,
only considered electronic systems. In contrast
to the diagrammatic approach, the effective-
medium derivation of the CPA is attractive be-
cause (i} it is simple, (ii) it aids physical insight
into the approximations employed, and (iii} it can
be easily generalized to the n-site CPA (CPn).
Hence, an effective-medium approach to off-diago-
nal CPA would have some value, particularly in
that it would permit any advances in the technology
for CPn to be generalized to include off-diagonal
disorder. Such a generalization will be presented
for electrons (Sec. II) and for phonons (Sec. III).
The derivation includes some detail. However, in
essence the theory is an exact parallel of the de-
velopment for diagonal randomness4 and as such,
is quite straightforward. The essential difference,
is the replacement of the Green's function (and as-
sociated quantities) by matrices. The final solu-
tions are to be found in Eqs. (22)-(25) for electrons
and Eqs. (38}-'(42}for phonons. The crucial step
is the factoring of the matrix T matrix which occurs
in Eq. (17).

This approach clarifies a brief observation made
in a letter by Blackman' that the BEB solution,
when cast in matrix form, acquires a very simple
structure. Kerker has suggested a short deriva-
tion of this matrix result. However, while the
(correct) final result may be obtained by a matrix
generalization of a suitable self-consistency condi-

x]x~G;~ x]y~G;~6;~—
g gx~G]~ ggg~G]~

(2)

(3)

tion [his Eq. (7)], the derivation leading up to this
equation [his Eqs. (2)-(6)] cannot all be directly
generalized to matrix form. Specifically, the 2&&2

mass operator matrix has nonzero, off-diagonal
components. However, a defining equation for his
mass operator [his Eq. (5)] in matrix form only
admits diagonal components, since the matrix gen-
eralization of the quanities on the right-hand side
of this equation, as defined in his Eq. (8), are diag-
onal. ~ The final matrix solution remains an ansatz.
In addition, generalizations of Kerker's procedure
to CPn are not transparent.

II. MATRIX T MATRIX FOR ELECTRONS

We will follow the model and notation introduced
in BEB. After defining our Hamiltonian, Green's
function, etc. , we will proceed to find an exact
solution to this disordered AQ~ „binary-alloy
problem in terms of a matrix T matrix. If we de-
couple this T matrix, factoring out a single-site
T matrix exactly as is done in the scalar case, 4

and then set the average of the single-site matrix
T matrix to zero, we obtain the CPA self-consis-
tency condition for off-diagonal disorder. Gener-
alizations to CPn follow immediately by paralleling
the scalar theory. The derivation will have a min-
imum of accompanying verbiage, since the steps
mimic the derivation for the scalar case. 4

The model Hamiltonian fs

H= Pa;ctc;+ P W,&c~~c&, (I)
i

where the site energies a,( a„, es} and transfer
integrals W&, (= W", ~", etc. ) are both configuration
dependent. We define the matrix Green's function,
locator and transfer integral, respectively, as

1596



SIMP LIFIED DERIVATION OF THE MATRIX COHERENT. . . 1597

gpAA

W~~ =
~J3

~AB
Q

gpBB (4)
(G) =R+R(T) R, (15)

Up to this point, the treatment has been exact.
It follows from E&I. (14) that

G~)(~) = g i'(~)5~& W&, — (6)

where we introduce the projection operator x, = 1
—y;, which is unity if i is on A. site, and zero other
otherwise.

The equation of motion for G is~

Gg~(«)) =g&(&d)5&q+g&W&ygq+gs&igiWig~K+ ' ' '

(5)
(repeated indices are summed over}. We will pro-
ceed as if all of the above matrices had an inverse.
This is not true, e.g. , g& is singular. We could
employ the following device: set x& =1-& or 5 for
i =& or B site and keep & nonzero until the end of
the calculation. This artifact leads to the same
conclusions by taking the limit ~- 0 at the end of
the calculation. Further, all quantities are well-
behaved in all intermediate steps. Hence, we will
proceed with our naive assumption that the ma-
trices are nonsingular. In that case,

and hence, the effective-medium propagator 8 is
e&lusl to the averaged Green's function (6) if and

only if the averaged & matrix (T) vanishes.
We can re-express (&) as

&T4 = &~r) l + I,n. & T„))
mPn

+ &n- &n R~ Tm- T
mgn

(16)

&Tg = &v.)() + I;R „&T„)).
m4n

(17)

Hence, if (vg vanishes, then (Tg als vanishes
within the single-site approximation If we now

choose R so that (vg vanishes, then this sets the
desired self-consistency condition on 0'= +cp g.

Explicitly, if we define the diagonal propagator

The single-site approximation is to neglect b 7'Q7'„
men, i.e. ,

If we introduce our effective-medium propagator
8 as 0

yB
(18}

Rq)(&d ) = urI 5 0 o5,
&

——W', ~,

where I is the identity matrix and
and use E&I. (10) and (12)—keeping 5 finite in the
defioition of v& and v&, and then taking the limit
&- 0 in the expressions for 7'& and v&-we obtain

~ 0'g uo'= I 0'B
(8)

is, for the moment, an arbitrary function of the en-
ergy, then

Ggg- Rfg V]5@~

(SA- oA)/I:I rA(SA -~A)).
iA 0

0

with a similar expression for ~~. Setting

(r) = x(~g+(I —x) (~,) = O,

(19)

(2o)

where

&d —~A —(&d —eA)/&gVg= -u «) —O'B —(& —e B)/0' g
'

(lo)

(rA=Z„"= eA —CB/yA,

B B ~B CA/~B ~
cpA

(21a)

(21b)

we obtain the BEB expressions for &r„and vB (see
Ref. 4),

Equivalently,

Q&& = R~& + R~ &vrRiy + ' ' '
~

We now introduce the single-site T matrix v' and
full & matrix T as follows:

gAB p (22)

As yet, the off-diagonal component u is undefined.
However, we have a physical constraint, to wit:
a site cannot be simultaneously an A site and a B
site; hence,

Tn
= Vn + VnRnnVn + VnRnnVnRnn 8n + ~ ~ ~

=(I-v&')v„,

T„=~„+p7.pt„7

+ ~n g Rnm~m Z Rnn) ~~ + ' ' '
~

mgn P4m

Then E&l. (11) can be rearranged so that

(12)

(13)

gCPA ~A CB/+A
u

where

~B C A/VB
(23)

(which was assumed in the definition of y). This
is the one constraint used to obtain the one unknown
u. In summary the matrix CPA solution is

Gg)=(R))+R(, T,R,~). (14) r= " =R«
0

(24)
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Rjll =(COI- Z) 511—W, q,

and u is obtained from the condition

(..) xp1G ~(ij) x,ylG q(ij)

y &yG g(N ViV1G 1(ii) ' (31)

Q

&s.(vs)
(2&)

~&(s).(»ul}= »m .~~~(»
~JP(g) w ~

(23)

and Zgpg 1s the usual scRlRx' CPA IQRss operRtox'

considered as a functional of the diagonal propaga-
tor y. %'8 mill find a similar form for the phonon

CPA matrix mass operator. The generalizations
to CPe are obtained by a suitable n.-site decoupling
of the. mRtx'lx + maire. .

The development for phonons in a disordered lat-
tice is quite similar to the derivation fox electrons.
The equation of motion for the phonon propagator
6 is

R~1(&u) =- 0.
The simple structure exhibited by Zc~" has al-

ready been noted by Blackman. Specifically, Z~"
has the form

2

p (i) = 1& . Ha
0t

O
(32)

vl/mg)~(d

vrhere s~ is again a projection operator

1 if i is the host(H) cell,
0 if i is the defect (D) ceU,

Rnd m„, (m~ ) is the mass of the nth atom in basis
B when the unit ceil corresponds to a host (defect)
cell. (Again we will need to redefine &;=1-»r
6 for intermediate steps and then take the limit 6- 0. ) Note that there is a hidden assumption in Eq.
(30), specifically that @,~(ij) depends only on the
nature of the atoms on the thoro sites specified and is
independent of the environment. This question will
not be pux'sued further in this particular publication,

A matrix equation of motion then follows:

0 g(&i)=&11~ gy. (i)+P (i) C' g(ij)PgU)

+p (1)@ 6(if)p6(i) C'6 (~j)pt (j)+ ~

(34)
Rs IQRy be found by performing the lndicRted mR~

trix multiplications and comparing term by term
with Eq. (31). Hence,

m; (omG q(ij)= &ec„q+@ „(lj), (29) G~g(ij)=P (i)~ g&lg-@ y(~J). (35)

where & labels a unit cell in the Brovais lattice,
and a labels the coordinates of 8-basis atoms in
the lllllt cell (Q = 1, 2. . ., 3B), Rnd ml is tile col'1'8-

spoDdlng mass, The hRrIQonlc RpproxlIQRtlon is
employed. + is t e dy a leal matrix. Again we

mRy 1Dtx'oduce R DlRtx'lx dynamical IQRtrix, prop-
agator Rnd locator, respectively, as follows:

%8 noir introduce the inverse of the effective-
medium propagator,

&.'g(ij)-=&'me. &o(&.g&)-& g-@ g(ij). (36)

Here &„ plays the role of a mass operator. Even-
tually, @re will determine & by the condition that
R =(G) within a single-cell approximation.

It follows from the above that
@80 (ij)

C'. a(») = @as(")
@AD(g~)

C. (~i)
'

G.'I (&i) =R 'g(1i') —~lgv N(i),

&„m„(o'{1—1/x, ) —8"",
~.,m,.~' [1—(m,„/m,.)(1/y, )] —~:; (33}

The development now is an exact parallel of tpe
election case. We obtain vrithin the single-cell
Rppl'oxllnR'tloll R= {0) lf (T~ g(i)) = 0~ wilei'8 T~ g

plays the role of a single-cell matrix T' matrix.
Explicitly,

~(1)=v(i) [& -R(il) v(i)], (39)

where the above matrices are actually "double"
matx'ices. Specifically,

y(1') = [y,J, ~(l') = [7,j, etc.

The equation 1(i)=0 represents 2[3B] equations
in 2[3B]' unknowns (the e"~ and e ~~). As in the

electx'on case, 1D ox'der to detex'IQine 6~& Rnd 6~@,
they must be suppleIQented with the auxiliary con-
ditions R,s~(ii}=R ~(ii)=0, i.e. , a given cell (i)
cannot be simultaneously a. host Rnd a defect cell.
The degx'ee of complexity in the equations depends

on the dimensionality Rnd on the number of basis
atoms.

In one dimension for a monatomic lattice, the
above self-consistency equations reduce to three
equRtioils in till'88 ullkllowns (8, E, N = 4 ),
There is no restriction on the range of the forces.
In three dimensions, monatomic lattice, simple
cubic symmetry, Rnd folces I'estx'lcted to Dearest
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(fj) R (fj)
R&H(gg) R&&(fj) ' (40)

neighbors (so that @„=0 for n+ p and @„=@~3
= C~s), there are three equations in three unknowns.
In either of these cases an explicit solution may be
obtained after some matrix manipulations.

The results are summarized by the fo]allowing
equations. The effective-medium propagator is

and & is determined by the condition

R"~(ij)= 0. (44)

In the above equations, c is the concentration of
host sites, ~m =~H - mD, and yH =R«&„yD =R«&,.HH DD

As in the electron case, a "and c (aside from
the mass-splitting term) have the form of the CPA
mass operator in the infinite-mass limit.

IV. CONCLUSION

R ~(fj) = ~'m„i„[r e"—" @(—fj)]

(mz is mass of an atom on a host site), and

~HH ~HD
CPA

HD DDg

where

cly-&,

e ~~ = —(i —c)/y ~+ d.muP,

(41)

(42)

(43a)

(43b)

We have demonstrated that the coherent-poten-
tial approximation can be extended to include off-
diagonal randomness in a simple fashion, both
formally and practically, by the replacement of
scalar quantities by matrices in an appropriate
manner. It is hoped that this will encourage in-
vestigators to include this important extension in
future modeling of disordered systems.
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