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The diagonal part of the static wave-vector-dependent random-phase-approximation (RPA) dielectric function

was computed for diamond using both Hartree-Pock energies and screened exchange plus Coulomb hole
correlated energies, and in both cases, the diagonal RPA was found to be smaller than the experimental value

as represented by the Penn model. Next the full RPA dielectric matrix was calculated using seven sets of
reciprocal-lattice vectors. The matrix was then inverted and the reciprocal of the first diagonal term of the
inverse was taken, yielding the diagonal RPA with local-field effects included. Special techniques were

employed to handle the singularities that appear in the dielectric matrix when the wave vector goes to zero.
The diagonal RPA with local-field effects included was found to be smaller, and thus farther from experiment,
than the diagonal RPA that was calculated initially. Hartree energy bands were also used to compute the
diagonal RPA, and the result was a significant improvement over the previous calculations and quite a bit
closer to experiment.

I. INTRODUCTION

In the past few years there have been several cal-
culations of correlated energies for crystals. The
screened-exchange-plus-Coulomb-hole (SECH)
method has been used by Brinkman and Goodman
for Si, by Lipari and Fowler for Ar, and more re-
cently by the author for diamond and LiF, and the
random-phase-approximation (RPA) method has
been used by Monkhorst and Oddershede for H. In
many correlation calculations for crystals, such as
the ones mentioned above, the dielectric function
plays an important part. Therefore, since we are
interested in obtaining correlated energy bands for
crystals, we have made a study of the dielectric
function, and in particular we have looked at the
RPA dielectric function.

The expression for the diagonal part of the RPA
dielectric function was derived in the late 1950's by
Nozieres and Pines using a many-body approach
and by Ehrenreich and Cohen using a self-consis-
tent-field approach. Since then, the RPA dielectric
function has been used extensively to calculate vari-
ous crystalline quantities such as correlation ener-
gies, optical properties, and impurity levels, and
in most cases, only the diagonal part of the dielec-
tric function was included in the calculation. Alder'
and Wiser looked at the off-diagonal terms of the

RPA dielectric matrix, which are known as local-
field effects, and Riser estimated that in most
cases, these local-field effects are negligible, how-
ever, there have been few actual calculations of the
contribution of these off-diagonal dielectric matrix
elements. Hanke and Sham' have done a local-
field-effects calculation in which they used approxi-
mate wave functions and energies, adjusted the or-
bitals, and made the dipole approximation in order
to obtain the inverse matrix. In this paper we car-
ry out an exact calculation of local-field effects
within the RPA, and thus we can accurately deter-
mine the effect of the off-diagonal dielectric matrix
elements.

In previous calculations, it has been common
practice to use pseudopotential Xn or Hartree-Pock
wave functions and energies when computing a
screening function with the RPA formula. In this
paper, we not only compute the RPA dielectric
function with Hartree-Pock and correlated ener-
gies, but we also do the calculation with Hartree
energy bands. The calculations are done for dia-
mond using Euwema's energy bands" and the au-
thor's correlation corrections. s

II. DIAGQNAI. RPA

The RPA formula for the dielectric function e is
given by

&(q+K„@+K~,(u)=ax, x, ——v(q+K2) ' ' (klI& """"'Ik+q+K,& )2& Ki~K2 y

x(klle """"'Ik+q+K l )*,

v(q) = 4me'/q',

where q and k are wave vectors restricted to the

first Brillouin zone, K& and K2 are reciprocal-lat-
. tice vectors, cu is the frequency, V is the volume
of the crystal, l and l are band indices, the states
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I k/) are one-electron states with corresponding en-'

ergies ef, and occupation numbers nf, (either 0 or
1), K is the reciprocal-lattice vector such that
k+q+K hes in the first zone, and e is the charge
of an electron. This dielectric function is R matrix
in reciprocal-lattice vectors K& and Ka such that
different points q in the first zone do not mix, i.e. ,
the full dielectric matrix in reciprocal-lattice vec-
tox's can be calculated and inverted independently
for each point q in the first zone.

Instead of the full dielectric matrix, often only
the first diagonal term is used in calculating
screening functions. Setting K& and Ka equal to zero
in Eq. (1), we obtain this diagonal term,

(»»
)

2 (») Q sbg+K

Since the dielectric function that appears in the
SECH correlation method is the static dielectric
function, me set (d =0 in these calculations.

InitlRlly the diRgonRl pRx't of the HI'A wRS com-
puted with Hartree-Fock (HF) one-electron states
and energies, which are denoted by u„-,and eg, , re-
spectively, where k is a wave vector restricted to
the first zone Rnd / is a band index. The ealeulation
mRS done for dlRmond using the HF enex'gy bRnds

calculated by Eumema et gj." These are exact,
self-consistent, LCAO (linear-combination-of-
atomic-orbitals) HF energy bands with the wave
functions having the form

where the sums are over atomic orbitals P, and di-
rect lattice vectors R„,the 5's are the coefficients
of the Bloeh functions associated with the atomic

TABLE I, Diagonal BPA vs total number of conduction
bands used in computation. Calculation was done for
diamond at q = (~j2a)(1, 0, 0), @&here a is the lattice con-
stant.

1, 885
2. 348
2, 668
2, 760
2, 776
2, 791
2. 803
2, 812
2, 817
2, 820
2, 821
2. 822

FIG, 1. Diamond dielectric functions along the 0 axis.

orbitals, and N is the number of unit cells in the
crystal. All of the HF calculations mere done in
dlx'ect space with the direct 1Rttlce sums being cRr-
ried out to four- or five-place accuracy using three
charge- conserving integx al approximations. '
These HF bands mere used to calculate several
ground-state properties such as Compton profiles,
the equilibrium lattice constant and the bulk modu-
lus, all of which mere in close agreement with ex-
periment.

The HF wave functions and energies mere initial-
ly determined at 20 points in ~8 of the first zone,
and then the coefficients of the Bloch functions mere
permuted to obtain. the wave functions at 341 points
throughout the zone. These 341 points were used in
the sum over k in Eg. (3) with the six occupied
bands and first 12 conduction bands being used in
the sums over E and 1 . Table I shows that the diag-
onal part of the RPA is mell converged after 12 con-
duction bands.

It is well known that HF band calculations give
energy differences that are too large, so that cor-
relation corrections must be added to HF energies
in order to obtain better agreement with experi-
ment. Correlation corrections were calculated by
the author using the SECH method which mas first
proposed by Hedin' and later treated in a review
article by Hedin and I undqvist. 6 In thi. s method
the self-energy is expanded in a power series in a
screened, rather than bare, interaction and the
first term is used. The dynamicaQy screened in.-
teraction is then replaced by an averaged instan-
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taneous interaction which leads to a statically
screened exchange plus a Coulomb hole. The cal-
culation was done for diamond and the results were
in close agreement with experi. ment for the top of
the valence band. For the direct and indirect band
gaps, we obtained 7. 6 and 5. 6 eV compared with
experimental values of 7. 8-7.4 and 5. 5-5. 6 eV, '
respectively. The agreement is best for the indi-
rect gap which is the only piece of "hard" experi-
mental information available for diamond.

The diagonal RPA was calculated at several
points along the & axis using both HF and corre-
lated energies, and the results are shown in Fig. 1
where the HF RPA was calculated with HF wave
functions and energies, and the SECH RPA was cal-
culated with HF wave functions and SECH corre-
lated energies. The Penn model' dielectric func-
tion, which is also shown in Fig. 1, is derived as
an approximation to the diagonal part of the RPA,
however, it is then forced to take on the experi-
mental value for the optical dielectric constant
when q=0. Since the Penn model is forced to
match experiment, the RPA calculations can be
compared with the Pern model in order to deter-
mine how close they are to experiment. As the
figure shows, the HF RPA is quite a bit smaller
than the experimental value as represented by the
Penn model, and the SECH RPA indicates that cor-
related energies account for about half of the dif-
ference between the HF RPA and the Penn model.
The rest of the difference could be due to several
factors, one of which is higher-order polarization
terms beyond the random-phase approximation.
Another possibility is the off-diagonal terms of the
RPA dielectric matrix.

III. RPA WITH LOCAL-FIELD EFFECTS

Next we did an RPA calculation in which we in-
cluded the off-diagonal dielectric matrix elements,
which are known as local-field effects. For each

g ny& —nf, 1 &kllplkl &I

f()' flTl Kkl (Kkl Ep7l)
(6)

where p= —iV and m i,s the mass of an electron.
However, when Km=0 but K~&0, the 1/q singularity
is still present but now only one of the matrix ele-
ments is zero and it is not strong enough to cancel
the 1/q term, so that the matrix has singularities
in the first column. Also it is easily seen that the
matrix has zeroes along the first row where Kf = 0
and F240. Thus the dielectric matrix cannot be
calculated directly and then inverted because of the
si.ngularitie s.

Instead we take the limit as q- 0 of the expression
for the inverse matrix which contains products of
the terms in the first row and first column of the
direct matrix. These products are well behaved
when q-0 and have the form

of several points q along the & axis, we calculated
the full RPA dielectric matrix, as given in Eq. (1),
out to seven sets of reciprocal-lattice vectors for
a total of 65 individual vectors. The matrix, which
is real for co = 0, was then numerically inverted and
the reciprocal of the first diagonal term of the in-
verse was taken, yielding the diagonal RPA with
local-field effects included. Table II shows that
the reciprocal of the first diagonal term of the in-
verse, 1/[s (q+0, q+0, +=0)], is well converged
after seven sets of reciprocal-lattice vectors.

When q = 0, certain problems arise because the
matrix has singularities. If K, and K, are both zero
in Eq. (1), then in the limit as q-O, there is a 1/q
singularity present, however, both matrix elements
are also zero and these are strong enough to cancel
the singularity, so that a finite result is obtained
for the first diagonal term using k ~ p perturbation
theory,

c(0, 0, (o = 0) = 1—4we 2
3m V

4m' 4lim21xla= 2
—

p v(K ) Q "' "' " ~ " '
&kl le

' 2'Ikg&
~-0 3~ 1" f~gf'~'y' (~fg ~fr) ( f g' ~f'i')'

&
'f'I e '""Ik'i'&* &kflp 1k'&* &k'1'lp14'&, (6)

where 21~13 is the product of the 21 and 13 ele-
ments of the dielectric matrix, the sums on k and
k are over the first zone, and the sums on /, j, l,
and j are over bands.

Since the terms in the first row and column of
the direct matrix have to be handled according to
Eq. (6), we use a form for the inverse that allows
us to separate the first row and column from the
rest of the direct matrix. If the matrix A has the
form

&ff &12

where the submatrices Af f and A» are square, then
the inverse matrix is given by

g-f +ff +12

where
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Sets of HLV's

2
3

5
6
7

1
e '(q+0, q+0, ~=0)

2. 993
2.632
2. 586
2. 575
2, 569
2, 568
2. 568

Byg —Ayy +A»Agp+ Ap/A] g

&ca = —A~~A~3&

B~q ——P A2gA»,

TABLE II. Diagonal BPA with l.ocal-field effects in-
cluded vs total number of sets of reciprocal-lattice vec-
tors (HLV's) used in computation. Calculation was done
for diamond at q = (~/2a)(2, 0, 0).

&u =&-1

P =Aaz —A2yA»A&a ~

and A» and I' are nonsingular.
Using the above results, we can calculate the

q= 0 limit of the inverse dielectric matrix which
has the same form as the direct matrix. The first
diagonal term of the inverse is well behaved as it
should be since it corresponds to a physical quan-
tity, the optical dielectric constant. The inverse
also has zeroes along the first row and singularities
in the first column; however, these singularities
are permissible since the off-diagonal terms by
themselves do not correspond to any physical quan-
tity. The physical quantity of interest here is the
screened interaction in direct space, and since we
have computed the Fourier transform of the inverse
dielectric matrix, we must put this Fourier trans-
form into an integral over q when computing the di-
rect-space screened interaction,

~(r, r', ~ =0) = g ' p(j+Kt)& (q+Kt, j+K2, a& =0) exp[t(q+Kt) ~ r —t'(j+K2) ~ r ] dg,
Kt g~ "1st BZ

in which case the volume element q dq cancels the
singularity. In fact, we actually get zero contribu-
tion from the terms in the first column as well as
from the terms in the first row, so that the
screened interaction in direct space is well be-
haved.

The calculations described above were done using
both HF and correlated energies, and Fig. 2 shows
that in both cases, the diagonal RPA with local-
field effects included, which is denoted by LF RPA,
is smaller and thus farther from experiment than
the diagonal RPA that was calculated initially.
Thus if the RPA is calculated with HF or corre-
lated energies, it does not agree very well with ex-
periment, and adding local-field effects does not
improve the agreement, but rather gives results
that are even farther from experiment.

the previous calculations and quite a bit closer to
experiment.

In order to further determine how the H RPA

Qiomond

IV. RPA COMPUTED WITH HARTREE ENERGY BANDS

However, the RPA actually comes from time-
dependent Hartree theory. The RPA formula for
the dielectric function is derived from the time-
dependent Hartree equation, ' and therefore, to be
consistent with the theory, the RPA should be cal-
culated with Hartree energy bands. So, setting the
HF exchange equal to zero, we obtained Hartree en-

ergy bands and used them to compute the diagonal
RPA, and Fig. 3 shows that the RPA computed with
Hartree wave functions and energies, which is de-
noted by H RPA, is a significant improvement over

0
0

FIG. 2. Diamond dielectric functions along the 6 axis.
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TABLE III. Comparison of diamond correlated energy
differences in eV obtained with the H RPA and the Penn
model. HF uncorrelated energy differences and some ex-
perimental values are also shown.

HF H RPA Penn model Experiment»

~i 25

12.1

. 13.7

30.3

6. 0

7, 9

5, 6

7. 6

27. 2

5, 5-5.6

7.3-7.4
24. 2

II
O
U'

Lu

I'2's- I'2

X4 Xg

L3' —L3

L3' L)

L3' L2'

22. 2

22. 8

24, 3

35. 6

14.8

15.8

17.2

27. 7

25. 5 18, 5 18.1

14, 3

15.3

27. 2

12.5-12, 6

~Reference 17.

0-
0

FIG. 3. Diamond dielectric functions along the 4 axis,

0|amid

90 4

FIG. 4. Diamond dielectric functions along the 6 axis.

compares with experiment, it was used to obtain
SECH correlated energy differences. In the SECH
method, correlation corrections (energy shifts) are
computed and added to HF energies in order to ob-

tain correlated energies. One of the quantities re-
quired in this correlation calculation is the dielec-
tric function, and although it is HF energies that
are being correlated, the dielectric function itself
can be computed with an independent set of ener-
gies and wave functions, such as the Hartree set.
Table III compares correlated energy differences
obtained with the H RPA and the Penn model, and
as the table shows, the H RPA gives correlated en-
ergy differences that are within half an eV of the
Penn-model results, where the Penn-model results
are in close agreement with experiment for the top
of the valence band.

In order to determine how sensitive the dielectric
function is to the wave functions used in the calcula-
tion, we also computed the diagonal RPA using
Hartree energies and HF wave functions, and Fig. 4
shows that this dielectric function, which is denoted
by H-HF RPA, is close to the H RPA. In fact, both
of these dielectric functions give the same corre-
lated energy differences to a tenth of an eV, how-
ever, the H-HF RPA gives a slightly better optical
dielectric constant, where the optical dielectric
constant is the value of the RPA at q = 0.

Thus if the RPA formula is used to calculate a
screening function, then the best results are ob-
tained with Hartree energy bands rather than cor-
related HF or Hartree-Fock-Slater bands. In or-
der to do better than this, one has to add higher-
order polarization terms beyond the RPA. For ex-
ample, HF energy bands could be used to calculate
a time-dependent Hartree-Fock dielectric function;
however, it is not clear that the time-dependent
Hartree-Fock dielectric function would be signifi-
cantly better, or even as good, as the time-depen-
dent Hartree dielectric function, and it would re-
quire much more computer time.
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