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Thermal conductivity for yhonon scattering by substitutional defects in crystals
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The thermal conductivity of a harmonic Bravais crystal containing randomly distributed substitutional

defects due to impurity-phonon scattering is theoretically investigated using the methods of double-time

thermal Green's functions and Kubo formalism considering nondiagonal terms in the heat-current

operator as proposed by Hardy. Mass changes as well as force-constant changes between impurity atom

and host-lattice atoms are taken into account explicitly. It is shown that the total conductivity can be
written as a sum of two contributions, namely, diagonal and nondiagonal contributions. For phonons of
small half-width, the former has precisely the same form which is obtained from Boltzmann's transport

equation for impurity scattering in the relaxation-time approximation. An analytical expression for the

inverse relaxation time due to impurity scattering is obtained in the low-concentration limit of randomly

distributed impurities and it shows non-Rayleigh behavior. The non-Rayleigh terms are held responsible

for the asymmetric depression in the peak of the thermal-conductivity curves observed experimentally in

doped crystals. It is found that the mass change and force-constant change make reinforcing or
cancelling contributions to the inverse relaxation time according to whether they are of equal or of
opposite signs.

I. INTRODUCTION

Experimental investigations~ of the temperature
dependence of the thermal conductivity of alkali-
halide crystals doped with various defects have led
to several interesting results. Firstly, the ther-
mal conductivity is diminished due to the scattering
of phonons by defect atoms; the depressions in the
thermal-conductivity curves being asymmetric with

respect to the peak, implying a non-Rayleigh scat-
tering of phonons in the system. In many cases
pronounced "dips, " usually on the low-temperature
side of the maximum of the thermal-conductivity
curve, are found and these have been ascribed to
the resonance scattering of phonons from quasi-
localized modes of the impure crystal associated
with heavy impurities. Certain experiments show

virtually no Rayleigh scattering at low tempera-
tures, contrary to the Klemens theory which tacit-
ly assumes that mass-defect scattering and force-
constant change scattering reinforce each other.
Krumhansl and Matthew' have shown that in the
case of a linear chain of atoms for low-frequency
phonons, mass and force-constant change scatter-
ings may compensate each other so that the com-
bined scattering linewidth due to both processes is
less than if only one scattering mechanism was
present.

In recent years, many theoretical studies have
been devoted to the lattice thermal conductivity of
crystals containing point defects using various
models and approximations. In general, two basic
approaches have been followed. The first of these,
which is most frequently used, is based on the
Boltzmann transport equation for phonons scattered
by impurities in the relaxation-time approxima-
tion. Although plausible, this approach suffers

from the usual shortcomings of the kinetic theories
as has been again enumerated by Hardy. The sec-
ond approach is based on the results from the gen-
eral theory of irreversible processes in which
thermal conductivity is related to the correlation
functions of tbe beat currents. ' Such an ap-
proach is more rigorous and provides a systemat-
ic method to include the low-frequency phonons and

interference between the various scattering mech-
anisms. The crux of the problem lies in the deter-
mination of the functional dependence of the heat-
current operator on the dynamical variables of the
system. Within the last few years much theoretical
work has been done on the behavior of the thermal
conductivity of lattices with substitutional impuri-
ties using correlation-function formalism and

various models and approximations. ~3 ~6 At-
tempts ~ have also been made to explain the
"dips" in the thermal-conductivity curves in terms
of resonance scattering processes, but at low tem-
peratures, when only long-wavelength phonons are
present, all these theories reduce to the Rayleigh
law for the scattering of phonons.

Most of the w'ork on the scattering of phonons by
point defects has been confined to the model of
isotopic impurity or the so-called mass-defect ap-
proximation in which the difference between the
mass of the impurity and that of the atom it re-
places characterizes the perturbation. The change
in force constants between the impurity and its
neighbors has not been considered. This seems
somewhat unreasonable since in actual practice the
introduction of defects also modifies tbe force con-
stants between the impurity atom and the host
atoms. It would be of interest to investigate the
thermal conductivity of a crystal with substitutional
defects taking into account both mass and force-
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constant changes. Some results~ have recently
been obtained for the scattering of phonons from a
defect considering a change of mass and a change
of simple force constant to the nearest neighbors
in the relaxation-time approximation. %e rely
here on the Kubo formalism+ which is more rigor-
ous and permits calculations of finer details.

In the present paper we have evaluated an ex-
pression for the thermal conductivity of a harmonic
Bravais crystal for the scattering of lattice waves
by randomly distributed substitutional impurities
considering nondiagonal terms in the heat-current
operator. ~s The principle advanced is the use of
the Kubo correlation-function expression for the
thermal conductivity and the method of double-time
thermal Green' s functions. Simultaneous changes
in mass and force constants due to the introduction
of impurities in the host crystal are taken into ac-
count. The effects of force-constant changes are
treated in the low-concentration limit. It is shown
that the total conductivity can be separated into two
contributions, namely, diagonal and nodiagonal
contributions. The former in the limiting case re-
duces to the expression derived from the Boltzmann
transport equation applied to the phonon gas. An

analytical expression for the inverse relaxation
time due to the impurity scattering is obtained for
low concentration of randomly distributed impuri-
ties in the Debye model. Thereby experimental re-
sults mentioned earlier are explained.

II. THEORY

The starting point for our calculation of the lat-
tice thermal conductivity is the Kubo expression
giVen by10e11

IC= lim dte ' d&(Q(0) Q(t+it&)) .s-03V 0 0

Here k& is the Boltzmann constant, V is the volume

of the crystal, I is Planck's constant divided by
2v, P= (AT), T being the absolute temperature,
Q(t) is the heat curre-nt operator of the lattice in
the Heisenberg representation, and the angular
brackets indicate the thermal average over the
canonical ensemble described by the Hamiltonian.

As is evident from (l), the evaluation of thermal
conductivity with the aid of Kubo formula requires
a knowledge of the heat current operator. Mara-
dudin~ and Hardy 8 have derived a general expres-
sion for the heat-current operator for a three-di-
mensional crystal with imperfections and anhar-
monic forces and have shown that even in the har-
monic approximation the total heat-current operator
contains a term which is nondiagonal in the phonon
branch indices in addition to the usual diagonal
term. The total heat current operator as derived
by Hardy can be written

Q(f) =00 (f)+@0, (t), (2)

where Qo~(t) and Qo,~(t) represent the diagonal and

nondiagonal parts of the heat-current operator, re-
spectively. The diagonal contribution Qo~(t) is given

by

The prime over the summation shows that j~j' and
the phonon operators Ag& and Bg& are defined by

Agg —ajy+ a )Tg
-A gg y

&p, =ay, -a'
The contribution Qo~(t) is the expression which is
commonly used for the phonon heat current opera-
tor in a crystal.

Substituting the expression (2) for g(t) into Eg.
(l) and decoupling the two-particle correlation func-
tions into one-particle correlation functions, and
noting that only correlation functions with different
time arguments contribute to conductivity, the ex-
pression for the thermal conductivity can be written

K= K0+K1,

with

and

Kp= ~~ Vt y VP~giQ7fg(dfiyi
gt yt

B

x dte '
d&Ff&y. &.(t+ifi&),

0 0

5 kgP~
K1 =

2V ~ ~ vfggi + vf g ge(oggQ7f y
&a' &,s,s,'

dk8 d&Fpfypf y ye(f+NX) &

0 0 111 (8}

where 0»= 8&op&/sk and &og& are the group velocity
and frequency of the normal mode with wave vector
R and polarization indexj, and Ngz(t) = a»(t) af z(f) is
the number-density operator, aj&(t) and af~(t) being
the phonon creation and annihilation operators in
the Heisenberg representation. The nondiagonal
part Qo,~(t) contains contributions from modes of
same wave vector but different polarization direc-
tions and in terms of phonon operators A„& and Bg&,
it can be written

1Y
Qp~g(f) = ~ ff(oggvfyyiAfg(i)g~r(f) q

Rss'

where 0f~&. (j «j ) is a generalized velocity given
by

3 p
~f~ ~fr r l

~e (kj )~ 8 (kj) ~
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where limit E 0 is implied. The correlation func-
tions F are given by

F)-,~f, &, (t) = (a,&(0)a}",, &, (t)& &a},&(0)a„-,&, (t)&

and

Fi„.~...,l(t) = &Aa, (0)B'„-,.(t)&&Bl,, (0)Af, g, (f}&

+&A;,(0)A;„,(t))&B'„-,,(0)4, (t)& .
(»)

In Eq. (9}we have ignored terms involving two
creation and two annihilation operators because
they do not correspond to physical processes in
normal matter. The first term in Eq. (6) describes
the contribution of the diagonal part of the heat-
current operator to the thermal conductivity and
the second term gives the nondiagonal contribution.

The correlation functions occurring in Eqs. (9)
and (10) can be evaluated by several methods. ~o

Here we evaluate them by means of the double-time
Green's-function technique as discussed by Zu-

barev 9 on a harmonic model of the crystal.

III. HAMILTONIAN AND GREEN'S FUNCTIONS

We consider a three-dimensional Bravais crystal
with volume V containing N atoms such that p lattice
sites are occupied by substitutional impurities each
of mass M, while the remaining N-p lattice sites
are occupied by identical host atoms of mass M.
The introduction of impurity leads to simultaneous
changes in mass and the force constants between
the host atoms and an impurity atoms. If it is as-
sumed that the impurities are distributed randomly
and their concentration (f}/N) is quite small, then
one can assume that the distance between any two
impurities is so large that the impurity-impurity
interaction can be neglected. The changes in the
force constant between impurity and host atoms may
be assumed to be significant only to nearest neigh-
bors. The total Hamiltonian of such a defect crys-
tal in the harmonic approximation can be written

Il=g +—g pe~(n, n'}s, (n}u~(n'}++(, — )(t, (g}+—QQM, ~(n, n')u (n)u~(n') .
fto na n' g

In this expression the symbol m denotes the position
of an atomic site and i designates the position of
the impurity; u (n) and p, (n) are the n Cartesian
components of the displacement and momentum
vectors of the nth atom, M and M' are the masses
of normal and impurity atoms; 4~(n, n ) are the
harmonic force constants for the crystal; and

&4}~(n, n ) [ = 4~(n, n ) —4}~(n, n )] represents the
change in the force constant due to the introduction
of the defect atoms. The primed 4's represent the

force constants that have been changed due to the
impurities. The summation over n and n in the
last term is nonvanishing only if either n or n cor-
respond to the site of an impurity.

We now define the weighted harmonic mean Mo of
the masses of all the atoms in the defect crystal by
the relation

1/Mo f/M '+ (1 —f)/——M,
with f=p/N. Equation (11) can now be rewritten

2

H=g +—++4}~(n,n')u (n)u()(n )+2 PP (n) —
2 g P (i)+2+ P&C,()(n, n )a (n)u6(n'), (l2)

ffa n'&
N 2~ e 2~ 0f 2 0

where p, = MM /(M -M). We now express the com-
ponents u~ (n) and p (n) in terms of phonon operators
as"

phonons in the crystal. The Hamiltonian of the
crystal in second-quantized notation can be ex-
pressed as

( k '" e(k)
u (n)=~ Q( )„3 e ' "A, ,

/8

P (n) = i' Q e„(k)(,)'"e-"'"'")

H= Ho+H

where

Bo=g ~(())(a)}a))+~ }

(i4)

(i4a)

where R(n) labels the equilibrium position vector
of the nth atom in the crystal, ~~ is the angular
frequency of the normal mode of a system in which
each lattice site is occupied by an atom of mass
Mo, and e(k) is the polarization vector. One might
call Mo the effective atomic mass as seen by the

H = —Sg C(k), k2)B),&B))
Qy Ag

+hg D(kq, k2)A)}A)}
Q~ Ap

(14b)
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The first term (Ho) is the Hamiltonian of a perfect
lattice and is the exactly solvable part. The second
term (FI'} is the perturbation part of the Hamiltonian
which gives rise to scattering of phonons. For the
sake of convenience, here and in what follows, we
use one index k as short for pair of indices kj. The
expressions for C(k), k),.) and D(k~, k),,) are given by

C(k„k)))= — a((d)h(d) )"~(r(kz) e(k)))
p, 4N

X ""&~&'"'n' — ""~+'3

(isa)

D(k„k,) = (~~~„}-'"QP ne~(n, n'}
0 ex n'8

xa. (k,)e,(k,)a' &"'")"~@" (15 )

C(k~, kz) vanishes when p is either 0 or N. Using
the relation

~4(n, n)=-g &4(n, n'),
ns

%'hex'e the prime OQ the summation denotes that Q

4n, D(kq, kz) can be rewritten

(iVa)

(iVb)

(1Vc)

(1Vd)G",,'(t - t') = «ft'.(t); ft', (t')» .
The Fourier transform of the equation of motion of
the Green's function (1Va) is

a(oG', 'g (&o) = (tt/av)&[a, (t), a'p{t ')]&,=)

+ «[a,(t), If]; at„(t'}»„, (iS)
which, for Hamiltonian (14), becomes

(~ ~.)G'»' («~) = S»/av+ ~.~ (~)

where ))» (&u) is the Fourier transform of the
Green' s function

A. „(t-t'}=«M (t); a) (t'))),
with

and n' refer to the impurity and its nearest-neigh-
bor host atoms.

To evaluate the correlation functions appearing
in Eqs. (9) and (10) we introduce the following one-
particle retarded Green's functions:

G'»n (t t ')—= (&a,(t) „a)( (t '))),
Gg(t —t') = «~.(t); D~(t')&),

G'„",(t —t') =&9.,{t);W„(t'}»,

&(», &s)=4~~ ( .,wg)'". Q»(»)»(»)

{n s &) ei (fg+)(p) It(n)

n n'

X ( )fm Bt(n)- ()t)))) (is) +f» (~)/v (22)

kf, (t) = ap [c(-k, k,)a,,(t)+D(-k, k,)x„(t)].
Considering the equation of motion for the Green's
function ))» (t —t'} with respect to time argument t'
and Fourier transforming the result, we obtain

(~ —~,)~,„(~)= (1/v)[C(-k, k')+D(-k, k')]

where, as mentioned earlier, the lattice sites n

f» ((())= 4v Q [D( —k, k~)D(k', kp)I ))))q{(d) D( —k, kg)C—(k', k))I» „' (()))+ C( —k, kg)D(k', kl)X~~3~) ((o)

—C(- k, k, )C(k', k,)r.,(4,',,(~)], (23)

in which we introduced the following one-phonon
Green' s functions:

G)0(a&) = I/av(&u —(d, ) (as)

i,',"„,(~)= &&~,,(t); ~,,(t')&&„,

d",,,(~)= &&x,,(t); a,,(t'}&&„,

L,",'„(~)= &&D„(t); ~„(t'))&„,
I",',( ) = «ft, (t}; ft„(t'}»

(24a)

(24b)

(24c)

(24d)

If we use E(l. (22) in E(l. (19), the Green's function
G~P ((d) can be written in the form of Dyson equation

Gia (&)= G) (~)s))) + Ga((d) I))a ((d)G)) ((())

= Ga(~)sea + Ga(~) lie~(~) GaÃ(~)

where

P,„"(~)=4v[C(-k, k')+D(-k, k')]+4vf, „(~).
(27)

The Dyson e(luation can be rewritten to give the
diagonal component of the Green's function as

Ga~(~) = s»/[{Ga) '-IIV'(~)J (28)

where the diagonal polarization operator II~~)) ((()) is
given by

H&i){ )
I'a" ((d)G&(~)

= &V'(~)[I+G'(~)&"(~)] '.
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where the real part &»1&(v) represents the shift in
frequency of the kth mode in the jth branch of the
spectrum, while the imaginary part 1 a(1& ((0) gives
the half -width of the phonons of wave vector k.
From E(l. (36}, the explicit expressions for them
are given by

G(u &kk
aa' ( & 2$~ g(1) P(1)(~)]

(so)
g(1) (~) 8(P Q [~2 (

(1))2]-1{-(1)[C2( k k )
where &ok

' is the renormalized frequency of the
mode kj in the lowest approximation of the pertur-
bation theory and is given- by

+D ( —k, k1)l+ (d [C( —k, k1)D*( —k, k1)

+ C*( —k, k1)D( —k, k1)]) (37}
(da

' =((&a+ 2[C( —k, k)+D(-k, k)] (31)

In the range of frequencies ~ far from the zeros of
the denominator in E(I. (29), one may expand the
right-hand side in a power series of Pa(~). In the
first approximation retaining only the first term,
i. e. , II»(1&(&u)= Pa(1&(((&), E(I. (28) gives

and

P,'"( )=2f,( ). (32)

(GaÃ(~})'= 6»v &»(~ —~a") . (33)

The Green's function (30) can be evaluated in
successive approximations as discussed in an ear-
lier paper. For the sake of simplicity, it is eval-
uated here in the first approximation of the self-
energy function Pa(1&((0). In this approximation, the
Green's functions L(v) appearing in E(ls. (24) are
obtained by neans of the corresponding zeroth-order
Green' s function

and

I'»1'((o)=4((g{[C ( —k, k1)+D ( —k, k1)]
kg

X [5((0 —(da ) —5(Q& + (da )]

+[C( —k, k1)D~( —k, k1)+C*(—k, k1)

XD(-k, k, )][5((d —(oa' ')+5((o+(da )g,
(38)

where 6' denotes the principal part. With this re-
sult, the Green's function (30) can be written

The self-energy function is obtained in this way up
to second order in the defect parameters C and D.
The frequency spectrum of the Green's function
(33) can be described by the zeroth-order renor-
malized Hamiltonian

(1) ~ ~kk
Gaa' (~+ ~)

2 [ ~(1)(~)+ ip(1) ( )]

where

4
(1& (~) ~(1& + n (1)(~) (4o)

ff,'„=—g ~(1&(w', g, + a',a,) .
k

(34)

~aa'(~) = (d6», -a ~(([& —(((&a ) ],
La»~((d)=a&~a, -a &)&[& —(&a ) ],
f."~'(~) = —~a"6», -~ &~[~'- (~a"}'1 .

(36b)

(35c)

(3M}

Using E(ls. (35) in E(I. (23), we obtain from Eq.
(32)

Writing the equations of motion of the Green's func-
tions (24) with the help of E(I. (34), we obtain

Isa (&)=~a ~a, -a I&&[& —((da }] (36a.)

and ((&a(' is given by E(l. (31}.
Proceeding in a similar way with the equations

of motion of the Green's functions (17b)-(17d) and
following the above procedure, we obtain

(&) ~ ~~kk(++i~) { 2 [e(2)(~)]a ~ 2 F(2) ( )]
s (39b)

G '( +i )= { 2 [ (2&(")]2 .2 1(2)( )), ( )

{ 2 [&(4&(&)]2+42& F(4&(&)] ~ (39d)

where

P,'" (&o) = 8+ [(o' —((o'")'] '{(o'"[C'(—k k )

+D ( —k, k1)]+((&[C(-k,k1)D*(-k, k1)

+C ( —k, k1)D( —k, ki)]] . (36)

((()a ') = (da+4(da [C(-k, k)+D( —k, k)], (4ob)

(((&2&) =((& +4(da[C (k, —k)+D" (k, —k)], (40c)

[e"'(ur)]2= ((u"')'+2(d &"&((0} i= 2, 3, 4, (40a)

with

For a small quantity & tending to zero, we can
write

((o(4&)2=(daa+4(0»[C(k, -k)+D(k, -k)] . (40d)

P(1& (~+ i2) = &(1&(~} il'( (~)1&-
Here &2»"&((d) and I'(»" ((d) are the real and imaginary
parts of P» &(&a) given by
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+» (~)=8K[~ (~» }]'
[(p)»",)) C'(k, k-1)+&a,»,D'(k, -k1)] +—[&p»'C(k, -k, )D'(k, -k,)

kg +a~ (dy

s (scs' {s—,»)ss{» -»)]), (41a)

S (s((~) ()Q[~s (»(s()s] ( . ( (y(s()s( s( t t )s~s((s( t t ))
k}L

G)y (0)

2
+—[C(-k, k1)D*(-k, k1)+C*(-k, k1)D(-k, k1)]'

47y

(0S""((s)=()gl(s'-(s('")'] ' {((s'")'(."(t t )s ((s'")'SS'(»»))
(dy COy

(4lb)

(0
+—[C(k, k1)D*(k, k1)+ C"(k, k1)D(k, k1)] (41c)

(43}

Having obtained the Green's function, we can ob-
tain the correlation function from the relation

(ai (f')&t»(t}}= d(0 J'"((o)e '"""' (43)
~ 00

where J'»&1»I ((0) is the spectral density function and is
related to the Green's function through the relation

~»" (&}= ~ [G»~n(~+1'e}-G»~(~-ee)l.
8 —1

IV. THERMAL CONDUCTIVITY

We evaluate the diagonal and nondiagonal contri-
butions to the thermal conductivity separately.
Substituting the values of correlation functions ap-
pearing in Eq. (9) with the help of Eqs. (17a), (43),
and (43), the diagonal part X~ of the thermal con-
ductivt. ty is given by

I'u~ p 00

Jf'p = lim — Q &p»&0), 0» ~ O„d(01d(pp n((01}tt(p))&)-0

&&
G(1& ((0 }G(1)((p ) ee»(se dt tt

&I)(
-H&(()1(()e) t »»((s)1(()2)

0 0
(44)

where for convenience we have written

G»tt (((e) = 6»» (&(& + is) —G»)t (&p —i &),

and tt((d}=(e "—1) . Performing the integration
over t and ~, K0 becomes

-5 AgP m
3 8

Kp= Q (0»&d» v» ~ v»
Ash'

d(t) ne(&p) ee G»(i& (&())G
o

(&0)
0

(46)

With the help of Eq. (39a) the above equation re-
duces to

Xp= g (d»v» d(dtt (&(&)
If'kt&P' p p

"
e

7f ~ P0

[I (1)( )]P

f [~ —~»" (~)]'+[I'("(~)]']' ' (46)

For small value of the half-width I'»(1) ((d), the inte-
grand in Eq. (46) has a sharp maximum around &0

= e»&1) and the integral can be evaluated analytically

by replacing the peak distribution by a Dirac 5 func-
tion. We then obtain the following expression for
the thermal conductivity:

(1)
NksP pe e"'» 1

+p 31) p +»V» e (1&- ~ Is&1) t (1))
(e' "'» —1)P»» (&»

The inverse relaxation time or the scattering width
of phonons is given by

7'»~=1»(p» ) ~ (48)

Neglecting the shift in the frequency of phonons,
Eq. (47) has precisely the same form which can be
obtained from Boltzmann transport equation for
impurity scattering in the so-called relaxation time
approximation and discussed by IQemens~ and
others. It is obtained here as a direct consequence
of Kubo formula and the choice of the Hamiltonian.

In Eq. (38), only positive values of the frequency
are meaningful. The phonon wave vector k1 can
take values only within the first Brillouin zone.
Replacing the summation over kz by an integration
in the usual manner we can write
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(dg = (dg~+ 2D( —kg, kg) = tg (50)

In the Debye approximation, which is reasonably
accurate for low-frequency phonons and hence at
low T, ~& = kc, where c is the phonon group veloc-
ity. Considering terms up to second order in per-
turbation theory, Eq. (49) becomes

a (&a )= ~a(u 2V ~ 1
mc3 "~4m

x dn C' -a, a, +a' -~ax

+C( —k, kg)D~(-k, kg)

+C'(-k, k, )D(-k, k,)];,- f . (»)
Setting C(k, k) = &o~ C'(k, k) and D(k, k) = ~I, D (k, k),
we obtain

1~&»($„'»)= 3(Q74~C' (k, k)+(0~[C'(k, k)D (k k)

+ C '(k, k)D (k, kl +D '
(k, k) + D '

( —k, k)
(52)

where the suffix A. denotes the directional average
of the quantities in the curly brackets. If the force-
constant change is ignored, I'~( ' and hence inverse
relaxation time due to pure mass scattering be-
comes yroportional to the fourth power of phonon
frequency co~ and the square of mass change M -M.

Equation (52) gives the inverse relaxation time
for the scattering of yhonons due to substitutional
defects in a Bravais crystal. The first term pro-
portional to the fourth power of the phonon frequen-
cy ~„and square-mass difference M'-M gives the
usual Rayleigh scattering law, and is similar to
that obtained by the others~'s using the Boltzmann
equation. Because of the introduction of force
constant change the frequency dependence of the
inverse relaxation time is no longer of the form ~~

only, but contains a term proportional to ~~ besides

I

1",»(e,'")=, k,'dk, sin8d8 dy
(2w)

x[C ( —k, ki)+D ( —k, ki)+C( —k, ki)

xD*(-k, kq)+C*(-k, ki)D(-k, ki)]5(e~~» —(o~ '),
(49)

where (8, P) denotes the direction of kz with respect
to k. Because of the 6 function, the integration is
to be carried out over modes of constant energy in
wave-vector space satisfying the relation

I flKg=Xg+K~

where

(53)

a frequency-independent term. For this frequency
dependence of 7 ~ the maximum contributions from
the ~0 and co terms to the depression in the ther-
mal conductivity curve will occur at low tempera-
tures and will decrease with temperature, while
the co term becomes strong in the region above the
peak. Hence for temperatures tending to zero, we
expect that the curves for different concentration
of isotopic impurities in the pure mass defect scat-
tering approximation approach each other tangen-
tially. This agrees with experiments3 on isotopic
scattering in alkali halides doped with monovalent
impurities. The experiments3 ' 3 on the conductiv-
ity of alkali halides containing various concentra-
tions of divalent impurities show two striking fea-
tures. The experimental curves do not approach
each other at low temperatures and also while the
depression at temperatures above the maximum is
apyreciable, the low-temperature depression is
enormous. This behavior can be qualitatively
understood from our expression for 7 ~ by assuming
that the force constant change scattering is such
that the contribution from the frequency-indepen-
dent and ~ terms is appreciable and reinforces the

scattering. Then at low temperatures there
will be an additional contribution to co scattering
from the v and co terms. This additional contri-
bution will decrease with the rise of temperature
where the effects of ~4 scattering will become
more effective. In some cases, the processes due
to charige in. ,mass and force constants may mutual™
ly compensate so that the simultaneous effect of
both processes would give a higher value of con-
ductivity than when one scattering mechanism was
present. The experimental results for KCl doped
with iodine corresponds to this situation. ~ The
non-Rayleigh scattering terms may thus be held
responsible for the experimental asymmetry in the
peak of the thermal conductivity curves, inexpli-
cable in terms of the Klemens theory. The mag-
nitude and signs of defect parameters C and D will
decide the extent of the asymmetry.

We now consider the nondiagonal part K& of the
thermal conductivity due to the nondiagonal term in
the heat current operator. If we make use of Eqs.
(17b), (17c), and (17d), together with (42) and (48)
in Eq. (10), we see that K~ can be written in the
form

Xq= — Z Z Vgqq v;„. q ) ~q ~~~~ d(on ((o) e Cga q.((o)Gf . ((g),I PAN' kg/ ~ ~ ~ P Qg(d
™(g) (g)

12V 114s &gJfP$

(54a)

and
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K, = — ~ Z v»r ~ vf ».~,&of, ) d&u» (&o)e "Gg ~»(&o)G„;,f,.(&o).iii ii ij,
4S' &i)iS'

With the help of Eq. (39b), Eq. (54a) becomes

p 48 ksPEi= ~ ~ vf)y. ~ vf g g. (OfgQ)f g

&iSifi-

&& ((0)8 co (df&(dfgggl. fg (co)l july&(co)M&5f&f5yg&5f&d

({~8 [~(2&(~)]8]8~4~f [p(R&( )]&&)({~&& [e(2& (~)]&&]&&+4+ [P(s& (~)]R)

(54b)

y ~ vfg J+ vf J j +fy+f y
+ .

+
({ 8 [&(8& (&)]Q&&+4 ~8 [p)&&&(&)]&&)({&R [&P& (~)]I}&&+ 4 +/ [p(3& (&)]8)49' RYE'

Similarly the expression for Ki' is given by

3Vv ~ f»' "&»' . ({~'-[~-'"(~)]5'+4~' [I'"(~)1')({~'-[si"(~)]5'+4&[I'"(~)]') '

In the approximation which yielded Eq. (4V), i.e. ,
replacing of integrand by renormalized 5 function,
the nondiagonal contributions [Eqs. (55) and (56)]
can be written in the form very similar to the di-
agonal results, involving mixing of the phonons.

(s)
However, for finite I'I",&, the contribution Ki is of
higher order in the impurity concentration than Ko.

V. DISCUSSION

Equations (46), (55), and (56) give the expression
for the thermal conductivity of a defect Bravais
crystal due to phonon scattering by randomly dis-
tirbuted substitutional impurities considering the
change in the force constants. For phonons of small
half-width, the diagonal contribution reduces to the
famililar expression as obtained, for example, by
Klemens~ from Boltzmann transport equation. Due
to the modification of force constants, the frequency
dependence of inverse relaxation time and half-width
is no longer of the form w, but contains a frequen-
cy-independent term and a term proportional to ar

arising from force constant changes. The latter
,produces asymmetry in the peak of the conductivity
term as obtained experimentally. i The inverse re-
laxation time of the pure isotope scattering is ap-
proximately proportional to the fourth power of
phonon frequency and square of mass change, and
is similar to what Klemens has obtained using the
Boltzmann equation and is particularly valid for
low-frequency phonons. Equation (52) shows that
the mass change and force constant change make
reinforcing or cancelling contributions to the inverse
relaxation time according to whether they are of
equal or of opposite signs, respectively. This re-
sult agrees with the one-dimensional calculations
of Krumhansl and Matthew5 employing Green's-func-

I

tion technique. Expressions (55) and (56) show that
the nondiagonal contribution Ki due to the nondi-
agonal part of the heat current operator comes from
modes with different state of polarizations. These
equations give corrections to the Boltzmann equa-
tion for the thermal conductivity. At low tempera-
tures, when only those phonons which suffer negli-
gible impurity scattering are excited, the diagonal
contribution is expected to give a reasonable ap-
proximation to the conductivity of a crystal with
impurities. At higher temperatures, the full form
should be used. Hardy, 8 using classical treatment
for the phonon operators in Eq. (4), has argued that
the nondiagonal heat current operator Qo,~(t) is
made up of an oscillating function of terms whose
frequencies are the sum and difference of the fre-
quencies of different branches and as a result it
gives negligible contribution to the thermal conduc-
tivity in comparison to the diagonal one when av-
eraged over a long period of time. The present
study shows that there is a finite contribution of
the nondlagonal part of the heat current operator's
to the thermal conductivity, though expected to be
much smaller than the diagonal contribution. The
exact magnitude of Ki is not possible without using
some specific model for the crystal.

It emerges from the present studythat from the
Kubo formalism, using the double-time thermal
Green s function technique the thermal conductivity
of a crystal can, .be obtained with a comparative
ease. Further the relaxation time of the phonon
scattering by impurities can be estimated with much
more finer details than from the conventional trans-
port theory. It may be mentioned that the results
obtained here are correct to the lowest order in the
concentration of the minority species.



1530 P, K. SHARMA AND RITA BAHADUR

ACKNOW LEDGMENTS

The authors are thankful to Professor K. 8.
Singwi and Professor Vachaspati for encourage-

One o«s (R.B.) thanks the Council of
Scientific and Industrial Research for the award of
a fellowship. The work was partly supported by
the Indian National Science Academy.

See, for instance R. O. Pom, in I gculized Egcitntigns
in Sgljd's, edited by B. F. %allis (Plenum, New York,
1968), p. 434; M. V. Klein, in Physics of &olour &en-
tres, edited by W. B. Fowler (Academic, New York,
1968), p. 329.

C. T. %'alker and B. O. Pohl, Phys. Bev. 131, 1433
(1963).
F. C. Baumann and R. O. Pohl, Phys. Rev. 163, 843
(1967).

4P. G. Klemens, Proc. R. Soc. A 208, 108 (1951); Proc.
Phys. Soc. Lond. A 68, 1113 (1955); Phys. Rev. 119,
507 (1960).

5J. A. Krumhansl and J. A. D. Matthew, Phys. Rev.
140, a1812 (1965).

G. Leibfried, in Hgndbgch der Physi, edited by S.
Flugge (Springer-Verlag, Berlin, 1955), Vol. 7, pp.
293-316.

(a) P. G. Klemens, inSgBd State Physics, edited by F,
Seitz and D. Turnbull (Academic, New York, 1958),
Vol. 7, pp. 1-98; (b) in. Bef. 6, Vol. 14, pp. 198-281.

SP Carruthers Bev Mod Phy s 33 92 {1961
R. J. Hardy, J. Math. Phys. 6, 1749 (1965}; 7, 1435
(19ee).
B. Kubo, Boglder I ectures in Thegreticul Physics,
Vgl. I, (Academic, New York, 1958), p. 120.
H. Moll, I. OppenheiIQ, and J. Ross, in Stgggges in
Statistical Mechanics, edited by J. de Boer and G. E.
Uhlenbeck (Interscience, New Yoxk, 1962), Vol. I, pp.
271-298.
A. A. Maradudin, J, Am. Chem. Soc. ~86 3405 (1964).
E. J. Woll, Jr. , Phys. Rev. 137, A95 (1965).

4K. R. Allen and J. Ford, Phys. Rev. 176, 1046{1968);
187, 1132 (1969).

5V. I. Altukhov and G. S. Zavt, Fiz. Tverd. Tela ~13

2438 (1971) I.Sov. Phys. -Solid State 13, 2041 (1972)];
Phys. Status Solidi B ~54 67 (1972).

~6B. S. Semwal and P, K. Sharma, J. Math. Phys. 15,
648 (1974).

VJ. Callaway, Nuovo Cimento 29, 883 (1963); J. Math.
Phys. ~5 783 (1964).

"S. Takeno, P og. Theor. Phys. 29, 191 {1963);30, 144
(1963).

~9M. %'agner, Phys. Bev. 133, A750 (1964).
20J. A. Krumhansl, in Proceedings gf Intern&tign&l gn-
ference on Lattice Dynamics, edited by B. F. Wallis
(Pergamon, New York, 1965), p. 523.

2~K. Thoma and W. Ludwig, Phys. Status Solidi~8 487
0.9e5).

22B. J. Elliott and D. W. Taylor, Proc. Phys. Soc.
Lond. 83, 189 (1964).
M. V. Klein, Phys. Rev. 131, 1500 (1963); 141, 716
(1966); 186, 839 (1969).

24B. F. CaMwell and M. V. Klein, Phys. Rev. 158, 851
0.9e7).

25M. Yussouff and J. Mahanty, Pxoc. Phys. Soc. Lond.
85, 1223 (1965); 87, 689 (1966).

26G. Benedek and G. F. Nardelli, Phys. Bev. 155, 1004
(19e7}.

2~R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc.
Jpn. 12, 203 {1957).

28B. J. Hardy, Phys. Rev. 132, 168 (1963).
29D.

¹ Zubarev, Usp. Fiz. Nauk 71, 71 (1960) fSov.
Phys. -Usp. 3, 320(1960)].

3"P. C. K. Kwok, inBef. 7(a), Vol. 20, pp, 297-303.
'R-ita Bahadur and P. K. Sharma, Phys. Rev. B 10, 2934
(1974).

32G. A. Slack, Phys. Rev. 105, 832 (1957).
33M. V. Klein, Phys. Rev. 123, 1977 (1961).


