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The renormalization of tunneling matrix elements of off-center impurities in alkali halides due to
interaction with lattice displacements is studied. The possible forms of interaction between
nearest-neighbor lattice ions and impurities oriented along [100], [110], or [111] directions are
enumerated, The renormalization factors are expressed in terms of sums over normal modes of the
perfect lattice and reduced coupling coefficients describing the impurity-lattice interaction. The lattice
sums are tabulated for nine alkali halides and the coupling coefficients are expressed in terms of
measurable quantities: the impurity electric dipole moment and stress splitting factors. The results are
applied to several experiments: the 90' reorientation of [100]-directed OH dipoles in several alkali
halides, the 60' and 90' reorientation of [110]-directed Ag+ in RbCl and RbBr (see previous paper),
and the reorientation of 0, and N2 in KCl and KI. It is found that in general the relaxation rate
can be qualitatively related to the reduction in matrix element due to renormalization.

I. INTRODUCTION

It has long been recognized that lattice interac-
tions play a central role in determining the dynam-
ics of paraelectric impurities in alkali halides.
Qualitatively, the nature of the interaction is as
follows: A paraelectric impurity has the ability to
reorient, i.e. , change the direction of its electric-
dipole moment. If the impurity distorts the lat-
tice significantly in its initial position, when it re-
orients, the distortion must change. It is possible
that in many cases the lattice distortions are rea-
sonably large, ' thus any sensible description must
treat them carefully, and, in particular, find how

they follow the rotating impurity.
The most dramatic evidence to date for strong

lattice coupling in a paraelectric system are the
relaxation-time data of Kapphan for OH in RbBr.
Two analyses of these data have appeared: Dick
and Strauch' attempted a microscopic description
of the relaxation using the shell model for the pho-
nons and perturbation theory for the lattice inter-
action. The present authors gave the second treat-
ment in which shell-model phonons were incorpo-
rated into a theory valid for any strength coupling.
The theory was based on earlier work by the pres-
ent authors ' and by Pire and Gosar. '~ This ap-
proach emphasized two separate effects of the pho-
nons: first, the so called renormalization of the
tunneling parameter, '~ that is, the replacement
of the rigid-lattice reorientation rate 40 by an ef-
fective tunneling rate ~ given by

g2 ~2 Wo

The parameter S'0 is a kind of Debye-Wailer factor
which depends on the lattice coupling. Second, the

lattice affects the reorientation rate by providing
a mechanism for releasing energy: The reorienta-
tion can be accompanied by the emission and ab-
sorption of phonons.

The calculation of Ref. 6 is satisfactory in that
it can fit the data by using a few parameters which
are not inconsistent with other experimental infor-
mation. However, the mass of information com-
puted to fit the complete relaxation-time-versus-
temperature plot tends to obscure the fundamental
physics. It would be very desirable to character-
ize the lattice effects on reorientation in some way
which would allow us to quickly assess trends and
compare different materials. The single parame-
ter Wo is the sort of information we need. If dif-
ferent materials have roughly the same bare tun-
neling parameter, then /osv-temperature rates will
be determined mainly by S'0. It is the purpose of
this paper to make it possible to calculate the 5'0's
for all the alkali halides and for paraelectric im-
purities whose equilibrium orientation is along
[100], [110], or [111]crystal axes (this covers all
the known cases).

We give in Sec. II a discussion of the model
Hamiltonian we adopt. In this section we derive
the 8'0's from two types of information: informa-
tion about the host lattice, and parameters char-
acterizing the coupling. In Sec. III the calculation
of host-lattice parameters using the shell model is
discussed and the results listed. In Sec. IV we de-
rive reduced coupling coefficients which are used
to express 5'0 in terms of a few parameters, one
for each mechanism of lattice coupling.

In most previous work two main sorts of coupling
mechanism have been considered: coupling of the
impurity electric-dipole moment to lattice polar-
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The interaction Hamiltonian can then be written

In an alkali halide the index ~ has value 1 or 2 de-
pending on whether the ion at site l is positive or
negative; the index j runs over the six phonon
modes of wave vector k. The indices z and j will
be suppressed in the following unless required.
The polarization vectors v (el k, j) form a six-di-
mensional unitary matrix with rom index a, ~ and
column index j. The symmetry coordinates uF can
be second quantized by using Eq. (4}:

1/2

) I'" (v.e" ') (a.+a!.j . (5)

Here I'F is a projection operator that projects out
of the 18 ef e" '

(n = x, y, z; l = 1, . . . , 6) that part
which transforms according to I', v. For example

P~, (v-e" ')=i(3) (e"-sinak,

+ vl, sinak„+et sinak, ),
et

—cosak„-cosak, ) . (8b)

I

2g

FIG. 2. Pictorial representations of the six symmetry
coordinates listed in Eq. 0.).

(&s)pp= —Z Fr, .a"r. (8)
Fs p

The summation is over representations I' and rows
v of the octahedral group; the uF are the symmet-
ric combinations of nearest-neighbor displace-
ments given by Eqs. (1); and the F~z „arethe cou-
pling coefficients (with dimensions of a force) when

the impurity is in a particular orientation specified
by the index P.

The displacement of the lattice ion located at po-
sition al is written in second-quantized form as

(8'(o.)'
g2 Mo

The exponent in Eq. (8a) can be written

(8a)

(8b)

(Rr)pp=g W~(a. ~at-„), (Va)
k

1/2
pre P~ FP Pu (v Io k

) (7b)
F, v &2MN s

We are interested in the zero-temperature re-
normalization factor for tunneling between bvo ori-
entations p and P'. As discussed in Sec. I, if the
bare tunneling matrix element for this reorienta-
tion, obtained from X~, is ~0, thenthe reorienta-
tion dynamics will be governed by a "renormalized"
matrix element &, given by~'9

s'=&', exp Q (s',',„—z",„)'D),F ~ p

n, =g(2kfzn~')-'~Zr(v, s"")~'.

(10a}

(10b)

The sum in brackets over all k in the Brillouin
I I

zone vanishes unless I'=I', p= p . Thus
This is the desired result. The F's in Eq. (10a)

depend on the particular orientation and proper-
ties of the impurity but the Dr are characteristic
of the host lattice and can be tabulated for a given
alkali halide. The DF are independent of the row

index p; thus for each alkali halide one has to
calculate at most ten numbers (five different rep-
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resentations for either positive or negative near-
est neighbors).

III. EVALUATION OF D,

If Eal. (10b) is used directly to evaluate the Dr,
one ean choose any rom v of the representation I',
but it is then necessary to integrate over the com-
ylete Brillouin zone. Much calculating time can
be saved if the integrated is first symmetrized by
averaging over p; then it is only necessary to in-

tegrate over the segment of the zone: &„~k„~jp,
«0. With all indices restored, Eg. (10b) becomes

D, (~)= g (2SMXm .',)-'~S",[v(~~k q)e' I'I] ~'.

(11)
Here, 8 is the dimensionality of the representation
I'. The explicit formulas used in the numerical
evaluation are as follows, using the abbreviated
notation A. =-(MNS&-„),v" = v"(-ra I &„j),s"=sing@„,
c = cosgg„:

D„=—gA, (v's'+ v"s"+ v"s')

1
Ds = QA„-[(v"s"-v"s"}'+(v"s"-v's')+(v's'-v"s') ],

D,, = —QA, [(v'P(2c'- c" —c"}'+(v")'(2c"—c' —c")'+(v")'(2c"—c'-c")'],=1

1
Dr = —QA. [(v"s"+ v"s'} + (v*s"+ v"s*} + (v"s'+ v's") ],
D,, =

6 QA. [(v'}'(c"—c")'+(v")'(c" —c')'+ (v")'(c' —c")'] .1

(12b)

(12c)

(12e)

The evaluation of these formulas requires knowl-
edge of the phonon spectrum and polarization vec-
tors. We decided to use the standard nonbreathing
shell model ' to obtain this information because
input parameters obtained from a least-squares fit
of the phonon spectrum to neutron-diffraction data
are now available for almost all the alkali halides.
It is difficult to cheek whether the simple shell.
model gives very accurate results for the v~,' un-
certainty about this point must be regarded as a
possible source of inaccuracy in the numbers cal-
culated here. The integrations are done by sum-
ming over 2000 points in+ of the Brillouin zone

(BZ}; trial runs using a much larger number of
points change the result by 1% or less. Values of
the Dx obtained in this way for positive and negative
nearest neighbors are listed in Tables I and II, re-
spectively. The source of the input data for the
shell-model calculation ls also given in Table
I. In all cases except NaBr the neutron-dif-
fraction data were taken at (80-100)' K. These
temperatures are low enough so that proyerties
such as elastic constants do not change significantly
doom to the 1'K range where most reorientation ex-
periments are done. In the case of NaBr the only
data available to us was obtained at room temper-
ature; consequently @re regard the results for this
material as less reliable than for the others.

TABLE I. Positive nearest neighbors.

Material.
Ds Dr,

„

(108dyn 2)
TABLE G. Negative nearest neighbors.

Nacl»
NaBr"
Nar'
KC1»
KBr'
KId

Bbcl»
BbBr~
BbI'

3.69
5.79
8.46
6.03
8.29

12.5
9

ll. 9
17.8

8.84
13.5
19.4
12.5
16.6
22. 6
19.8
23. 5
28. 2

6.74
11.8
16.7
9.87

16.2
28. 3
17.7
21.2
43. 7

8. 57
14, 3
22. 1
14.9
24. 3
39.6
25. 5
32.7
52. 4

8.67
14, 1
20, 5
14.1
22. 7
36, 5
24. 0
30.4
48. 1

Material

Nacl
NaBr
NaI

Kcl
KBr
KI

3.74
7.96

12.6

6.23
12.2
19,0

8.23
16.1
28. 7

11.4
21.5
30.4

5.12
11.2
18.7

11.0
21.2
33.5

Ds,
(108dyn 2)

7.83
16.0
26. 9

15.3
29.7
46. 8

V. 45
15.7
25. 9

14.0
28. 6
43. 6

»Beference 20.
Beference 23.'

~Reference 19.

dBeference 24.
'Beferenoe 21.
Reference 22.

BbCl
BbBr
Bbr

7.76
12.9
16.5

13.7
23.0
32.0

15.0
26. 3
34. 6

22. 5
35.4
48. 7

19.7
32.4
46. 6
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IV. REDUCED COUPLING COEFFICIENTS
Wr=Dr Q(&r', v-&r, .)' ~ (13b)

Wo= Q Wz (13a)

The D& calculated in the previous section are
useful only if the coupling constants F&~, „canbe es-
timated from either a microscopic calculation or
from experiment. %'e choose as a first step to re-
late the F&~ „toa minimum set of reduced coupling
coefficients which do not depend on the specific ori-
entation P at the impurity. The quantity W'0 intro-
duced in Ezl. (8b) can be written

In order to calculate the 8'r for all the possible re-
orientations of [100]-, [110]-, or [111]-directed
impurities, we first specify the orientation p by
direction cosines with respect to the crystallo-
graphic axes: g„,g„,g, . The interaction energy
Xl is an invariant under the operations of 0„.We
introduce five independent parameters fr, one pa-
rameter for each irreducible representation, and
form the invariant:

(&r)zp= -f~~u~z -fs, [(zi„'-vP)u' +3 ' (2q', -q„'q„')-u ]

frz„(lx+rzg+'Oyurzl+zip'rz„) fry (Rzzlyurz +'6plgurp + 4Rx+raz)

-f. [n. (n.'-n,')",, n.(n', -n'.)"„„n,(n'. -n.')'. ]. (14)

C»„(8)= 4 sin —,
' 8 . (i6)

The C& coefficients for the four representations are
listed in Table III. In those cases where a C& is
zero for all reorientations of a particular impurity
type, this is indicated by dashes in the appropriate

TABI,E ID. Coefficients Cr used in Eq. (15).

Impurity
type

[100]

Reorientation
8

(deg)

90
180

Cz)„Cg Cg

2 ~ ~ ~ 0 4

4 ~ ~ 0 0 ~ ~

P10] 60
90

120
180

70. 5
109.5
180

1
2
3

1~4
3
8
3

1
2
1
2

0
8
9
8
9
0

Comparing Ezl. (14) with Eg. (3) gives the F~z
„

in
terms of the f„and the direction cosines. If we
choose two orientations p and p' we can use Eq.
(13b) to obtain the Wz in the form

Wr = Cr (p~ p )f rDr ~ (16

where the C& are numerical coefficients of order
unity which depend on the direction cosines of p and
p'. We note that all C~& = 0, since the interaction
for the "breathing" mode is independent or orienta-
tion. The C~~„areespecially simple to obtain be-
cause the three components of the T,„representa-
tion transform like a vector, ' C» depends only on
the angle 8 separating the two orientations:

column of Table III.
Reference to Table QI shows that couplings of

certain symmetry tend to favor reorientation
through some angles and inhibit others. For ex-
ample, for [100] impurities, a large fzz inhibits
90' tunneling in comparison to 180' tunneling,
while the reverse is true for large frz„. The most
interesting ease is [110]where the relative rate for
60' -vs-90' reorientation is an important experi-
mental question, and where couplings of all four
symmetry types enter. Table ID shows that large

fzz and fr favor a faster rate for 90' tunneling
while large frz„andfr favor a faster 60' rate.
Thus the relative magnitudes of these coupling pa-
rameters are of considerable importance.

f,, =(12)"'psu-'. (18)

There exists much uncertainty as to the connection
between the value of p appearing in Ezl. (18) ynd the
effective dipole moment determined from the in-
teraction energy with an external electric fie$d.

V. RELATION BETWEEN f~ AND MEASURABLE
QUANTITIES

In order to make use of the preceding results,
one must be able to estimate the fr. The approach
taken here is to relate these quantities where pos-
sible to experimentally accessible quantities: the
electric-dipole moment and various stress-split-
ting factors. The simplest case is that of the elec-
tric dipole. The energy of interaction between a
dipole moment p pointing along the x axis and the
six nearest neighbors of charge e and distance g is

X,= —(12)"'pezz 'u', , (17)

Comparing with Eqs. (14) and (13b) gives
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while in the second all a, z are equal to
1 ~

0'gg = 3 arp,

From Eq. (14) the interaction energy with the im
purity is

3Cr = —,' afrr (C4~ —C~r,,) —(2q,-q„-q„)S4

——', afrfrC44(q„q~+q~g, +q*q~)S4 . (22)

Examination of Eq. (22) shows that for any im-
purity-system application of an external stress Sz
or Sz results in splitting of the originally degener-
ate levels into at most two sets of levels separated
by energy E. The stress-splitting factors a&, a&
are proportionality factors defined by E= o.fS$,
E = o.4Sq. For [100]-directed impurities, we find
n&=0 and

~i=2sf.,«~i-C~d '. (23}

(This latter quantity is usually called the "uncor-
rected" dipole moment P„.) Based on the work of
Mahan ' we proposed in Ref. 6 the relation

+ 2}(~0+ 2}

here eo and & „arethe low- and high-frequency di-
electric constants of the host. This relation is ob-
tained by assuming that a calculation for the inter-
action between a dipole and a point charge embed-
ded in a polarizable continuum is valid for nearest
neighbors; therefore its usefulness is somewhat
questionable. This point is a subject of current
study.

The connection to the stress-splitting factors is
obtained by noting that the modes E~ and T~ cor-
respond to components of the local strain e, &.

(20a)

(20b)
I

(20c)

If we now assume that the local elastic constants
of the host are not changed by the presence of the
impurity, we can relate the local strain to an ex-
ternal stress 0&&. The components we need are

44s =3 'r a(C44-Cqm) '(2o„-o„„-cr„„),(21a)

(21b)

Here C&z, C», C44 are the elastic constants of the
host. It should be emphasized that Eqs. (21}are
approximate insofar as they assume that the mac-
roscopic elastic constants can be used to obtain the
displacements of the nearest neighbors.

Consider now an experiment in which a uniaxial
stress S~ is applied along a [100]axis or a stress
S4 is ayplied along a [111]axis. In the first case
the only nonzero a, z is

TABLE IV. Coefficients bz used in Eqs. {26a)-{26c).

Impurity
type

t100]

Reorientation
9

{deg)

90
180

60
90

120
180

70. 5
109.5
180

b@

1
0

bp

24
48

12
24
36
48

16
32
48

bp

2

9

2
0

JL
2
0

For [110]-'directed impurities

(25)

VI. COMPARISON KITH EXPERIMENT

The results obtained above can be used to com-
pare differing relaxation rates (i. e. , differing val-
ues of b) in two different ways: (i) comparison of
rates for a given impurity in different host materi-
als; (ii) comparison of rates for several types of
reorientation (i.e. , 60' -vs-90' reorientation) for
an impurity in a single-host material. In this sec-
tion we will consider both types of experiment.

Kapphan has measured the one-phonon 90' re-
orientation rate of the [100]-directed impurity OH
in several alkali-habdes using two complementary

n4 = afsg (C44 —Cra) (24a)

o'e= —', afr4 C44 . (24b)

For [111]-directed impurities, cr~= 0 and

4 -1
o's = s afr3 C44 .

Equations (15), (18), and(23)-(25) and Table III can
now be combined to give the final result for the S'&..

&s =&s (P, P')a '(Cri —Cu) niDrr, , (26a)

=48sin —,'ee g p D~

=&rr„(P~P )& rr P Dr, , (26b)

&re,=&r~(P, P')a 'C4'4'', Dr . (26c)

The numerical coefficients br(P, P ) are listed in
Table IV for all the possible reorientations. Un-
fortunately, there does not seem to be a way to re-
late fr to an experimentally accessible quantity.
It is probably reasonable to assume that coupling
of this symmetry is small, so that the contribution
of 8'& to 8'0 can be neglected.

There is one class of impurity for which S'~ and
5'~~ are identically zero. Molecular impurities
such as Oz or Nz are symmetric under inversion
through the lattice site. Therefore all couplings of
odd symmetry are forbidden.
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TABLE V. Relaxation of [100]-directed OH .

12

C&,

C44
a

Quantity

10" dyn/cm
10 dyn/cm
10" dyn/cm

KCl

4. 6
0. 58
0.65
3.14

RbCl

4
0.65
0.49
3.27

KBr

4
0.48
0. 52
3, 28

3.86
0.47
Q. 41
3.42

BbI

3.2

0.36
0.29
3.63

(at 1.3'K)'

Qg
gb

sec '
10"'K-' cm-'

lp '4 cm'
'K

l.7x].07

0.641
5.8
0.25

2. 5x].04

1.35
5. 0
7. 5xlQ 3

5x103
1.24
7.8
2. 3 x lp

1.6x].02

2. 00
8. 7
3xlp 4

2. 5x103
2. 81

12.0
7xlp 4

P„
W'z

(
W@

Q(c

~t~~Qt 1 3 K)~

'K

0.95
3.44

10.0
6.89

1160

4.3xlp~

1.0
3.49

15.2
6.17

330

6. 7x104

0.9
3.50

11.0
13, 0

374

8. 0 xlp'

1.0
3.55

13.4
17.5

1540

1.0
3.75

17.3
25. 6
1.4x10~

8. pxlp3 1.2 xlp2

~Reference 4. ~From Eq. (27). 'From Eq. (30). From Eq. (34).

techniques, "optical" and "caloric. " The experi-
mentally observed rates are closely related to the
basic transition rate for 90' reorientation of the
diyoles, sv. The relaxation rates for the "caloric"
method, v„,and the "oytical" method, v„,are re-
lated to ze by ~„=4u,' v'„=Gm. As first discussed
by Dick, the one-phonon rate so can be written

zo=4 cv&TQ . (27)

Here n is the (renormalized) tunneling parameter,
n~ the stress-splitting coefficient, 7.' the tempera-
ture, and Q a constant that depends on the proper-
ties of the host lattice. Kapyhan obtains values of
& from his experimental relaxation rates by using
an expression for Q due to Dick~s:

Q=(80vpk ) (C~i —Cio) (2c, +3cP)ks . (28)

Here p is the density, C~~ and C~z are elastic con-
stants, and c„c&are average velocities of long-
wavelength longitudinal and transverse phonons. A

slight improvement over this expression can be ob-
tained by evaluating the average over the solid an-
gle in k space numerically. Thus, instead of Eq.
(28), we use

mental values of so obtained by Kapphan for five
host crystals, other required experimental data, 3

values of Q calculated from Eq. (29), and calcu-
lated "experimental" values of 4 obtained from Eq.
(27). The values of n, we obtain are quite close to
the values obtained by Kapphan using the approxi-
mation Eq. (28) for Q. Table V shows that the
large range of values for sv are indeed due primar-
ily to the range of values for 4 as one goes from
one material to another.

We now attempt to fit the "experimental" values
of 4 by an expression of the form

n = ~o exp [--,'(W, , + W, )], (30)

with the expectation that the bare matrix element
&0 varies less rapidly with material than does b.
Using Eqs. (26a), (26b), and Table IV, we find for
[100]-oriented impurity and 90' reorientation

5'z»=24e g p Dr (»)
Ws =(Ctt Cw) nba Ds~ ~ (32)

The dipole moment p is related to the uncorrected
(experimental) value by p =p„/Z. Following Eg.
(19) we use

Q=(2w pk ) (Cu —Cu) ks
c=& „(&o+2)/(&„+2). (33)

x I, f do (1/c', ) (;q, —u', q,)' . (Rs)

Here, the integration is over all directions in k
space; g„,g~ are direction cosines, ' the summation

j is over the three acoustic modes with velocity c&

and polarization vector u&. The u& are normalized
three-dimensional vectors obtained by diagonaliz-
ing a 3x3 dynamical matrix. Eq. (29) contains a
factor of kos so that both h and T in Eg. (27) have
units 'K.

In the first part of Table V we list the experi-

The data used in the evaluation of S'~~„and S'g~ and
the calculated values are given in Table V. 3~~3

We then list calculated values of 40 obtained from
Eq. (30). With the exception of Rbl, the values of

40 so obtained are within a fairly small range.
However these values are unphysically large.

We believe that the unphysical values of 40 in-
dicate that one cannot calculate the factors Wz &„
and S's by using the macroscopic coupling con-
stants n~ and p„directly, since the values of the
local elastic constants and local dielectric constant
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in the vicinity of the impurity may differ from their
bulk values. To proceed, we suppose that the local
values of ez and p„are reduced from their macro-
scopic values by factors C and C~ respectively,
and that these factors are independent of material.
The theoretical expression for the reorientation
rate then becomes

a= C~ nqQTnaoexp[-(C Ws +C~ Wr )] . (34)

We then choose a reasonable value of 4p, O'K, and
determine C and C~ in order to produce the best
least-squares fit between experimental and theo-
retical values of m for the five materials studied.
The best fit is obtained with C =0.63, C~=O. '7l.
These correction factors are close to unity, and it
is very reasonable that the microscopic coupling
constants could differ from the observed values by
this order of magnitude.

In the final row of Table V, we list the calculated
rates for the five materials. The agreement with
the experimental rates is not particularly good,
but the wide range of rates is reproduced qualita-
tively. In view of the assumptions that 4o, C, and

n~ are independent of material we regard the agree-
ment as satisfactory.

A second set of experiments that w'e discuss in-
volves the reorientation of Ag' ions in RbCl and
RbBr. As discussed in Ref. 15 and in the accom-
panying paper by Jiminez and Luty, Ag sits off
center along a [110]direction in these materials.
Consequently reorientation can occur between
[110]directions separated by either 60' or by 90'.
Kapphan and Luty~' could determine the reorienta-
tion rate for the two processes individually as a
function of temperature. They find that for both
materials the rate for 90' reorientation is much
larger than the 60 rate. If the reorientation is due
to tunneling, this implies that the tunneling matrix
element for 90' reorientation is larger than the 60'
matrix element, contrary to any reasonable ex-
pectation for a "bare" tunneling matrix element
(i.e. , any reasonable static potential of octahedral
symmetry would not yield such a result. ) As
Kapphan and Luty propose, a possible explanation
is that coupling of the impurity to a tetragonal dis-
tortion of the lattice (i. e. , a mode of E~ symmetry)
could result in strong renormalization of the 60'
matrix element but would have no effect on 90' tun-
neling. Since the stress coupling coefficients
n„n2and the electric-dipole moments ' for the
two systems have been measured, we can estimate
the renormalization factors for the 60' and 90'
processes and check whether the proposed mech-
anism is reasonable.

One difficulty of applying the analysis of this pa-
per to the reorientation of a heavy ion such as Ag'
is that the "bare" matrix element &o is itself very
small. Consequently, reorientation may take place

~90 (4 ~90 )-1

~80 (6 &Bo )-1

(37a)

(3Vb)

The dipole moments p„are "uncorrected" values.
We found it most useful to evaluate the Tz„contri-

via thermal activation, rather than by tunneling,
even at low temperatures. The temperature depen-
dence of the reorientation rate is the most reliable
method for distinguishing the two mechanisms.
For the system RbCL: Ag', Kapphan and Luty find
a T' dependence for the 60' reorientation rate for
T & 1.8'K. This dependence is consistent with
multiphonon-assisted tunneling. ~ Bridges has ob-
tained the temperature dependence of the 90' re-
orientation in this system down to T = 1.4 'K using
a paraelectric-resonhnce-saturation technique and
obtains results consistent with one-phonon relaxa-
tion. We conclude therefore that both the slow
60' and the fast 90' reorientations of RbCl: Ag' are
due to phonon-assisted tunneling in the tempera-
ture range of interest (T& 4'K).

In RbBr: Ag' the temperature dependence of the
90 relaxation rate can be fit by a multiphonon tun-
neling model for temperatures below 5'K. At
about this temperature, the data of Kapphan and
Luty indicate that a thermally activated process
takes over, giving an exponential rate for higher
temperatures. The same data indicate that the 60'
rate is fit very well by an exponential temperature
dependence. Thus, the only conclusion that can be
drawn about the 60' tunneling rate is that it is too
slow to be measured.

In analyzing these experiments we again suppose
that the variation in relaxation rates is due pri-
marily to the renormalization of the tunneling ma-
trix elements. Using Eqs. (13a), (26}, and Table
IV we find for 90' reorientation of a [110]-oriented
impurity,

Wo —-Qn2(Cg4/+)Dr +24(e p /a )Drq„. (35)

Similarly, the 60' rate is

W,"=- ', [(C„-C„)'/']D,,
+a ~a(C44/~)Dr„

+12(e pa/a )Dr „~ (36)

If the first term in Eg. (36}is large, this would
result in a reduction in magnitude of the 60' matrix
element compared to the 90' element.

In Table VI we present the experimental informa-
tion needed to check whether the four relaxation
rates (60' and 90' reorientation in RbC1 and RbBr)
can be related to the appropriate renormalization
factors e o. The transition rates so~ and sos are
estimated one-phonon rates obtained by extrapolat-
ing the experimental results for v~ and 7„o,to 1'K
and using the relations
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bution to the Wp using p„in place of p, and then
multiplying the answer by (p/p„) . The remaining
quantities needed to evaluate Eqs. (35) and (36) are
obtained from Tables V and II. The numerical re-
sults for the two terms in Eq. (35) and the three
terms in Eq. (36) are listed in Table VI.

The renormalization factors e are plotted in
Fig. 3 as a function of p/p„. The results predict
that the 60' tunneling motion in RbBr: Ag' is es-
sentially frozen out by the lattice E» distortion, in
agreement with experiment. Further, for values
of p/p„between 0. 3 and 0.4 the relative order of
the four calculated renormalization factors is in
agreement with the observed relaxation rates. The
value of p/p„obtained from Eq. (33) is about 0. 29
for both RbCl and RbBr, while the simple Lorentz
local-field correction 3/(&0+2) gives a value of
about 0.43 in both materials. Thus the choice of
p/p„ that seems to give the best agreement with ex-
periment is reasonable. For p/p„-0.35 the rela-
tive spacing of the renormalization factors is in
fair agreement with the four experimental relaxa-
tion rates listed in Table VI.

A final application of the present theory is a
comparison of relaxation rates and renormaliza-
tion factors for the paraelastic defects 02 and N2

in the materials KCl and KI. These are [110]-ori-
ented impurities which can reorient via 60' or 90'
tunneling, just as in the case of Ag'. However,
these homonuclear defects have no electric-dipole
moment, so there can be no contribution to Wp of
Tz„symmetry. The stress-splitting factors and
one-phonon relaxation rates for 02 have been mea-
sured by Kanzig and Pfister and Kanzig.
Silsbee and Bojko~~ have measured splitting factors
and thermally activated reorientation rates for
Na,. they argue pursuasively, however, that the
relative rate of 60' to 90' relaxation is indicative
of the relative tunneling matrix elements for the

I) ~Pu

0 0.20 0.50 0.40
I l I I l l

0.50
-~o—IO

60 —IO

50
—IO

40

50

IO
l5

20

—IO

IO
—IO

I I

0 O. I5 0.20 0.25

(p/p„)

FIG. 3. Renormalization factor W0 as a function of
the ratio p/P„ for BbCl: Ag' and BbBr:Ag'.

two processes.
The renormalization factors Wo and Wo can

again be calculated using Egs. (35) and (36); the
results are given in Table VII. For three out of
the four experiments studied, the relative rate of
60 to 90' reorientation correlates well with the
difference between Wp and WpeP. There is a glar-
ing discrepancy, however, in the case of 03 in
KCl. In this case the 60 relaxation rate is much
faster than the 90' rate, while the calculated val-
ue of Wp —Wp predicts just the opposite. %e are

TABLE VII. Relaxation of 02 and N2 .

TABLE VI. Relaxation of [110]-directed Ag'. Quantity Unit KCl

Quantity

(at 1.O'K)

w60(at 1.O K)

i pg

Unit

sec ~

sec ~

BbC1

2.5xlp4

10

0.78

10 24 cms 7.8

1x10 2

(10-6

0.95

13,7

02
w80 (at 1.0 K)~
w6 (at 1.0'K)~
O. (b

b

gp 80
0

W60
0

103 sec ~

10 3 sec ~

1O" cm'
10 24 cms

1.9
25
8.15
5. 00
1.4

14

2. 5
2. 3
6.18

12.50
6.1
3.9

A2

80
WP2

80

gp 60
~»
60

W'g(60

10 24 cms 1.82

Q. 86 0. 57

10.1

0.43

42. 3

0.29

94. 5(p/p„)' 189(p/p„)'

47. 4(p/Pg)' 94. 5(P/P, )'

N2
'w (at 20 'K)
I (at 20'K)'
lXg

Q/
ti

2
W80

0
gp 60

0

106 sec ~

1O6 sec ~

1O '4 cm'
1O-" cm'

2P
O. 91
5. 59
8.55
4.2
8.5

&) w60

7.45
9.48

14.5
8.2

17.8

~From Table I of Ref. 36. 'From Table II of Ref. 27.
"From Table II of Bef. 35. From Table I of Ref. 27.



12 RENORMALI RED TUNNE LING OF OFF-CENTER IMPURITIES. . . 1555

unable to account for the large discrepancy in this
case. A possible explanation is that since the lat-
tice spacing in KCl is very small, the tunneling
matrix elements 40(60') and 40(90') might differ
greatly in magnitude.

VII. DISCUSSION

The results of Sec. VI indicate that general
trends in relaxation rates can be understood using
the calculations described in this paper, but that
quantitative agreement is not possible at this point.
We believe there are three major reasons for the
difficulty:

(a) The most trivial problem is that there is no
a priori reason to suppose that the "bare" tunnel-
ing matrix element 40 is relatively constant for dif-
ferent materials or for different reorientations in
the same material. We suggest that this problem
occurs in KCl: O~ . Variation of this parameter by
a factor of 10 would lead to a 2 order-of-magnitude
variation in relaxation rates, thus eliminating any
hope of quantitative correlation between these rates
and the renormalization factors.

(b) All of our comparisons with experiment have
involved an attempt to determine the microscopic
coupling constants fr from the observables c.~, na,
p„. Relations such as Eqs. (23)-(25) involve mac-
roscopic elastic constants C~~, C~z and C«. In
reality, the elastic constants relating the relative
motion of the impurity and its nearest neighbors in
the presence of an external uniaxial stress can dif-
fer from the macroscopic values, thus making it
impossible to obtain the fr with any certainty.
Further, we have been forced to assume fT~= 0,
since this coupling coefficient cannot be determined
from any macroscopic measurement.

Similar difficulties arise in attempting to obtain

fr~ from P„.We have assumed that the entire
force of this symmetry is due to the electric-di-
pole moment of the impurity. This neglects the
possibility of short-range pseudodipolar forces
which do not couple to an external electric field,
but can contribute to fr~„. Further, the attempt to

include the effects of lattice polarization in calcu-
lating the electric field due to the impurity dipole
via Eg. (19) is probably inaccurate for nearest
neighbors. The difficulties discussed here led us
to include the correction factors C and C~, in Eq.
(34) to account for the uncertainties in nz and p.

(c) The calculation of the D„in Tables I and II
depends on several assumptions whose validity can
be questioned. The most important of these is that
the phonon spectrum and the decomposition of the
motion of the nearest neighbors into normal modes
of the perfect lattice is not affected by the presence
of the defect. Changes in local spring constants
due to the impurity can lead to local or resonance
modes which modify Eq. (5) and the resulting ex-
pression for the Dr, Eq. (10b). Such effects of
nonlinear coupling between the impurity and the lat-
tice depend on the details of the system and are dif-
ficult to estimate without a detailed microscopic
model.

Within the linear approximation used, we believe
the values of the D~ in Tables I a,nd II are accurate
to within about 15%. We checked the results
against two possible sources of error. In the
shell-model calculations, the impurity was as-
sumed to couple to the displacements of the cones
of the nearest neighbors. It is probably more rea-
sonable to let the impurity couple to the skell co-
ordinates. We recalculated the D& with shell cou-
pling and found agreement to about 5% with the
original calculations. For the case of electric-
dipole coupling DT&„, one should allow coupling be-
yond nearest neighbors, falling off as x 3. This
was done for our calculation of Wo in RbBr: OH .
T)ns affects Dr»„by about 10%%uo, so it is not signif-
icant compared to the other uncertainties.
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