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Theory of ortho-para conversion in solid hydrogen at high densities
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An expression is derived for the ortho-para conversion rate, as a function of density p, of solid
ortho-H, in its rotationally disordered state. For p greater than about 1.1 times the zero-pressure
density po, conversion is shown to result from a one-phonon process. This rate is proportional to
(p/po)'0" '", where y is the Gruneisen constant for solid H~ times a phonon spectral function which

depends on the density as a parameter. Using the data of Pedroni et a/. for the density dependence of
the conversion rate for 1.0 & p/po & 1.7, we extract the phonon spectral function and compare it to a
theoretical spectrum calculated in a simple harmonic approximation.

I. INTRODUCTION

In a recently published work' we derived an ex-
pression for the zero-pressure ortho-para conver-
sion rate in a powder of solid ortho-hydrogen in
its orientationally ordered phase. The method
used in that calculation closely paraQeled the ap-
proach of Motizuki and Nagamiyam who first comput-
ted the conversion rate for the disordered phase.
We also pointed out that the conversion mechanism
which 18 effective at zero pressure I,conversion
with emission of two phonons) becomes very ineffi-
cient at high pressures, i. e, , at pressures corre-
sponding to molar volumes of less than 20 cm'/
mole. This was at odds with the measurements of
Ahlers' who showed the conversion rate to be a
sharply increasing function of density, and we sug-
gested that this increasing conversion rate must
be attributed to a one-phonon process which be-
comes energetically possible at high densities be-
cause of the increased stiffness of the lattice.

Pedroni et a/. 4 have performed extensive mea-
surements of the conversion rate as a function of
density using NMR techniques and a high-pressure
cell which allows them to achieve densities p/p~ as
high as 1. I where po is the zero-pressure density.
The results of their measurements are represented
in Fig. 1 by the circles with error bars. More
recently Buzerak and Meyer5 have measured the
conversion rate for 1.0 & p/po & l. 2 by determining
the ortho concentration of a gas before and after
holding it at constant pressure as a solid for a mea-
sured time. These results are shown by the tri-
angles in Fig. 1. Also shown in the figure is the
data of Ahlers. 3 The dotted curve in the lower
left-hand corner of the figure is the two-phonon
conversion rate which was computed in Ref. 1 and
which clearly does not corresyond to the observed
rates. The most surprising features of the data of
Pedroni et al. are the two peaks in the conversion
rate at p/po= 1.3 and l. 5, followed by a decreasing
rate for p/po& l. 5. We infer that the conversion
rate is a complicated function of the density, and

that its behavior cannot be predicted simply from
the volume dependence of the dipole interactions
responsible for the transitions as was suggested by
Ahlers. '

In this paper we derive an expression for the
one-phonon conversion rate in terms of a one-pho-
non spectral function which is similar to the scat-
tering function observed in incoherent inelastic
neutron scattering. We then use this expression to
extract experimental values for the spectral func-
tion from the data of Pedroni et al. , and compare
the result to a simple model calculation based on
the harmonic approximation. This comparison
shows that the effec't of anharmonlclty Xs to broaden
the high-energy features of the phonon spectrum in-
to a high-energy tail which extends far above the
Debye energy En (E~ 120 K in solid H3).

For a single molecule interacting with its twelve
neighbors, $C„may be conveniently written

g C(I 12, ~ n)ftsfll +Nltll(Q )4 (2. 1)

where C(112;m, n) is a Clebsch-Gordan coefficient
and I'~ "(0) is a spherical harmonic, both in the
convention of Rose. In Eq. (2. 1) the protons of the
central molecule are labeled by P = 1, 2', ; 5 = 1, ~ ..
12 labels its twelve nearest neighbors and 8 = 1, 2
labels the two protons of molecule ~; the vectors
r~ and r, are the positions of the protons with re-

II. THEORY

The primary mechanism for conversion is the
interaction $C„between nuclear magnetic dipole
moments of neighboring molecules. Another mech-
anism is the interaction of the nuclear spin of one
molecule with the rotational magnetic moments of
its neighbors. Motizuki and Nagamiyam have shown
that for the disordered sobd this mechanism may
be included by multiplying the rate due to X„by a
factor e = 1.025.
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FIG. .l. Density dependence of the ortho-para conver-
sion rate in solid ortho-H2. The circles with error bars
are from Ref. 4; the triangles are from Ref. 5; and the
X's are from Ref. 3. The dotted curve is the theoretical
conversion rate for the two-phonon process as computed
in Ref. l.

spect to the centers of mass of the molecules, and

r, connects the center of mass of the central mole-
cule to that of molecule 6. The angular coordi-
nates of the vector r, + r, —r~ are denoted O~, . i~
is the mth spherical component of the spin of pro-
ton p, and i,"„refers to nuclear spin s of molecule

The relationship between the various vectors
and nuclear spina is illustrated in Fig. 2.

If we perform a Taylor-series expansion of 3C~
in terms of the internuclear separation of the cen-
tral molecule and of small displacements of the
lattice vectors, then the term responsible for the
one-phonon conversion process is

(2. 2)

where 6, represents a small displacement of the
center of mass of molecule 5 with respect to the
center of mass of the central molecule which we
take as our origin. Also since the internuclear
separation is about 5 of the distance between mole-
cules, it is appropriate in this approximation to
take r,= 0. Thus the interaction X,'," is a function
of the total nuclear spin of molecule 5 and does
not depend upon the direction of its internuclear
axis,

Eq. (2. 2) may be evaluated in terms of Clebsch-
Gordon coefficients and fourth-rank spherical har-
monics. If we write the vectors r& in the terms
of spherical harmonics as

(2. 3)

where d is the internuclear distance and we note

y p 3/RS (2. 6b)

Id ldll, 1+ ld s2 t (2. 6c)

and Ro is the equilibrium distance between nearest-
neighbor molecules. The difference of nuclear
spine in Eq. (2. 5) results from using Eq. (2. 4) to
perform the sum over P in Eq. (2.2), and we have
written 0, simply as 0, which measures the orien-
tation of the internuclear axis of the central mole-
cule.

The ortho-para conversion rate is given by

where c. is as described above Eq. (2. 1). The ini-
tial state li ) is one in which the central molecule
has total nuclear spin I= 1 and we sum over mr= 0,
+1. its rotational state is (Z= 1, m~ =0, +1),since
we are assuming that the solid is in its rotationally
disordered phase. The neighbors are assumed to
have total nuclear spin one with the ~ component of
their nuclear spin given by m, = 0, +1. The final
state of the central molecule is (I=8=0). The total
nuclear spin of the neighbors is unchanged with the
& component being written as m', . Since the tern-

S~2
= 32

p I

FIG. 2. Vectors which define the positions of the pro-
tons for two H2 molecules. In the text we calculate the
probability that the molecule on the left converts from
ortho to para due to its interactions with its twelve near-
est neighbors which are located at rd, 6 = 1, ... 12.
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perature is much less than the Debye temperature,
we can take the initial state of the lattice to be a
zero-phonon state and the final state to be a one-
phonon state. P& is the probability that the system
is in a particular initial state lz&. We assume that
both the nuclear spin and rotational systems are
completely disordered and take P, =27. Then the
matrix elements necessary to evaluate Eq. (2. 7)
are

XZ.(-1)"C(lll; Zz, - v)

XQY", "(Qo )(UgU"*) R o (2. 12)

where W(abcdef) is a Racah coefficient. o Because
of the Clebsch-Gordan coefficient C(ill; Zz, —v)
and the restriction to even values, l can only be
equal to 0 or 2. Thus we can write

(I = 0, mz = 0
i zz —zo iI = 1,mz) = 5„, z, (2.8a} 9 =fP+%2 (2. 13)

(moil)) imo) =)) 2C(ill;mo, mo -mo)5„,„.
(2. 8b)

and if we insert the values of the Racah coefficients
and of A we find

ro = (17920n n/9)(y', Jk)(d/Ro)'

(Z = 0, m ~ = 0
i
Y",(Q) i

J'= 1 m g&
= ~) |1o (- I)"~5„, „

(2. 8c}
The matrix elements of the displacement operator
Uo may be combined. with the 5 function in Eq.
(2. 7) to form a one-phonon spectral function. If
we ignore all of the energy differences except for
the rotational energy EM which is lost in ortho-para
conversion gnd the energy Eg, which is carried
away by the phonon of wave vector k and polariza-
tion v', then r depends on

Xg Qfo~Uo~&s Roz
~ (2. 14a)

r = (2560m n/9)(5/24')'I (yo /K)

where

T~ (5lZ,~) -=Q) —1)" "C)112;M,N —M)

x (d/R ) Q Y' (Q )+T'"(5;E ),, (2. 14b}
Neo

&U,"U,"+&„,=g &0
i
U,"

/
kr&&kr

f
U", *

i
0&5(E„-~„-) . x(U)))UN Ny& R z (2. 15)

Equations (2. 5)-(2. 9) allow us to write r as
2

A(d/Ro) Q C(213iks P)

&shaft

g
gsV

(2. 9)

xC(213;k, v)C(314;k+ p, , -m~)C(314;k+v, —m~)

Xg (U) U) z& R-zYo+o~~(Q )g Yo+v-m~(Q )

(2. 10)

We may write the product of two Y4's as a sum of
spherical harmonics,

You'll )))+(Q )+Yo+v Nlg(Q )

=9(-1)"" ~ g [4m(21+ 1)] "'C(44l;00)
l

XC(441&m~- p —k, k+v —mz)Y, "(Qo) . (2. 11)

y= —21n(yo Jk)A (d/Ro) g [4f(2l+ 1)]

x C(44l; 00)W(3 ll443)W(12 l331)

ln Eq. (2. 11) l may take on even values as high as
8. However when Eq. (2. 11) is inserted into Eq.
(2. 10) and the sums over k and m~ are performed
we obtain

The density dependence of the total rate r may be
thought of as arising from two sources. First
there is a (p/po) oi dependence which comes from
the square of the second derivative of the dipole-
dipole interaction. Second there is a very compli-
cated density dependence implicit in the spectral
function (U,"U",")e . There is no simple way to
evaluate this spectral function for the densities
which are relevant to this problem. If the conver-
sion energy Ez were much smaller than the Debye
energy, then we could use the Debye approxima-
tion, and the solution would be straightforward.
However, in order to interpret the data of Ref. 4
we focus on the density range 1.0 &p/po &1.7 where
the density dependence of Eo is such that
Eo/2&E, o &ED, and thus the Debye approximation
is inapplicable to a calculation of the rate due to
one-phonon processes.

The simplest approximation which might be ex-
pected to give a reasonable description of the pho-
nons for our problem is one which the lattice vi-
brational modes result from central forces between
nearest-neighboring molecules. The advantage of
this approximation is that, like the Debye model,
it assumes only one parameter, the nearest-neigh-
bor force constant which sets the energy scale.
The disadvantage of this approach is that it requires
a computer calculation, although fortunately the
calculation need not be very sophisticated.
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FIG. 3. One-phonon
spectral function f()(E) +f&N)
for zero pressure. The
functions fo and f2 are de-
fined in Eq. (2. 16). The
histogram is the result of
a harinonic single force
constant calculation for
1306 values of k in an ir-
reducible section of the
Brillouin zone, vrith the
force constant chosen to fit
the QC = 0) optical-phonon
energy reported in Ref. 6.
The X's, circles, and tri-
angles are based on the data
of Refs. 3, 4, and 5, re-
spectively, as discussed in
the text.

fo(E)=136 I
(2. 16a)

To calculate the phonon spectral functions we di-
agonalized the dynamical matrix for the single
force constant model at 1306 points in an irreduci-
ble section of the hexagonal-close-packed Brillouin
zone. The resulting eigenvalues and eigenvectors
were used to construct histograms which approxi-
mate the sums of 6 functions in Eq. (2. 9). In Fig.
3 the histogram represents the sum of the two func-
tions

total number of modes is conserved and because
the amplitude of vibration for the stiffer system is
a decreasing fraction of Ro). The ortho-para con-
version energy E&o acts as a fixed point on the
energy axis (the arrow in Fig. 3), at which the
broadened spectral function is evaluated to compute
the conversion rate.

More formaLly we parametrize the problem for
non-zero pressure as follows: At some density p
the phonons responsible for conversion are those
whose zero pressure energy is E. Then we may
use a Gruneisen-type formula to relate p and E

fat@) ~O4(5 Zt'Ittts)+&Ittt'&) ' tR teb)
N, 5

&xo
(2. 18)

We should note that (fo) is about a tenth of fo, and
that the main effect of fo is to shift some spectral
weight from the first peak near 60 K up into the
two high-energy peaks. The energy scale for zero
pressure has been set by fitting the highest-energy
optical phonon to Nielsen's~ coherent-neutron-scat-
tering data. In terms of these spectral functions
the zero-pressure one-phonon conversion rate is
given by

r = (1V 92(urn/3)(r+I)(&/&o)'[fo(Em)+f2(E10)] ~

(2. 1V)
This rate is zero in the harmonic approximation
since the spectral functions are zero at &+= 171 K.
For nonzero pressure the force constant which
scales the phonon spectrum should increase as some
power of the density. On the other hand the rota-
tional energy E@,released in ortho-para conversion
is relatively insensitive to the pressure. Thus as
the pressure increases, the width of the phonon
spectrum increases like a power of p while its
amplitude contracts (for two reasons, because the

where we take y = 2. 1 as deduced by Jarvis et al. 8

from (SP/ST)» measurements and in agreement
with the specific-heat data of Ahlers, ~ and po is the
zero pressure density. The pbonon spectral func-
tions scales as the inverse square of the phonon
energy I&a~ [since Uo -

(@o)~) and 6(II&o~-E)- (1&v~) ]. Thus the spectral function at high den-
sity p and energy EM is equal to the zero-pressure
function evaluated at energy E, as defined by Eq.
(2. 18), multiplied by (E/E&o) (p/po) ~, where the p
dependence results from the Bo~ in the defining Eq.
(2. 16). Additional density dependence results from
the factors ro„and (d/BoP. Thus we may write the
density dependent conversion rate as

»( pip, ) = (lv 929'~/3)((r.'I)(dl&o)'}, „,
xII[fo(E)+fo(E)] ) (2. 19)

where II = (p/po) ~ ~o " and the quantity in curly
brackets in Eq. (2. 19) is evaluated at zero pres-
sure. Then taking y„= 2.73x10 8 K, 80=3.75 A
and d = 0. V4 A, we have
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&1p/po) = 28 &0% leÃ)+fgtE)FO/h P. 2o)

if fo and j~ have units of K '. Equations (2. 18)-
g. 20) may be used to infer values of the spectral
function fo(&)+fatE) from the data of Ref s. 8-5 if
the two-phonon contribution (the dotted line in Fig.
1) is subtracted from the experimental rates. The
result is shown by the X's, circles and triangles
(from Refs. 8, 4, and 5, respectively) in Fig. 2.
Comparing these yoints to the histogram which was
calculated in the harmonic approximation, we see
that our theory leads to quantitatively reasonable
values for the conversion rate and that the effect
of anharmonicity is to "wash out" the high-energy
features of the phonon spectrum into a high-energy
tan which extends at least uy to E„. Of course
the exact value which we assign to the spectral
function at &,0 depends on the value which we cal-
culate fox the two-yhonon conversion rate at zero
pressure. Since this value is in fact slightly higher
than that measured, a reasonable conclusion is
that two-phonon processes are responsible for most
of the conversion and that the one-yhonon spectral
function is small above E+. The fact that the opti-
cal-phonon peaks are completely smeared out in

the one-phonon spectrum is in agreement with the
neutron scattering work of Schott, ~0 Stein et al. ,
and of ¹elsen~ and is consistent with previous ex-
perimental and theoretical woxk on solid 4He. '~"3

An interesting feature of the comparison in Fig.
3 is the behavior which it implies for the conver-
sion rate at still higher densities. From Eq.

(2. 18) we find that p/po& l. '7 corresyonds to the
region E & 60 K of the zero-pressure phonon spec-
trum. Here the yhonons are of the long-wavelength
acoustic type and are relatively lightly damped.
Both neutron-scattering results ' &" and sophisti-
cated numerical calculations ~4 which take into
account the quantum nature of the solid, are in
qualitative agreement with our simp1e harmonic
theory which predicts that the spectrum decreases
sharply for «60 K. Since the density factor g in

Eg. (2. 20) also decreases with increasing density
one expects the conversion rate to decrease sharp-
ly for p/po» 1 7

Pedroni et al. ~ have proposed that the conver-
sion rate as a function of density be measured by
means of Haman scattering by comparing the in-
tensities of the J= 1-3 and J=0 2 rotational tran-
sitions as a function of time. It would also be in-
teresting if simultaneous measurements were made
of the frequency of the optical phonon, thus pro-
viding a direct comparison of the phonon frequen-
cies and the ortho-yara conversion rate,
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