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Electronic structure of the diamond crystal based on an improved cellular calculation
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The band structure of diamond has been determined using Slater's cellular method. Calculations were carried
out with the unit cell partitioned into two and then four space-filling polyhedra. The dependence of the energy-
level structure on the choice of matching points and cellular basis functions is carefully examined. Once a
su6icient number of cellular basis functions (tetrahedral harmonics) is introduce, the precise arrangement of
the matching points is no longer critical, and substantially the same energy-level structure is obtained for a
wide variety of matching-point configurations. Tetrahedral harmonic expansions including l,„=12 are sufBcient
to ensure reasonable convergence at the zone points I', X, and L. Some energy levels converge with l ) 8.
Most early attempts to calculate the band structure of diamond-type crystals using the cellular method were

quantitatively unsatisfactory because too few basis functions were used. The present cellular results based on
fourfold partitioning compare favorably with orthogonahzed-plane-wave (OP%) results and with experiment.
The lowest conduction-band level at the zone center is found to be I » in agreement with OPW calculations
but in disagreement with recent nonlocal-empirical-pseudopotential calculations.

I, INTRODUCTION

One of the earliest attempts to solve the crystal
wave equation for a xealistic crystal model was
that of Wigner and Seitz. ' In their classic study
of metallic sodium, the crystal volume was first
decomposed into space-filling atomic polyhedra
(Wigner-Seitz cells), then these polyhedra were
replaced by equivalent volume spheres, and
finally suitable boundary conditions were imposed
on the surfaces of these spheres. By reducing the
crystal wave equation to a central-field problem
in each of these spheres, it was possible to make
considerable progress in understanding the elec-
tronic properties of metallic sodium.

An improved cellular method was suggested by
Slater' shortly thereafter. In Slater's scheme,
the atomic polyhedra are retained, and the bound-

ary conditions are imposed on the surfaces of
these polyhedra. Slater's cellular method has
been applied in various forms to diamonds ' and
silicon. ' ' In his pioneering study of the band
structure of diamond, Kimball' imposed the bound-

ary conditions only at the centers of the hexagonal
faces of the atomic polyhedra (Kimball points).
Similar studies of diamond were carried out at
about the same time by Hund and Mrowka. ~ Later,
Zehler' studied diamond by imposing the boundary
conditions on circles lying on the hexagonal faces
of the atomic polyhedra. These circles —the so-
called von der Lage and Bethe&0 circles —repre-
sent the intersection of neighboring equivalent
volume spheres.

In a 1953 study of silicon, Yamaka and Sugita'
imposed boundary conditions both at the Kimball
points and on the von der Lage and Bethe circles.
This and earlier cellular calculations of diamond-

type crystals were of considerable qualitative
interest. However, they mere quantitatively un-
reliable. The first quantitatively successful cal-
culation of the band structure of diamond (which
pointed to thy many-valley conduction-band struc-
ture) was that of Herman" using:the orthogonal-
ized-plane-wave (OPW) method. Later theoretical
and experimenta@ studies of the band structure of
diamond have be@I reviewed by Herman, Kortum,
and Kuglin, "and more extensively by Buberman. 's

In the earliest cellular calculations for silicon's
based on isolated point matching, it was found that
the calculated energy levels depended on the choice
of matching points (and on the related choice of
cellular basis functions). This apparent lack of
convergence prompted subsequent investigators'
to satisfy the boundary conditio+/ in a least-
squares sense over a large number of points span-
ning all the polyhedral faces, rather than at a
limited number of points. This development
stemmed from Kohn's'4 demonstration that Slater's
cellular method could be derived from a varia-
tional principle. (Zehler' had also studied diamond
from this point of view. ) Altmann and his collab-
orators" have carried the variational cellular
method further than most, obtaining-satisfactory
solutions for many metallic crystals. Zimanie

has recently reviewed the cellular method and its
relationship to other band-structure methods.

During the past few years, the energy-band
structure of diamond has been investigated by a
variety of methods, including the OPW method, ""7
the empirical-pseudopotential method (EPM), " '0

the augmented-plane-wave (APW) method, "the
linear-combination-of-atomic-orbitals (LCAO)
method, "and the discrete variational method
(DVM)."'4 There have also been extensive ex-
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perimental studies during this period, particularly
pptical" "and x-ray phptpemjssjpn measure-
ments. In spite of all this progress, there is still
considerable controversy. "'""regarding the
detailed structure of the conduction bands, in-
cluding the assignment of the lowest conduction-
band level at I'. Is it I» or I;.'P

The purpose of the present study is twofold:
First, to understand the reason why many early
investigators' ' obtained disappointing results
for diamond using the cellular method, and sec-
ond, to obtain better results for the band structure
of diamond using an improved version of the
cellule, r method.

The paper is organized as follows: In Sec. II,
we review the essential features of the cellular
method as it applies to the diamond structure. In
Sec. III we indicate how the unit cell of diamond
can be partitioned into two atomic cells, as in
the work of Kimball, ' or into two atomic plus two
interstitial cells, as in more recent work by
Keller' and Williams and Morgan. In Sec. IV,
we discuss the construction of the cellular po-
tentials. The simplest cellular solutions for
diamond based on twofold and fourfold partitioning
of the unit cell are reported in Secs. V and VI,
and improved solutions in Secs. VII and VIII.
Considerable emphasis is placed on understanding
the relationship between the calculated energy-
level structure and the choice of basis functions
and matching points.

II. CELLULAR METHOD APPLIED TO THE DIAMOND

STRUCTURE

The theoretical basis of the cellular method
has been discussed by many authors (see, for
example, Refs. 2, 14, and 16). In order to
establish our notation, we will review the theory
briefly, indicating how it can be applied to the
diamond structure. According to the cellular
method of Slater, ' a crystal is decomposed into
space-filling atomic polyhedra (Wigner-Seitz
cells), one surrounding each lattice site A. By
construction, all points in polyhedron A lie closer
to lattice site A than to any other lattice site.
Depending on the choice of lattice site, we can
construct atomic or interstitial polyhedra.

In the simplest form of the cellular method, the
crystal potential is approximated within each
polyhedron by its spherical average with respect
to the center of the polyhedron. In this paper we
will confine our attention to spherical cellular
potentials. The crystal wave function is expanded
in spherical harmonics in each polyhedron; for
example, in polyhedron A, the cellular wave func-
tion corresponding to energy eigenvalue E would

be written as follows:

(3)
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FIG. 1. Notation for cellular boundary conditions.

P(r„)= Q C, '"R, (r„)F„(8„,P„), (1)
jew

where r„=(r~8» Q~) is a radius vector with
origin at site A, the F, (8„,Q„)are normalized
spherical harmonics, the Rf(r„)are the solutions
of the radial Schrodinger equation (for energy E),
and the C, '" are undetermined expansion coeffi-
cients.

The boundary conditions relating the crystal
wave function and its normal derivative in dif-
ferent polyhedra A and 8 may be stated as follows:

~fkeR (2)

n„VQ(r)~,-,„=—e'" ns'VP(r)i, =,

where the points r„and r~, which lie on the sur-
faces of polyhedraA and B, are separated by a
direct lattice vector R. The outward-pointing
normal is always represented by n (cf. Fig. 1).
If R=(0, 0, 0), Eqs. (2) and (3) ensure the contin-
uity of the crystal wave function and its normal
derivative on the surface common to polyhedra
A and B. Otherwise, these equations express the
crystal periodicity (Bloch) conditions appropriate
to reduced wave vector k. For a fixed value of k,
there will be a set of eigensolutions corresponding
to different energy bands. For a fixed value of
E, there will be a family of solutions for different
values of k if E lies in an allowed band. These
map out a constant energy surface in the reduced
zone. If E falls in a forbidden band, there will
be no solutions (with real k). Thus, Eqs. (2) and

(3) lead to the dispersion relations connecting
E and k.

In principle, one should impose boundary con-
ditions on the surfaces of all the polyhedra into
which the unit cell is decomposed. This is in
fact done in the variational version of the cellular
method. "4 For our purposes, however, it will
be sufficient to consider a limited set of matching
points suitably arranged on the various polyhedral
surfaces, and a corresponding number of spher-
ical harmonics suitably distributed among the
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various polyhedra in the unit cell. If the total
number of matching points is N (N/2 pairs of geo-
metrically distinct points), and the total number
of spherical harmonics (all polyhedra) is N, Eqs.
(2) and (3) each define N/2 linear equations, mak-
ing a total of N linear equations in all.

For all the boundary conditions expressed by
Eqs. (2) and (3) to be satisfied nontrivially, the
corresponding N&N determinant must vanish.
This will occur for certain values of E, which
are the energy eigenvalues. Thus, one evaluates
the radial wave functions and their normal deriv-
atives as a function of E at all required matching
points, and with this information in hand searches
for the zeros of the determinant as a function of
E. Having thereby established the energy eigen-
values one can calculate the corresponding eigen-
vector components, i.e., the t-" coefficients. In
the present study we concentrated on the eigen-
values, and paid only slight attention to the eigen-
vectors.

To recapitulate, we will satisfy the boundary
conditions at a limited number of matching points.
Our primary interest will be the relationship
between the choice of matching points and the cal-
culated energy-level structure.

HI. DECOMPOSITION OF THE UNIT CEL'L INTO SUBCELLS

According to the more usual representation of
a diamond crystal (two interpenetrating fcc carbon
lattices), there are two atomic polyhedra per
unit cell. Each of these has the tetrahedrally
symmetric form indicated in Fig. 2. This rep-
resentation was used by Kimball' and by most
subsequent investigators. The principal advantage
is simplicity. The principal disadvantage is the
aspherical shape. To dramatize this aspect, we
note that the ratio of the distances from the nu-
cleus to the furthest and the nearest points on
the boundary is 3. It is most unlikely that the
crystal potential can be approximated satisfactor-
ily by its spherical average in the outer reaches
of this atomic polyhedron (capped tetrahedron).
The spherical approximation for the cellular po-
tential becomes progressively worse as we move
outside the inscribed sphere toward the caps.
Fully 3 of the volume of the atomic polyhedron
lies outside the inscribed sphere,

An alternate representation"" treats the dia-
mond structure as two interpenetrating diamond
lattices, one of which locates the atomic positions,
and the other, the interstitial positions. If one
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FIG. 2. (a) Model of diamond lattice showing the two signer-Seitz atomic polyhedra which together form the unit cell.
All the hexagonal faces and only a few of the triangular faces of the atomic polyhedra are shown. The transparent rods
indicate two interpenetrating unit cubes. The unit cube edge is az. (b) Atomic polyhedron for diamond structure (two-
fold partitioning of unit cell).
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potential is taken as proportional to the cube root
of the sum of the superimposed atomic charge
densities, while in the other work the sum of the
cube roots of atomic charge densities is used.
The latter choice is equivalent to a superposition
of atomic exchange potentials. While the present
approach is closer to the letter of the statistical
exchange approximation, in practice the cube root
of the sum and the sum of the cube roots of strong-
ly overlapping atomic charge densities leads to
nearly the same crystal exchange potential, as
demonstrated for silicon and germanium in
earlier calculations. " The differences between
these two approaches tend to be small for dia.-
mond-type crystals, but larger for III-V and
II-VI compounds, particularly when the constit-
uent atoms belong to different rows of the Periodic
Table, ' In short, this distinction should not lead
to significant differences vis a vis the present
work and that of Rudge. "

(b) In OPW band calculations, "'""the core
orbitals are determined in a spherically averaged
cellular potential, but the valence- and conduction-
band wave functions are determined for a crystal
potential which includes nonspherical as mell as
spherical components. In the present work, the
crystal potential is spherically averaged in the
atomic (and interstitial) polyhedra. As shown by
Williams and Morgan, "the neglect of nonspherical
components of the crystal potential can introduce
errors as large as a few eV in the band structure
of silicon. In our calculations for diamond, these
errors should be considerably smaller for four-
fold than for twofold partitioning since the cells
are more nearly spherical in shape.

V. KIMBALL SOLUTION BASED

ON TWOFOLD PARTITIONING

Kimball's pioneering cellular calculation for
the diamond crystal' was based on a twofold
partitioning of the unit. cell, which leads to atomic
polyhedra of the type shown in Fig. 2. Kimball
expanded the crystal wave function in terms of
s, P» P» and P, functions in each of the two

polyhedra, so that the basis set consisted of 2
&4 =8 atomiclike functions. He used the centers
of the hexagonal faces as matching points. There
are eight such points, and we will call these the
Kimball points.

Using our own crystal potential, we recalculated
the band structure of diamond using Kimball's
model (preceding paragraph). The energy bands
along the [100] and [111]directions in the re-
duced zone are shown in Fig. 4. For these high-
symmetry directions, the 8X 8 determinantal
equation can be factored analytically, and the en-
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FIG. 4. Energy-band structure of diamond based on
twofold partitioning and matching at the Kimba11 points.
Apart from the different choice of cellular potentials,
this solution corresponds to KimbaQ's original solution
(cf. Fig. 3). The total number of basis functions used is
eight.

ergy eigenvalues can be expressed in terms of
the values of the radial wave functions (s and P)
and their derivatives (s' and P') at the matching
points. For example, at the zone center, the
solutions for I"„1"„., I'„,and I', . are deter-
mined, respectively, by the following conditions:
s'/s=0, P'/P=O, P/P'=0, and s/s'=0. The two-
fold degenerate bands along the [100] and [111]
axes are flat because the relevant subdeterminants
are independent of k along these directions.

Apart from the flatness of the topmost valence
bands and bottommost conduction bands, the en-
ergy-band structure shown in Fig. 4 is qualitative-
ly reasonable, and bears a striking resemblance
to that given by Hall's nearest-neighbor LCAO
scheme. " The lowest conduction-band level at
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the zone center is I'„,in agreement with OPW
results. "'2' The principal shortcoming of the
cellular solution is the extremely large (53 eV)
energy separation between the highest valence
bands and the lowest conduction bands. This
deficiency can. be attributed to the limited num-
ber of basis functions used, or, what amounts to
the same thing, the limited number of matching
points used.

In a related context, von der Lage and Bethe"
argued that the choice of the centers of hexagonal
faces as matching points is particularly bad,
first, because these points are much closer to
the nucleus than an average point on the cell
boundary, and second, because the higher sym-
metry makes the boundary conditions degenerate.
Von der Lage and Bethe recommended the use of
the intersections of adjacent equivalent-volume
spheres, rather than the tangency points of in-
scribed spheres, as the matching regions.

In the present application to the diamond crystal,
the principal reason for the large gap is the in-
adequacy of the basis set. Of course, by using
a small basis set, we are obliged to use the Kim-
ball points, which suffer from the difficulty al-
ready pointed out by von der Lage and Bethe.

The consequences of introducing more basis
functions and more matching points will be in-
vestigated in the next three sections.

VI. GENERALIZED KIMBALL SOLUTION BASED

ON FOURFOLD PARTITIONING OF UNIT CELL

We will now consider a generalized version of
Kimball's original solution based on the decom-
position of the unit cell into two atomic and two
interstitial (or vacancy) polyhedra (cf. Fig. 3).
As matching points we will choose the centers of
the hexagonal faces of the four polyhedra, and
we will again call these the Kimball points. There
are clearly 8&&4= 32 Kixnball points. Accordingly,
we require 32 basis functions, that is, eight basis
functions per polyhedron.

If we use all spherical harmonics up to and in-
cluding some maximum value E, we cannot get
eight basis functions per polyhedron. Instead, we
will use a carefully selected set of s, P, d, and

f functions, which together provide a "balanced"
representation for the valence and lower conduc-
tion bands along the [100] and [111]axes. In
particular, we will use the following set of tetra-
hedral (symmetry-adapted) harmonics: s-type:
1; p-type: x/r, y/r, z/r; d-type: xy/r', yz/i',
zx/r'; f-type: xyz/r' (Such ha.rmonics are
thoroughly discussed by von der Lage and Bethe.")
The band structure determined along the [100]
and [111]axes for this choice of basis functions
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FIG. 5. Energy-band structure of diamond based on
fourfold partitioning and matching at the Kimball points.
The total number of basis functions used is 32.

and matching points is shown in Fig. 5.
By increasing the total number of basis functions

and matching points from eight to 32, the width
of the forbidden band is reduced substantially,
from over 50 to about 15 eV. The experimental
value is 5.4 eV."'~ The width of the valence bands
is reduced slightly, from about 14 to 12 eV. The
experimental value is 24.2 eV," The highest
valence band remains rather flat, while the four
lowest conduction bands come closer together,
with I', falling slightly below I"„.

From the standpoint of a first-principles solu-
tion, the band structure shown in Fig. 5 is still a
disappointment. It is reasonable to conclude that
32 basis functions per unit cell are still not suf-
ficient to provide a quantitatively acceptable so-
lution for the band structure of diamond.

Nevertheless, the analytical form of the 32x33
determinantal equation is still sufficiently simple
to make possible the expression of various key
solutions in algebraic form. In Table I we com-
pare the analytical expressions for certain energy
levels as given by the original Kimball model
(Sec. V) and by the extended Kimball model (pres-
ent section). Clearly, the various logarithmic
derivatives, s'/s, P'/P, d'/d, and f'/f, can be
expressed as algebraic functions of energy and
suitably parametrized, providing simple and in-
structive models of the band structure of diamond
(and related crystals). The feasibility of this type
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TABLE I. Analytical expressions for selected energy
levels corresponding to the solutions shown in Figs. 4
and 5. The radial vrave functions and their normal de-
rivatives are evaluated at the Kimball points of atomic
polyhedra {subscript a) and interstitial polyhedra {sub-
script i).

Energy level

Twofold
partitioning
{cf.Fig. 4)

sg—=0
sa

Fourfold
partitioning
{cf.Fig. 5)

f, sg f~+~+~ +~—0
sa fe

Sg—=0
Se Sff f

s~+
8)

f;'
+—=0

ff,

I")5r X4
pa dc—+—+—+—=0
pg dg pf

pe &e—+—+—+—=0
p~ d~ p; d;

of parameterization has recently been explored
and successfully demonstrated in the context of
Korringa-Kohn-Rostoker (KKR) band-structure
calculations. "'"

One interesting feature of Table I is that ratios
such as s'/s appear one way for twofold partition-
ing and in reciprocal form for fourfold partition-
ing (for a given energy level). It is instructive
to draw simple wave-function pictures for the
various symmetry types and confirm these al-
gebraic relations (we leave this to the reader as
an exercise). Another interesting feature of
Table I is the degeneracy of I'», X4, and of 1"»,
X3 fol both types of partitioning. With twofold
partitioning, the bands connecting these pairs are
flat (cf. Fig. 4), while for fourfold partitioning,
the bands are not necessarily flat (cf. Fig. 5).
Nevertheless, the degeneracy of the I" and X so-
lutions represents an inherent limitation in the
flexibility of these models, a limitation associated
with the use of the Kimball points for matching.
In order to obtain more realistic band structures,
e.g., nonflat doubly degenerate bands along the
[100] axis, it is necessary to use other (or ad-
ditional) matching points. For example, with
fourfold partitioning, one could include the
six square face centers for each polyhedron, as
mell as the following six tetrahedral harmonics. :
d-type: (x' —y')/r', [z' --,'(x' - y')]/r'; f-type:
x'/r', y'/r', x'/r'; g-type: (x' + y' + z')/r'. This
mould increase the number of logarithmic deriv-
atives by one (g'/g), and increase the order of
the determinantal equations from 32 to 56, still a
manageable number.

VII. IMPROVED CELLULAR SOLUTIONS BASED ON

TWOFOLD PARTITIONING

%e will now return to twofold partitioning and
attempt to improve on Kimball's original solution
by introducing more basis functions and more
matching points. It is through the choice of these
quantities that one conveys all the information
about the symmetry of the crystal and the spatial
characteristics of the cellular basis functions.
The actual choice of matching points is clearly
arbitrary. However, care should be taken to
ensure that a particular choice of matching points
is compatible with the choice of basis functions.
It is particularly important to avoid introducing
redundant boundary conditions, which would lead
to null determinants. Such redundancies can
arise, for example, if matching points are placed
at symmetry positions on the cell faces, and two
or more boundary conditions become degenerate
for these particular positions and the particular
choice of basis functions. It is also most impor-
tant to avoid nearly redundant boundary conditions,
which lead to poorly conditioned determinants and
hence to numerical instability. This can be
avoided by not placing the matching points too
closely together.

Since most of the surface of the atomic poly-
hedron is accounted for by the four hexagonal
faces (cf. Fig. 2), we will confine our attention
to these faces in what fonows, ignoring the small
triangular faces which connect next-nearest
neighbors. Beginning with an arbitrary point on
one of the hexagonal faces, and applying all the
symmetry operations of the factor group of the
diamond space group (0'„),we generate a set of
48 symmetrically equivalent points. There are
six points on each of the eight hexagonal faces of
the two atomic polyhedra.

Associated with these 48 symmetry-related
points are 48 additional points connected to the
former by R = (0, 0, 0) and the three primitive
translation vectors of the direct lattice. These
48 additional points are generated by the boundary
conditions [cf. Eqs. (2) and (3)] .

The general pattern of points on one particular
hexagonal face of the atomic polyhedron is shown
in Fig. 6. The circles represent symmetry-gen-
erated points, and the squares, boundary-con-
dition-generated points. For each of the "circle"
points, there is a "square" point; these are
called con3ugate points and are related to one
another by inversion through the Kimball point.
The total number of general points is clearly
48+ 48 = 96. If the original point lies on one of
the symmetry lines of the hexagonal face, pairs
of points coalesce and the total number of points
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FIG. 6. Notation for hexagonal faces of capped tetra-
hedra (cf. Fig. 2) and truncated octahedra (cf. Fig. 3).
The face center is the Kimball point in both cases.
Matching points are denoted by radius p and azimuthal
angle fI5. Symmetry-generated points are denoted by
circles, and boundary-condition-generated points by
squares. The irreducible sector is shown shaded. The
radius of the von der Lage and Bethe circle (shown for
twofold partitioning) is denoted by a. The distances to
the corner and to the midpoint of an edge are denoted by
c and e. If drawn on the same scale, the radius of the
von der Lage and Bethe circle for fourfold partitioning
would be about 6% larger than that for twofold partitioning.
For twofold and fourfold partitioning, respectively,
a =0.222 and 0.117, c=0.353 and 0.177, and e =0.306
and 0.153, all in units of ar. The lattice constant used
for diamond was az =3.M&7k

is 48. If the Kimball point serves as the original
point, the total number is eight.

If more than one set of points is used, the total
number of matching points will be equal to N
=84. + 48B+ 96C, where' is 1 or 0 depending on
whether the Kimball points are used, B is the
number of different types of points lying on sym-
metry lines, and C is the number of different
types of points lying at general positions on the
hexagonal faces. In order to satisfy all the bound-
ary conditions, a corresponding number of basis
functions must be introduced. As in Sec. VI, it
will usually not be possible to include all spher-.
ical harmonics (or tetrahedral harmonics) up to
and including some l,„andhave this number of
harmonics come out exactly equal to the total
number of matching points. Accordingly, one
must tailor-make the basis set to suit the circum-
stances, allowing for the fact that symmetrization
(see below) should lead to compatible numbers
of symmetrized basis functions and matching

points for all symmetry species.
Having chosen one or more sets of matching

points, we can specialize to some point in the
reduced zone and factor the determinantal equa-
tion into symmetrized determinantal equations,
one corresponding to each irreducible representa-
tion of the group of the wave vector k. In doing
this, we find it convenient to use tetrahedral
harmonics as the basis functions, rather than
the standard spherical harmonics. Tetrahedral
harmonics are linear combinations of spherical
harmonics which transform according to the ir-
reducible representations of the tetrahedral point
group T~, which describes the atomic site sym-
metry. A convenient compilation of tetrahedral
harmonics has been published by Altmann and
Cracknell, "whose tables we have used extensive-
ly in the present work.

When the original determinantal equation for a
point of high symmetry in the reduced zone is
factored into symmetrized subdeterminantal equa-
tions, a general set of matching points (e.g., 96
points) is often reduced to a small number of in-
equivalent matching points. ' For example, at
I' and X, a set of 96 points is reduced to one pair
of "conjugate" matching points lying in one ir-
reducible sector of the hexagonal face common to
both atomic polyhedra, i.e., one circle point and
one square point in the shaded region of Fig. 6.
For L, a set of 96 points reduces to the above
conjugate pair plus another pair of conjugate
points lying on one of the exterior faces of either
atomic polyhedron.

In order to take maximum advantage of sym-
metry, we have confined our studies to the I",
X, and L points in the reduced zone. It is known
from previous OPW band-structure calculations
for diamond-type crystals" "that the band struc-
ture throughout the reduced zone can be deter-
mined simply from a knowledge of the energy
levels at I', X, and Lby making use of a pseudo-
potential interpolation scheme. Thus, the infor-
mation we obtain at I', X, and L is actually suf-
ficient to map out the band structure throughout
the entire reduced zone if we wished to do so.
However, within the present context, our princi-
pal objective is to determine the convergence
properties of the energy levels (at I', X, and L)
as a function of the number and location of the
matching points employed.

The results of such convergence studies for the
center of the reduced zone are shown in Figs.
7-10. In these drawings, the calculated energy
levels are shown as a function of the choice of
matching points, for various tetrahedral harmonic
expansions. The abscissa is p/a, where p is the
distance from the Kimball point to the most distant
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TABLE II. Matching points used in selected calculations for I'&5 and I'&5 based on twofold
partitioning. The matching points are identified by their radii and azimuthal angles (cf. Fig.
6). Only one member of each conjugate pair of matching points is listed. An asterisk next tol,.„signifies that all matching points for lower values of / ~&x are already included, and that
only the additional matching points are actually listed. For l ~,„=12all matching points (one
per conjugate pair) are listed. Energy levels are expressed in Ry.

Matching points Energy levels

~ max

Dimensionality
of symmetrized

matrix

Radius p
(in units

of a)

Azimuthal
angle Q

(deg) I'is - I'2s

12

1.0
0.0
1.0
1.0
0.75
0.75

1.35
1.35
1.35
1.35
1.25
1.25
1.25
1.25
1.0
1.0
1.0
0.25

0
0
7.5

15
0
7.5

0
7.5

15
22.5

0
7.5

15
22.5
0
7.5

15
0

-1.88
-1.08
-0.90

-0.68

-0.68

-0.68

-0.95
-1.47
-1.18

-1.18

-1.18

-1.18

-0.93
-0.39

0.28

0.50

0.50

0.50

matching point used in the same face, and a is
the radius of the von der Lage and Bethe circle
(cf. Sec. I and Fig. 6).

When a given solution involves several inequiv-
alent matching points, their azimuthal positions
are held fixed and the various values of p are
varied. Although the pattern of matching points
is maintained, the radii of the inner matching
points are not necessarily scaled in proportion to
the radius of the outermost matching point (or
points). Representative selections of matching
points for I'„and I'„arelisted in Table II.

The calculations for I", and 1",i were carried
out up to / = 8. As can be seen from Fig. 7,
the calculated energy eigenvalues are strongly
dependent on the position of the maximum match-
ing radius for the lower values of / . The be-
havior of 1", is particularly interesting. For
/, „=4and 6, the two lowest sohxtions for Zy

coalesce for small values of p/a, and separate
for large values. Thus, it is possible to obtain
spurious solutions if such anomalous behavior is
not recognized. It is easy to appreciate the dif-
ficulties that some of the earlier investigators
encountered when they attempted to carry out
cellular calculations using too few spherical
harmonics.

On the other hand, when a sufficiently large
number of spherical (or tetrahedral) harmonics
are introduced, the calculated eigenvalues become
rather insensitive to the choice of matching points.
For I', and I', , it is necessary to go up to /

=8 and 6, respectively, to obtain nearly conver-
gent energy levels (where convergent means in-
dependent of matching points).

Our results for I'» and I'„areshown in Figs.
8 and 9. In Fig. 8 we concentrate on I'» and
show the location of a converged value of I'» for
reference, while in Fig. 9 we do the opposite.
For lower values of /,„,there is again substan-.
tial variation of the eigenvalues with the choice
of matching points. For /, „=3or 5, it is pos-
sible to obtain a widely different range of values
for the direct band gap (I'» —I'» ) simply by
choosing different matching points. But, once
again, for sufficiently large values of I (here
I ~ 7), the energy levels become relatively
insensitive to the choice of matching points.

We believe that even if the boundary conditions
were to be satisfied in a least-squares sense
over all the polyhedral faces, one could still
obtain spurious results if an insufficient number
of basis functions were used.

Our results for I»i are displayed in Fig. 10.
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For l,„=4,6, and 10, the energy levels are
determined for a wide range of matching points.
For l = 8 and 11, only a limited number of
calculations were carried out. It is difficult to
say whether we have obtained convergent energy
levels even with / „=11.However, since I"»
represents a rather high-lying conduction-band
level, our result for / =11 provides an accept-
able estimate.

We have also investigated the convergence
properties of the energy levels at X and L. Since
the wave-function symmetry is lower at X and L
than at the zone center, it is necessary to use
larger basis sets and more matching points. If
we were to go to extremely large numbers of
matching points, they would get so close together
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FIG. 7. Convergence study for I'& and F2 based on two-
fold partitioning and various choice of / (denoted here
by l)). The calculated energy levels are plotted as a func-
tion of the radius of the matching point most distant
from the Kimball point, i.e. , the matching point with the
largest value of p. Where two I'~ solutions occur, they
correspond to valence- and conduction-band levels. The
abscissa corresponding to p = e is denoted by an asterisk.
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FIG. 8. Convergence study for 12& based on twofold
partitioning. A converged value for 1 ~5 is shown for
reference. Where two I'25 solutions occur, they cor-
respond to valence- and conduction-band levels. The
abscissa corresponding to p = e is denoted by an asterisk.
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that calculations based on isolated-point matching
would become impractical. Fortunately, we did
not reach this limit when we carried out calcu-
lations at Xand L for l =8, 9, 10, and 12. Al-
though our convergence studies at X and L were
not as comprehensive as they were for I', we
believe that we have obtained reasonably good
estimates of the principal energy levels at these
zone points (say, estimates good to a fraction of
an eV).

In Table III our present results for I', X, and
L are compared with some recent OPW results
due to Rudge" and Euwema and Stukel, "and with
relevant experimental information. Budge's OPW
calculations used 331 OPW's at I' and 302 at X
and L. Euwema and Stukel studied the convergence
properties of the I' solutions using as many as
965 OPW's (for which we quote their results).
Since the same physical model (crystal potential)
is employed by Rudge and by Euwema and Stukel,
it is gratifying that their results agree with one
another for 331 OPW's.

It is clear from Ref. 41, that individual QPW
energy levels for diamond are not fully conver-
gent at 331 OPW's, or even at 965 OPW's. Never-
theless, it is possible to make reliable estimates
of the band structure by taking the differences be-
tween pairs of energy levels, since these dif-
ferences converge more rapidly than the individual
levels do. In Table III, we have set the top of
the valence band (I'»i ) to 0 for the purpose of
comparing different theoretical energy-level
calculations. Thus, we are comparing energy-
level differences rather than absolute energies.
Based on a comparison of the OPW results of
Refs. 17 and 41, we believe that Budge's energy

differences at I', X, and L are convergent to
within an eV.

It is interesting to note that our best cellular
calculations for I'» and I'» involve approximate-
ly as many basis functions as are used in Budge's
OPW band calculations. According to Table II,
for l =8, we use two general sets of matching
points (2&& 96), two special sets (2&&48), and one
set of Kimball points (1&&8), making a total of
296 matching points. This leads to 296 basis
functions (tetrahedral harmonics), which is com-
parable to the number of OPW's (331) used by
Budge.

Of course, the 296&&296 cellular determinant
can be factored into subdeterminants by standard
group-theoretical methods, and these can be
evaluated separately. We took full advantage of
symmetry factoring in the present studies. For
example, for I'». and I'» with / =8, we had
to deal with 11&11 subdeterminants,

As can be seen from Table III, the improved
cellular results (twofold partitioning) are con-
siderably closer to experiment (and to the OPW
results) than were the earlier Kimball-point
solutions (cf. Secs. V and VI). Both the cellular
and the OP% calculations indicate that the I »
conduction-band level lies considerably below the
I', . conduction-band level, contrary to recent
nonlocal-empirical-pseudopotential calculations. "

The improved cellular results at X and L (two-
fold partitioning) are considerably more realistic
than were the solutions given earlier in Secs. V
and VI. However, there are still significant dis-
crepancies between the cellular and OPW results.
In particular the lower conduction-band and upper
valence-band levels at X and L lie considerably
lower than they should, relative to their counter-
parts at I'. As will be seen, most of these dis-
crepancies can be reduced considerably by going
to fourfold partitioning.

VIII; IMPROVED CELLULAR SOLUTIONS BASED ON

FOURFOLD PARTITIONING

No matter how many basis functions we use
with twofold partitioning, we cannot get around
the fact that the spherical approximation for the
crystal potential is not likely to be as good for
twofold as it is for fourfold partitioning. Instead
of attempting to introduce the nonspherical part
of the crystal potential into the atomic polyhedra
of Fig. 2, we will retain the spherical-cellular-
potential approximation and carry out a conver-
gence study based on the ~fourfold partitioning
scheme.

We are now dealing with truncated Octahedra
(cf. Fig. 3) which have eight hexagonal faces and
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TABLE III. Comparison of theoretical and experimental energies for diamond. The present
cellular calculations and both OP% band calculations are based on Slater's exchange approxi-
mation (n =1). The letters c and v distinguish conduction- and valence-band levels. In all
the calculations, the zero of energy has been placed at the top of the valence bands (I'25',).
All entries are in eV.

Energy
levels and
principal

ga.ps
Twofold

partitioning
Fourfold

partitioning

Cellular calculations

Rudge
(Ref. 17)

Euwema and
Stukel

(Ref. 41)

OPW calculations

Experiment

(c)
I'& (c)

(c)
(c)
(c)

I'i (v)

X3 (c)
Xi (c)
X4 (v)
X& (v)
Xs -X4„
X(~ -X4„

(c)
L3 (c)
L ) (c)
L3i (c)

(v)
L2i (v)
Lsc -L3 v

Lg~ -L3r„

28.3

16.3
6.8
0.0

-24.8

7.9
1.1

-14.5
-18.6

22.4
15.6
18.8

5.2
-11.1
-19.9

22 07

16.3

19.7
6.3
0.0

-21.9

4.9
-8.7

-14.1

13.6

26.8
19.7
12.0
6.5
0.0

-22.3
18.8
5.1

-6.1
-13.5

24.9
11.2
17.4
9.4
8.1

-2.6
-13.4
-16.8

12.0 '
10.7'

12.5
6.3
0.0

7 73a

-24.2 b

~6 c

-12 d

Direct band gap, Refs. 26 and 27 ~

Width of valence bands, Ref. 28.
According to Refs. 26 and 27, the indirect band gap is 5.46 eV. Our best estimate places

X& about 0.5 eV above the lowest conduction-band level 4&. Therefore, X& is about 6 eV above
I 25, as indicated.

Reference 25. The experimental optical spectrum has been analyzed by several investigators;
see, for example, Refs. 18-20.

These results are consistent with the view, expressed earlier in Ref. 12, that the two L peaks
contribute to the main optical peak at 12 eV. The major contribution to the main peak is due to the
X-Z region.

six square faces. Since adjacent. ;carbon atoms
interface one another across hexagonal faces, we
would expect these faces to be more important
than the square faces in the limit of relatively few
matching points. Accordingly, we will restrict
our attention to the hexagonal faces, one of which
is shown in Fig. 6. The equival. ent-volume sphere
is now & as large as before, and its radius is
(-,')'~' as large as before.

If we choose the generic matching point at a
general position on a hexagonal face belonging to
a particular::polyhedron, the 48 operations of the
factor group of the space group 0'„will generate
a set of 48 symmetrically equivalent points which
lie on the hexagonal faces of this and a neighboring
polyhedron. This procedure is carried out once

for each of thefourpol. yhedra, l.eading to 4x48=192
distinct points. Accompanying these are an equal
number of points generated by the boundary con-
ditions, making a grand total of 2&&192 = 384 points.
The general pattern of points on a hexagonal face
of the truncated octahedron is shown in Fig. 6,
which we have already encountered in Sec. VII and
which is readily adapted to the present context, .
The total, number of points is reduced from 384
to 192 if the generic point l,ies on a symmetry
line, and to 32 if the generic point lies at the face
center (Kimbaii point).

We will confine our attention to I' and X since
convergence studies for these two zone points are
sufficient to provide meaningful comparisons with
the results of Sec. VlI. As before, we will use
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tetrahedral harmonics as basis functions and fac-
tor the determinantal matrices for each zone point
into smaller symmetrized matrices which can be
evaluated separately. The symmetrized matrices
for I' and I involve only the irreducible sectors
of five hexagonal faces of four polyhedra. Three
of these faces are the interfaces between adjacent
carbon-carbon, carbon-interstitial, , and inter-
stitial-interstitial polyhedra (cf. Fig. 3). The
remaining two faces connect the carbon polyhedron
centered at (0, 0, 0) with the interstitial polyhedron
centered at a~(4, —,, —,). We used five such faces all
of which were perpendicular to the unit cube di-
agonal, i.e., to the (1, 1, 1) axis.

In the present series of convergence studies,
the energy levels were calculated for each sym-
metry species for progressively larger values
of / —. The variation of the calculated energy
levels was investigated as a function of the choice
of matching radius for various values of E only
for I'» and I'». The results of the studies for
I'» and I'» are shown in Figs. 11 and 12. The
calculated energy levels are seen to be relatively
insensitive to the matching radius once l,

„

is
equal to or greater than 8. For / =8, the energy
levels vary by less than 0.05 By for various choices
of matching radius.

It is interesting to note that the I'» and I'»
solutions converged at about l =8 for both two-
fold and fourfold partitioning. Thus, the con-
vergence properties are not significantly affected
by the differences in the number and form of the
cellular polyhedra. Since there are twice as many
basis functions for fourfold than for twofold
partitioning, for a common value of l ~ it takes
more effort to obtain comparable convergence
using fourfold partitioning. In return for this
extra effort one has a more accurate approxima-
tion for the crystal potential. in the interstitial
regions. As mentioned earlier, the principal
advantage of fourfold partitioning is the reduction
in the errors associated with the neglect of non-
spherical-cellular-potential components.

We did not investigate the variation of the energy
levels for I'„I;,&„orX4 with matching radius.
Instead, we carried out calculations using Q = 10
and representative matching radii. All of our
numerical. results for I' and X are listed in Table
III. Based on our experience with twofold par-
titioning, we believe that the present results for
I' are convexgent to within 1 eV, and those for
X to within a few eV. The following features of
Table III should be noted:

(a) Both twofold and fourfold partitioning lead
to forbidden bandwidths at the zone-center
(I"» —I'„)and to valence bandwidths (I'» —I",)
which compare favorably with experiment and are
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in reasonable agreement with the OPW results.
(b) We are not able to account for the behavior

of I', , which is in better agreement with the OP%
results for twofold than for fourfold partitioning.

(c) Fourfold partitioning leads to a distinct
improvement in the energy-level structure at &.
(The same would be expected for L.) The lowest
conduction-band level (X,) and the valence-band
levels (X~ and X,) all move closer to their experi-
mental (and OPW) counterparts. The improved
cellular results based on fourfold partitioning
yield numerical results for the indirect band gap
(about 4.5 eV) and for the energy of the main op-
tical peak (about 13.6 eV) which are within 1 or 2

eV of their experimental values. Such results
are gratifying for a first-principles band-struc-
ture calculation.
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(d) In going from bvofold to fourfold partition-
ing, there is a considerably greater change in the
band structure in the exterior region of the re-
duced zone (as exemplified by the zone point X)
than at the center of the zone. We believe that
this effect is produced by the respective spherical-
cellular-potential approximations. The improved
representation of the crystal potential brought
about by fourfold partitioning. lea, ds to improved
relative positions of the energy levels at I' and X.

Considering the distinct lack of success of pre-
vious efforts to apply the cellular method to .di-
amond-type crystals i sing isolated matching
points' as well as more sophisticated techniques,
it is indeed gratifying that the present results
(particularly with fourfold partitioning} agree with
experiment and with OPW band calculations as
well as they do. The two essential improvements
inherent in our work are the use of a sufficient
number of basis functions and matching points
to ensure a reasonable degree of energy-level
convergence, and, through fourfold partitioning,
an improved approximation to the crystal potential
in about & of the unit cell..

The present resul. ts could be improved still
further by taking the nonspherical part of the
cellular potential into account, by carrying out
the calculations self-consistently, and possibly
also by including matching points on the square
faces of the truncated octahedra. However, these
refinements lie outside the scope of the present
study.

IX. DISCUSSION

We have demonstrated that the cellular method
based on point matching leads to energy levels
that are relatively insensitive to the choice and
spatial arrangement of a l.imited number of match-
ing points, provided the cellular wave functions
are represented by a sufficiently large number of
basis functions. Many of the earlier workers' 9

encountered difficulties with the cellular method
because they used too few basis functions.

Moreover, we have demonstrated that so long
as a sufficiently large number of basis functions
is employed, it is possibl. e to obtain substantially
the same energy-level structure by satisfying the
boundary conditions over different l.imited regions
of the polyhedral surfaces. However, it is im-
portant that the matching regions be suitably cho-
sen.

For example, with'Mofold partitioning, it is
necessary for the matching points to be located
on two or more circles on each of the hexagonal
faces of the atomic polyhedron. (One of these
circles can have zero radius and thus degenerate

to the Kimball point. ) If the points lie on only one
circle per hexagonal face, the basis functions will
not mix properly, and spurious solutions will be
obtained.

With, byofold partitioning; 'te@8onable results
can be obtained by satisfying the boundary con-
ditions at points lying on a minimum of two well-
separated circles on each of %he hexagonal faces.
For the calculated energy-level structure to be-
come nearly independent of the number and lo-
cation of the matching points (subject to this re-
striction), it is necessary to include all tetra-
hedral harmonics up to l =7 or 8 at the zone
center, and up to I =11 or 12 at X and L.

With fourfold partitioning, correspondingly
good results can be obtained by satisfying the
boundary conditions on only one circle per hex-
agonal face. (There are 8X4=32 such faces for
this case. ) Even though the unit cell has been
divided into twice as many subcells as before,
the minimum number of spherical harmonics re-
quired for convergence is about the same (in total)
as before.

Although we have demonstrated the insensitivity
of the calculated energy levels to the choice of
matching points, provided a sufficiently', largh
basis set is used, we have not demonstrated (or
in fact examined} the relationship between the
calculated eigenvector components and the choice
of matching points. We are not presently in a
position to say to what extent the eigenfunctions
and their normal derivatives satisfy the boundary
conditions at points well. removed from the match-
ing points.

Of course, the insensitivity of the energy levels
to the choice of matching points does not guarantee
comparable insensitivity of the spherical-harmonic
expansion coefficients to this choice. However, it
is difficult to imagine eigenfunctions whose ex-
pansion coefficients are strongly dependent on the
choice of matching points, and yet whose energy
eigenvalues are only weakly dependent on this
choice. It is reasonable to expect the imposition
of strict boundary conditions on one circle (i.e.,
at points located on one circle) to limit greatly
the form of the wave function on neighboring cir-
cles. Thus, if the matching circles are suitably
chosen, it is conceivable that the restraints im-
posed on the wave functions will tend to minimize
the variation of their expansion coefficients with
respect to the choice of matching circle.

In order to minimize the variation of the wave
functions with respect to the choice of matching
points, it is probably desirable to choose a match-
ing circle that samples the most representative
region of the hexagonal face. This would exclude
extremely small circles, which sample only a
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very small fraction of the hexagorial face. Von der
Lage and Bethe have already suggested the use of
the circles defined by the intersection of neigh-
boring equivalent-volume spheres as appropriate
average matching circles. '

The choice of optimum matching circles in the
present context is reminiscent of the use of
Baldereschi points~ ~' in summations over the
reduced zone. If, for example, in self-consistent
band-structure calculations for diamond-type
crystals, one samples the valence charge density
only at the zone center, the self-consistent val-
ence charge density obtained is considerably dif-
ferent from that given by more extensive sampling
of the reduced zone. If one uses the L point in-
stead of the I" point, the final charge density is
considerably closer to that obtained by more com-
plete sampling. This follows from the fact that
the I- point is more representative of the reduced
zone as a whole than is the I' point.

Now Baldereschi4' and others~'~~ have shown

that the sum over a large number of uniformly
distributed points in the reduced zone can be ap-
proximated quite well by using a very small num-

ber of carefully chosen representative points
(Baidereschi points). Phiiiips~' has argued that
these points may have physical significance over
and above their mathematical significance as
"mean-value" points.

By analogy, it is possible that an optimum match
over the entire surface of a Wigner-Seitz poly-
hedron can be accomplished by a suitable choice
of matching-sphere radius (or radii). This pos-
sibility deserves further study.
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