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Theoretical expressions for the microwave power absorbed in a small spherical magnetoplasma are
obtained using a perturbation expansion in powers of a dimensionless parameter proportional to the

square of the radius. There are four linearly independent orientations of the microwave electric and

magnetic fields (8& and B,) relative to the dc magnetic field Bp. transverse magnetic (Bl I Bp),
longitudinal magnetic (B, (( Bo), transverse electric (B,150), and loulp'tudinal electric (B, [( Bs). The
theory includes the effects of electron inertia, displacement current, and the averages over the

energy-dependent electron relaxation time. If the relaxation time is energy independent, in the limit of
very small radius (Rayleigh limit), the result for the transverse electric case becomes the well-known

formula for plasma-shifted cyclotron resonance. The results are applied to explain the microwave

experiments on small spheres of n-type InSb by Evans, Furdyna, and Galeener. The calculation

accounts quantitatively for (a) the position and shape of the plasma-shifted cyclotron resonance, (b) the

fact that the longitudinal electric absorption is negligible, (c) the position, shape, and size dependence

of the transverse magnetic resonance, and (d) the broad absorption shoulder observed in the

longitudinal magnetic case. It is proposed that with this theory it is now possible to measure accurately

in a single microwave experiment all four macroscopic electrical parameters of a given sample: mobility,

carrier effective mass, lattice dielectric constant, and carrier density.

I. INTRODUCTION

Recently, Evans, Furdyna and Galeeneri'3 have
observed R new type of microwave resonant ab-
sorption in small spheres of n-type Insb. The ex-
periment involves placing the sphere in a dc mag-
netic field Bz and exciting it with microwaves.
The microwave power absorbed in the sphere de-
pends on the relative orientation of Bo and the
microwave electric and magnetic fields E, and B~,
respectively. There are four linearly independent
excitations: transverse magnetic (Bt i Bc), longi-
tudinal magnetic (BI II Bc), transverse electric
(EI & Bs), and longitudinal electric (EI II Be). These
excitations can be observed separately, or simul™
taneously in various combinations, by appropriate
choice of magnet orientation and location of the
SRIIlple ln tile IIlic1'owRve cavity ~

The experimental results are illustrated by Fig.
1, which shows microwave power absorbed as a
function of Bo for two geometries: transverse elec-
tric plus 1ongitudinal magnetic and transverse
magnetic plus longitudinal electric. The weQ-
known plasma-shifted cyclotron resonance is ob-
served in the case of transverse electric excita-
tion, s but with a width about twice that expected
from the dc mobility. In addition, in the same
experimental curve there is an unexplained broad
absorption shoulder near zero Bo associated with

longitudinal magnetic excitation. The new reso-
nance is that observed in the transverse-magnetic
plus longitudinal-electric geometry. For very
small spheres this resonance occurs at a value of
the cyclotron frequency &u, (= eBc/m*c) which is
independent of sphere radius, carrier concentra-
tion, and mobility. Although the quantitative be-
havior of this resonance was not understood, it
was clear that, once understood, it would provide
a new means for measuring m~, the effective mass.
It was also demonstrated that, with increasing
radius, this resonance gradually transforms into
a size-dependent helicon resonance.

Our purpose in this paper is to present a unified
electromagnetic calculation which explains all of
these results. For the experiments of interest
here, the radius of the sphere a is always very
small compared to the free-space wavelength X of
the microwave field,

a/X « l.
In this limit an exact calculation is possible. 4

ln the present case, the smallest spheres (those
displaying the behavior of Fig. 1) also satisfy the
Qayleigh limit, where the microwave-field dis-
tribution in the interior of the sphere is nearly
uniform. A rough criterion for the validity of the
Rayleigh limit is that the sphere radius be small
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FIG. 1. Microwave absorption in a small sphere of
n-type InSb as a function of magnetic field as measured
for the two configurations: (Bj &Ho, E~ II Bo) and (Ej ~BO,
B( II Bp) ~ The experiment was done at 78 K at a fre-
quency of 35.2 GHz. The carrier concentration is about
5.2&&10~ /cm3, the sphere radius is 0.00838 cm, and
the mobility is approximately 11&&10 cm /Vsec.

compared to the classical skin depth 5 =c/(2IIIdog)I~g,
where oz is the dc conductivity at BO=0.

We will obtain a solution in the form of an ex-
pansion about this limit in ascending powers of a,
and will calculate the first two terms in this ex-
pansion. The result yields closed-form expres-
sions for the power absorbed from the microwave
fields. It will be seen that this result holds rea-
sonably well even for spheres whose radius con-
siderably exceeds the above Rayleigh-limit cri-
terion. It is hoped that these calculations will be
more illuminating than the exact solution, which
cannot be given in closed form.

In Sec. II we write down the basic equations for
this prob1em; the effects of electron inertia, an
energy-dependent relaxation time, and displace-
ment current are included. Then in Sec. III we
solve these equations for the case of magnetic ex-
citation, using a perturbation scheme to obtain a
solution in powers of a. The electric-excitation
problem is solved by the same techniIlue in Sec.
IV. In Sec. V these results are discussed in vari-
ous limits. Section VI is devoted to an application
of these results to the experiments of Evans,
Furdyna, and Galeener.

The microwave absorption depends upon four
macroscopic electrical parameters: the dc mobil-
ity p, the lattice dielectric constant c&, the carrier
concentration N, and the carrier effective mass
m~; and in addition, on the energy dependence of
the carrier relaxation time g (8) Assuming .this
energy dependence to be that characteristic of
Rutherford scattering of electrons by ionized im-
purities, we find that both the transverse-electric
and transverse-magnetic resonance structures
can be fit with one set of the four parameters.
Thus, a unique advantage of this type of experi-
ment is that all four electrical parameters can be
determined from a single experiment on a given

sample. It is, of course, especially important
that these parameters include m* and a, .

II. BASIC EQUATIONS

In this section we combine Maxwell's equations
and a generalized form of the Ohm-Hall law in
order to establish the basic equations and the ap-
propriate boundary conditions for a gyrotropic
sphere.

A. Generalized Ohm-Hall law

For fields varying as e '"', the total current
density is

i= l -g(~sI/4v)E,

where j is the conduction current density and the
second term is the displacement current density.
The connection between the conduction current
density j and the electric field E is obtained from
the Boltzmann equation using standard methods;
the result can be writtene

(2)

j=[c +g(Id&, /4II)]E+C z ~ Ez+C sxE, (2)

where the dc field 5g has been taken to be directed
along the positive s axis. For a single isotropic
parabolic band the coefficients C& are given by¹~ v' 'co ar

m* 1+(Id g)' '4II

¹

C =
mo 1+(Id,g)g¹~ m,f'~' m~ 1+(si c)') '

(4a)

(4b)

(4c)

where ( ) means the following average over energy
go

(z)= da zs'Ig f' ds r'Ig f'
0 s8 „, s8

Here fg is the Fermi-Dirac distribution function,
and% is related to the energy-dependent relaxa-
tion time r(8) by

r(h) =~(S)/[1 —g~g (S)] . (6)

Putting (2) into (2) and solving for E in terms of
J, we can write

IFE = J+'yg o f8+ /AX J s

where

s= (c,'+ c,')/c, ,
y= (Cg —CIca)/CI(CI + Ca) I

O'= —Cg/Cq .
We call (7) the generalized Ohm-Hall law. This is
the basic constitutive relation connecting E with J.

8. Maxwell's equations

Inside the sjhere, the equations which we must
solve are Ampere's circuital law (for a medium
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of unit permeability)

curlB= (4v/c) J, (9)

curlcurl(J+yz ~ J'z. + Wzx J) -tZOJ=O,

where the complex wave vector is defined by

420 =- i(4v(o o/e') .

(12)

Equation (12) is a generalization of the helicon wave
equation discussed in an earlier paper by two of
us. The essential differences arise from the in-
clusion of the effects of electron inertia, displace-
ment current, and the energy dependence of the re-
laxation time. These result in the additional term
yz ~ Js, and the fact that P and 0 are now complex,
hence the tilde on these quantities.

The key simplification arising from our assump-
tion (1) is in the equations for the fields outside
the sphere. For the case when the exciting field
is an ac magnetic field, we neglect the displace-
ment current [right-hand side of (9)]. The mag-
netic field then satisfies the quasistatic equations:

curlB=O and divB=O; (i4)

the electric field is ignored. On the other hand,
when the exciting field is an ac electric field, we

neglect the magnetic-induction field [right-hand
side of (10)]. The electric field then satisfies the
quasistatic equations

curlE=O and divE=O;

the magnetic field is ignored.
Because in the case of magnetic excitation we

solve for 8 and ignore E, and vice versa in the
case of electric excitation, the boundary conditions
to be applied are different in the two cases. At

the surface of the sphere (t =a), we must have

B„„d,= 8,„„«,(magnetic excitation), (16)

and

+)tnstde (J +)Outstde~
, (electric excitation)

(j.x E)„„,= (~x E),„„,, (1 Zb)

These boundary cohditions are obtained directly
from (9) and (10) using standard arguments.

IH. MAGNETIC EXCITATION

Here we obtain, in the form of a perturbation
expansion, the response of a gyrotropic sphere to

and Faraday's magnetic induction law

curIE = i((o/c) B . (io)

Substituting the expression for E from (Z) into (10)
we have

curl(J+yz ~ Jz+ Wzx J)=i(aro/c) B .
Eliminating 5 between this expression and (9), we

get

a uniform ac magnetic field B1e '"'. The essen-
tial difficulty of this problem is the nonseparabil-
ity of the basic equations of Sec. II in spherical
coordinates. Although this means that the calcu-
lation is fairly complicated, the final results for
the power absorbed have a rather simple explicit
form.

A. Perturbation scheme
Ip W

We seek a series solution for B(r) and J(r) in
the form

8= 8'"+B"'+B"'+~- t

and

J=3'"+J"'+3"+ ~ ~ ~

The expansion is in powers of the dimensionless
parameter V defined by

V=4vtdoa /c (2o)

We note that (9) and (10) require

diva'"'=O and divJ'"'=O.

(21)

(22)

At very low frequency (or very small radius), the
applied ac magnetic field penetrates the sphere
uniformly (Rayleigh limit), so that in zeroth order

8'" =81y (22)

both inside and outside the sphere. In zeroth or-
der, the current- density J~ ' = 0. The first-order
current density J'" is obtained by solving (ll),
where the source of these currents is 8' ' given by
(23),

curl(J'"+yz ~ J'"z+ Wi xT'n) = (itoo/c) B'" .
(24)

This first-order current then gives rise to a new

magnetic field 8' ' which, inside the sphere, is
found by solving (9):

curl8' '=—J' '4m

C
(26)

Outside the sphere B'" is found by solving (14) and

satisfying the boundary condition (16).
This first-order magnetic field then gives rise to

a second order current which is calculated by again
solving (11), where the source term is now the
known function 8'",

curl(J' ' + y2 . Jt@z+ Waxy ') = i(&oo/c) B
(26)

The second order magnetic field inside the spheres
is found by again solving (9), where the known func-
tion J' ' is the source term appearing on the right-
hand side, namely,
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curlS'" = (4n/c) J'@ . (2V)

J"&=Kxr (r&a) . (26)

The constant vector K is determined by direct sub-
stitution of (26) into (24) and solving the resulting
vector equation, ' we get

.600' 1 ~ ~ 2+yK=i zz ~ B~ z+, 2, z Wz(B~ —z ~ Bqz)
C ~2+yj +8'

(2+ ) W
(29)

This field is continued to the region outside the
sphere by finding a solution of (14) which satisfies
the boundary condition (16).

The above scheme can, in principle, be carried
to all orders, leading to expressions for J and 8
in the form of a power series in V.

B. First-order solution

Note first that, since the right-hand side of (24}
is a constant, J' ' is linear in r. Moreover, the
divergence of J " is zero, which in turn requires
r ~ J'~' =0 at the surface of the sphere, since we
take J' ' to be zero outside the sphere. Therefore,
we conclude that the solution of (24) must be of the
form

The solution of the succeeding equations is con-
siderably simplified by the introduction of the vec-
tor spherical harmonics Y~, &. These vector func-
tions are defined in Appendix A. We also make
extensive use of the formulas given in Appendix 8
of Ref. 7. We begin by expressing the result con-
tained in (28) and (29) in terms of these vector
functions:

(«
(3 c ~ )2+my —imp'

where the complex unit vectors e are defined in
Apyendix A and the * means complex conjugation.
This result is easily verified by noting

1/2(

rY~, q=i(& e xr, (31)

which in turn is most directly obtained from Eq.
(B8) of Ref. V.

We now use the result (80) to solve (25) for B' '

inside the sphere. Since 7'~' is linear in r, B'~'
inside the sphere can only involve terms quadratic
in r plus a constant. By examining the formulas
for curl and divergence in Appendix 8 of Ref. 7, it
is relatively easy to show that the first-order mag-
netic field which satisfies the boundary condition
(16) is

(5/~)[(r /a ) —I]Yq,a+(r /a ) Yq z, r& a
.
(2 pgz V e„* ~ B~

15 „.q 1+—,'m y- —,'imW (a/r) Y~,z, r&a (82)

The first-order magnetic induction field outside
the sphere is therefore a pure dipole field (see
Sec. IIIB of Ref. V}.

C. Second-order solution

J' ' = g Ob pa r+ bz r ) Y~, q
m- -f

+ bf [ ', r Yp"„3+z v , r(V r —5a ) -Yz, g]—
+'b4 r Y3 3] (33)

The problem now becomes more complicated.
We must solve (26) for J @, with the right-hand
side of this equation given by (32). Since the mag-
netic field B' ' is of even parity, involving terms
independent of r and quadratic in r, J~@ must be of
odd parity, involving terms linear and cubic in r.
The most general form for J~ ' having zero diver-
gence is

J '+yz ~ J ~ 8+ 5'z&&J (34)

calculating the curl of this sum, and equating the
result to i(&ocr/c)B'" as required by (26). The ex-
pression for the curl of the sum (34) involves four
vector spherical harmonics Y~ 0, Y~ z, Y2 z, and

~ ~ t ~ s

Y~, z, the result (32) for B ' contains Y~ 0 and Y~ z.
Thus, in order to satisfy (26) we must separately
equate the coefficients of these four vector spher-
ical harmonics on each side of the equation. This
gives the four equations necessary to find the coef-
ficients b&. In matrix form these equations are

The particular combination of terms multiplying 13
is obtained by noting that because J~' has zero di-
vergence and J is zero outside the sphere in all
orders, r. J' ' is zero at the surface of the sphere.
The four undetermined coefficients b&, bz, 53, and
b4 are found by first using the formulas for s && YL
in Apyendix 8 of Ref. 7 and for s ~ Y~, s in Appen-
dix A to form the sum



1456 G. % ~ FORD, J ~ K. FURDYNA, AND S. A. %'ERNER 12

P 0 5
P 0

' bN~ 5

o p, 4 p, o

0 Q Q +p b„s& 30ca p1

~0 0 s P4 Ps ~b4

where

1 2 1P1=1+~ m y-gimW,

p, =[-;(4-m')]"'(my+iW),

ps=7+(4 —
5 m )y —i~omw,

(36a)

(86b)

(86c}

sj 30ca P1$
3

Lb,
"

where

-3(P.P, -'k P.')-
8PsPs

—PsP4

P1PSP5 9 P1P4 P5ps

(37)

P, =[(e —m'}/7O]"" {-my+4iW},

Ps= 1+pm y i+~ m—W .
The solution of (35) is

(86d)

(36e)

2
5 = P1P5Ps —9 P1P4 4PsP-s . (s8}

To find the second-order magnetic field inside
the sphere we must solve (27), where the source
term J ' is now known. FoQowing the technique
used i~ obtaining the first-order solution, we find
for x& a

+1

B' '=i g—(bs,a [9&(r —a )Y19+s~sr Y15]+bs [4~5(r'-a') Y1 9+1~5 r Y1 5]
ffs -1

+ bs —,
' r (r —a ) Ys,s+ b4 r [,' W~ (r a) Y—s 5+P ~&~ r—Ys 4] i. (se)

The solution for the second-order magnetic field
outside the sphere, which satisfies (14) and the
boundary condition (16), is

e~-1-

(4o)

The term involving Y3 4 is an octupole fieM. Thus,
we see that this second-order calculation results
in a correction to the dipole field [first term in

(40)] and the appearance of an octupole contribu-
tion. The even-l 2'-pole fields are zero in all or-
ders, as can be established from inversion sym-
metry. We will not carry the calculation beyond
this point to obtain the third-order current den'sity
JI)

D. Magnetic-dipole moment M and
the power absorbed 6'm

The induced ac magnetic dipole moment M, cor-
rect through second order of V, is obtained from
the sum of the coefficients of (1/r )Y1 5 in (32) and
(40) using Eqs. (58}and (42) of Ref. 7. We find

+1 p,ia V g e„~ B1e
30 ~ 11+&m y-&zmR'

+1 A+a V ~ e ~ 81e
315 ~q (1+-'m y- —,'imW)

To the same order in V, we can rewrite this result
in the form

30 ., 1+-,'m'y--, 'img -i~@ '

We find that this second form for M is accurate to
much larger V than (41) by comparison with the
exact solutions. 4 Numerical examples of the region
of validity of (42) are given in Sec. VI.

The mean power absorbed by the sphere is

(P ~= & vtmM ~ 8~1 . (43)

Using (42), this becomes
1

(oa ~ ~r9 5
m«= 30 Z ~

esss 81
e="1

t'

(44)
g2+m y-imW'-i21 V

Here Re and Im stand for real and imaginary parts,
respectively. Each term in the sum in this formula
corresponds to the power absorbed by a definite.
circular polarization of the exciting ac field B&.
For a linearly polarized exciting field (B1 real) this
formula can be written
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va'
2-i~ V&

tlat

+[a, -(z B,) ]Re0 - -
0 v(2+y —ip~v)

2+y —z gag + S"

(45)

This is the formula we use in discussing the exper-
imental results in Sec. VI.

IV. ELECTRIC EXCITATION

Here we consider the electric-excitation prob-
lem, which is the complement of the magnetic-ex-
citation problem treated in Sec. III. The gyrotrop-
ic sphere is now excited by a uniform ac electric
field E1e '"', and we wish to determine the leading
terms in the electric multipole response.

A. Perturbation scheme

When the frequency is very low- (or the sphere
radius is small), we can neglect the magnetic-in-
duction field in (10) or, equivalently, in (11). The
zeroth-order total current density inside the sphere
therefore satisfies the equation:

curl(J( ) + yz ~ J' ' z + Wz xJ' ') = 0 . (46)

Outside the sphere,

J"'= —i(~/40) E"&, (47)

where E' ' satisfies the quasistatic equations (15}.
The boundary conditions (1Va) and (1Vb) then de-
termine S' ' everywhere.

The first-order total current density inside the
sphere satisfies the helicon wave equation (12) in
which the source term on the right-hand side is giv-
en by the zeroth-order solution:

curl curl(J' ) + yz )(J'" z + W2 )(J' ') = q0 J' ' .
(48)

Outside the sphere,

J'" = —i(~/4w) E'", (49)

where E' satisfies the quasistatic equations (15).
The boundary conditions (1Va} and (1Vb) then fix the
solution everywhere.

The higher-order equations are obtained by ad-
vancing the index in (48) and (49).

B. Zeroth-order solution

Outside the sphere, the zeroth-order electric
field is the sum of the applied uniform electric field
E1 and the field of an electric dipole:

1
E(0) (4 )1/2 Q S m E Ym

(50)

where the coefficients f i are yet to be determined.

Inside the sphere the zeroth order total current
density must be the constant vector:

1
$0& Q mYm (51}

(8 )i g0 1 + (1 -m )y - im W —C

2[1+(1-m0)y -imP]+s
(58)

where

2[1+(1-m')y -imW]+s
(54)

K =- i(4wo/(d).

C. First-order solution

(55)

We determine J'i' inside the sphere from (48)
in which J' (0) is given by (51). The general form
of this soIution is

1
J(i) Q [dms0Ym. dm~0(Ym + $ Ym }

m=-1

dm&0Ym: dm&0Ym ]
where do ...d, are yet to be determined. To es-
tablish this form, note, from the formulas (B12) of
Ref. 7 for the curl, that the operation curl curl
shifts the index l of Y~, by 0 or 2 while the oper-
ations 2 Y~, s and axY~, , leave the index l un-
changed. Hence, J' ' can involve only Y~, with
l=0 or 2. The form (56) then follows from the re-
quirements that F" be regular at the origin and
have vanished divergence.

Substituting the form (56) into (48) gives the re-
lation

where the coefficients g1 are yet to be determined.
To-establish this form note first that the operations
r ~ and ex appearing in the boundary conditions (1Va)
and (17b) do not change the index L of YP, [see
Eqs. (A10}and (All}]. Also, the parity, which is
the parity of the index l, must be the same inside
and outside the sphere. Thus L= I and l=0 or 2.
But, from the formulas (B11)of Ref. V, we see
that the divergence of Yi 0 is not zero, so (51) is
the most general form.

Using the generalized Ohm-Hall law (7) and not-
ing the formulas for 2 x~+ $ in Appendix B of Ref.
7 and for z ~ Y~, 2 in Appendix A, we get for the
zeroth-order electric field inside the sphere

1
E(0) g - +y( -m')-imWY.

(52)
e=-1 0'

Applying the boundary conditions (1Va) and (1Vb)
and using the formulas (A10) and (A11), we get two
equations for the coefficients fi and gi; the solu-
tion is
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a» dp+a12 d 2 +a13d 3 PORp/(5~) ) (57) a33=1+J s+g(9 —m )y —iJmW . (65)

Im a +~ I,
a

(59)

From the boundary condition (1Va), using (49),
we get two relations

QdP) + 3d P = (iu)/2va')hP,

gXd ~
——(i(u/2va2)h 3

(60)

(61)

From the boundary condition (17b), using the
generalized Ohm-Hall law (7), we get three more
relations which can be written

af 1 d 1 +a12 d 2 +a13 d 3

where

a»=3+2[1-m +z[) (4-m }]y—-',imW,

a„=——,'[(4 —m')/15)'"(my —3iW),

a, = —[(4 —m2)(9 —mn)/150]'" y . (58)

Outside the sphere the first-order electric field
is the sum of a dipole and an octupole field:

The six equations (57) and (60)-(64) serve to
determine the six coefficients d» d1 p d2 d 3 &1,
and h3. Here, however, we need only obtain an
explicit expression for A, , the dipole-moment co-
efficient. To do this we note that since the left-
hand sides of (5V) and (62) are identical, their
right-hand sides must be equal. But, using (60),
the right-hand side of (62) can be expressed in
terms of h, alone. Solving the resulting equation
we find

~ 4&9'P a Z1
2[1+(1 -m') y - im W]+ e '

(66)
where we have used (55). Comparing (13) and (20)
we see that q~pa2 =i V. Then inserting the expres-
sion (54) for gP, we can write

.3+m - seJ ~ E,
5 (2[1+(1-m3}y-imW]+CP '

(6V)

where again we have used (55).

= (o/a')I; —[1+(1-m') y - im W]

x(+do+3dp),
a12d1 +a22d2 +a23d3 0,
a13 d 1 +a23 d2 +a33 d3

=-,'+3((r/a')h, +-,' Cd, ,

(62)

(63)

D. Electric&pole moment P and
the power absorbed +elect

The electric-dipole moment P is related to the
coefficients f P and hP exactly as the magnetic-
dipole moment M is related to the corresponding
coefficients in the magnetic field [see Eq. (58) of
Ref. 7],

where

a22=1+gm y —igmR',1 2 .1

a„=-,'[(9 -m')/10]' "(my+ 2i W),

3 1

(8&)1/2 Q (fP + @P}e(J ~

m=-1

Using (53) and (GV), we have

(68)

1+(1-m )y —imw- i
"R[(+((-m')['-(mJI+& m &[ [+((( )Pm-' &-I+(P)'

As in the magnetic case, we can, to the same order in V, write this in the more compact form

1+(1-m2)y-imW g~)iV —e-

2[1 + (1 —m~}y —im W —
1[[i V] + e

' (70)

As in the magnetic case, this expression is numeri. cally more accurate than the less compact form (69).
The mean power absorbed by the sphere is

6e,ec, = al J E1

Using (70), we can write

1

et»--1 10

Specializing to the case of a linearly polarized electric field (E, real), we can write

mp ]
s ". a (-', 2 ".- 2 e(2 —SiV+ a).=-, a ( E,) I -, - ".+[z, —( E,)]r,-, -, )2 1+'y —z[iV +i (2 —Si V+ K + 4W

(V2)

(73)
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This formula together with {45)are the basic re-
sults we use in the discussion of experimental re-
sults in Sec. VI.

V. SPECIALIZATION TO DEGENERATE ELECTRON GAS

Although the formulas (45) for 5' „and ('l3) for
6 „„,have a fairly simple mathematical structure,
the detailed dependence on {d, a, and Bo, and on
the electrical parameters p, &„N, and m* is
very intricate. As a first step in trying to under-
stand how the power absorbed depends on these
seven parameters, in this section we consider the
case where the electron gas is highly degenerate.
The electron relaxation time is then a single num-
ber, and the average over energy in (4a)-(4c) is
not necessary.

where vo is the electron relaxation time and p is
the mobility at & =0. If we define the following
dimensionless parameters:

Uo = od7'o~ l'o = 4»oo(a/e)',

Wo =—(0~To~ Xo =(d6g/4too~

the coefficients CJ defined in Sec. II become

(1-iU,)'
C~=co ~;U 3 ~a -»o

o'oR'o

(1- i Uo) [(1—i Uo) + W o]
'

(1 —i Uo) + Wo
A. Parameters V, j, 6', i

The dc electrical conductivity is

ao=(Ãe'ro/m*) =Ne p, (74)

Using these results, the definitions (8) of o, y, and

W, and the definition of V and e given by (20) and
(55) respectively, we find

[1-i X,(l - i U,)]'-X', W',

(1 —i Uo)[1 —i X o(1 iUo-)] —i XoW'o

i log'o
[1-i Xo(l iUo)-]el iUo)-[l —i Xo(l —i Uo)] iXo W-oj

~'o
{1—i Uo) [1—i Xo(l —i Uo) ]—i XoW o

XoWo —[1 i Xo(1——i Uo)]
'XoWo+(1 —i Uo)[Xo(1 —i Uo)+iXo]

S. Magnetic excitation

It is clear that to write out the formula for 6' «,
explicitly exhibiting the dependence of Uo, Vo, 8'o,
and Xo, is stiQ a considerable algebraic task. To
simplify things a bit, we note that in a typical nar-
row-gap semiconductor such as InSb, Xo is general-

ly a fairly small number (-0.05 for the experi-
ments of interest to us here). Thus, if we neglect
Xo in the expressions for V, y, and W (which cor-
responds to neglecting displacement current), then
one can show that in the transverse magnetic ge-
ometry (Bo 1B,)

It is clear that the second term peaks when

~o=2~o+u ~o .
Using the definitions (V4) and (V5) we can write
this resonance condition as

4)~ = 2(d+ &i &d &d&(a /e ). (80)

Here sr~ [= (4vNe'/m*)'~o] is the plasmafreguency.
Thus, the resonance field varies quadratically
with the sphere radius, and at very small a it ap-

proaches

Bo(resonance) = 2&um*c/e.

Consequently, this transverse magnetic resonance
can be used to determine the effective mass m~.
The potential usefulness of this idea was first
realized by Evans, Furdyna, and Galeener. ' In
the real experimental situation, the displacement
current and the energy average over v(S) affect
these results significantly. However, these ef-
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fects can readily be handled numerically.
It should be emphasized that conventional cyclo-

tron resonance with microwaves, used for deter-
mining m* in semiconductors, is useful only in
materials with very low carrier concentration. In
media such as InSb, with N&10' cm, convention-
al cyclotron resonance fails because of the so-
called plasma shift. This magnetic-dipole res-
onance in effect circumvents this problem, mak-
ing the m* parameter accessible to microwave ex-
periments.

In the longitudinal magnetic case (B, t~ Bo), if we
were to neglect the effects of the displacement
current (set X, = 0), the absorbed power would be
independent of magnetic field. However, if we
include Xo, it can be shown that there is a broad
absorption shoulder near zero magnetic field.

C. Electric excitation

Using the expressions (VV) for V, y, W, and e
the formula (73) for a'„,„can be written, after a
great deal of algebra, in the form

6wa oo 2 1, ~ 1+ Wo+~'
"-'=(2+ &' ~

' '~ i ~ rr"" ' ~' '~1(t+w' rr")'+4cr-")' (82)

o. =—1 - -', ((oa/c)', (88)

U = ~so [o./(2—+ ue, )j ((o~r/(u)

The entire contribution to 6'„„,from the first

(84)

where we have used the expression for Xo in (75)
and introduced

l

order term in y is contained in the size-dependent
quantity n But.the basic restriction (1) of our
calculation is that the wavelength outside the
sphere is long compared with the sphere radius.
This means that the size-dependent correction
must be small, so 0. is close to unity. When n = 1,
the transverse part of (82) is equivalent to the
well-known result of Dresselhaus, Kip, and Kittel

(C)
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FIG. 2. Microwave ab-
sorption in one sample of
n-type InSb as measured
after re-etching to various
smaller radii. The data
|solid curves) were taken

(G) in the transverse-magnetic
plus longitudinal-electric
geometry (Bg& Bp Ef II Bp).
The dashed curves are the
theoretical fits to the data.
The perturbation theory
was used for A, 8, C, D,
while the general theory
was used for the results
corresponding to larger
radii in E, E, C of this
figure. The parameters
used in this fit are p, =8
&&10 cm /Vsec, c&=18,
X=1.7&10 /cm3, m*
= 0.014mp.
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Fl:G. 3. Microwave absorption for the same samples as Fig. 2; however, the field geometry is transverse-electric
plus longitudinal-magnetic (Eg&BO, B~li Bo). The solid curves are the experimental traces and the dashed curves are the
theory. The electrical parameters used for the theoretical fits are the same as for Fig. 2, except a lower value of p
=4. 9&&105 cm2/V sec was necessary to account for the width of the transverse-electric resonance near T kG. The low-
field shoulder, due to longitudinal-magnetic absorption, is accounted for by using the same p= 8& 10p cm2/V sec as in
Fig. 2. The effect of a small change in &, is illustrated in C.

[their Eg. (13)].'
Clearly, when the quantity U' is large, the trans-

verse part of (82) peaks when

w, =~
)
v'/, (85)

or, equivalently, when

(d 6
~
(0 —c(d&/(2+ c e&)QP

~
. (86)

In a microwave experiment involving a typical
narrow band-gap semiconductor, the second term,
the magnetoplasma shift, is large compared to ~,
so the effect of increasing the sphere radius a,
which reduces the quantity ri, is to shift this elec-
tric resonance to lower magnetic fields.

VI. COMPARISON VOTH EXPERIMENT

In this section we compare our theoretical pre-
dictions with the original data reported in Refs. 1
and 2.. In those experiments the magnetic-field de-
pendence of the microwave absorption in small n-
type InSb spheres was investigated at VS K using a
35-GHz superheterodyne spectrometer. A rectangu-
lar microwave cavity was used in the spectrometer
bridge, with linearly polarized microwave fields
5~ and E» the samples were located slightly off the

position of maximum 8, in the cavity. This position
allowed the observation of the response of the sphere
to a transverse ac magnetic field, which was the
main object of the experiments. At this same posi-
tion, there was a small but finite ac electric field
Ez, which allowed the measurement of the much
stronger transverse-electric response. Absorption
or dispersion by the sample could be selectively
studied by adjusting the spectrometer phase. In
the case of the data discussed below, the geometry
was chosen to be one of the two configurations
Bt -L Bp Eg II Bp (transverse magnetic plus longitudi-
nal electric) or E~J. Bp, B, II Bp (transverse electric
plus longitudinal magnetic).

The spherical specimens were prepared from n-
type InSb single crystals of various electron con-
centrations by grinding in an abrasive air cylinder,
and then etching down to the size desired. The de-
pendence of the measurements upon sample size
was obtained by successively re-etching to smaller
radii.

In Figs. 2 and 3 we present data for a single sam-
ple at various radii. These data are representative
of those obtained on more than 40 samples of vari-
ous electron concentrations between 5 ~ 10'3 and 4
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The data shown in Fig. 2 were taken in the trans-
etic lus longitudinal-electric configu-

But the longitudinal-electric absorp ion iration. u e
hus these datasmall and independent of field. Thus,

can be regar e as ued d d to transverse-magnetic ab-
sorption alone.
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The theoretical curves of Fig. 3 include both

transverse-electric and longitudinal-magnetic ab-
sorption. The longitudinal-magnetic absorption is
negligible at fields greater than about 5 kG, but
gives the lom-field broad absorption shoulder. On

the other hand, the transverse-electric absorption
is negligible below about 5 kG, but gives the ex-
pected magnetoplasma-shifted cyclotron resonance
at about 7 kG.

In the magnetic-excitation case, for spheres
having radii greater than about 0.02 cm (corre-
sponding to I Vl =7}, there are small differences
between the results of the perturbation theory given
in this payer and the general theory. ' These are
illustrated by Fig. 4 in which the transverse-mag-
netic resonance field is plotted vs sphere radius g.

It is clear immediately that the following four
general features of these experiments are explained
by the theory: (a) the position and shape of the ex-
pected magnetoplasma-shifted cyclotron resonance;
(b) the fact that the longitudinal-electric absorption
is negligible; (c) the position, line-shape, and size
dependence of the transverse-xnagnetic resonance;
and (d) the broad absorption shoulder observed in
the longitudinal-magnetic configuration.

%e have found that the line shapes of both the
transverse-magnetic and -electric resonances de-
pend critically on the type of statistics which the
electron gas obeys. For these experiments, the
electron density is sufficiently lorn so that the Fex-
mi level lies mell below the bottom of the conduction
band and the electron gas can be regarded as fully
nondegenerate. Thus, the energy averages over
the scattering time v(S} required by (4) are neces-
sary. We have assumed that the scattering is dom-
inated by ionized-impurity Coulomb scattering and
can be represented by a relaxation time propor-
tional to $3~~. '0 %ith this assumption, the effect
of statistics is iQustrated in Figs. 5 and 6, where
the absorptive and dispersive parts of the reso-
nances are shown for the limits of fully degenerate
and fuDy nondegenerate statistics. The parameters
appropriate to the figures are given in the captions.
The largest effect is in the widths and heights of
the resonances; the positions are relatively insensi-
tive to the statistics.

The data mere fitted by the following procedure.
The value of m* (=.014~) was assumed to be rea-
sonably well established. The static lattice di-
electric constant is somewhat controversial: Val-
ues from 16.6 to 19.7 appear in the literature, ~

with the value 17.8, recently reported by Glover
and Champlin, perhaps the most xeliable. %e
chose &, =18 as a compromise. With these param-
eters fixed we then adjusted the remaining param-
eter N and p, . All the theoretical curves of Figs.
2 and 3 mere obtained with N= 1.Vx 10~4 em 3,
which agrees with the manufacturer's nominal spe-

cifications [Ã (1.5-2. 5) && 10'4 cm~] for this sam-
ple at 78 K. Numerically, me found that the widths
of the transverse-magnetic and -electric x'esonanees
are largely determined by the dc mobility y, and
relatively insensitive to the other parameters. A
value of p = 8& 105 cma/V sec (which is reasonable
for relatively pure InSb material at 78 K) accounts
for the series of transverse-magnetic resonances
of Fig. 2. However, a lower value p. =4. 9&&10~

cma/Vsse was necessary to account for the widths
of the transverse electric yeaks of Fig. 3 which
occur at a considerably higher field. This meuld
indicate that v' depends on the magnetic field, a
suggestion which seems to have some other experi-
mental support. ""

The position of the electric resonance is primar-
ily determined by N/6g~ and since we have fixed Eg

at 18, this determined
¹ On the other hand, the

position of the transverse-magnetic resonance is
determined primarQy by m*. The scaling of the
ordinate was done by fitting the theory to the experi-
ment at the peaks of the transverse-magnetic and
-electric x'esonances. Once this was done the scale
factor fox the longitudinal-magnetic absorption
shoulder of Fig. 3 mas fixed.

Although the above fitting procedure should be
regarded as the first step of a more sophisticated
search for the optimum set of parameters p, , q„
m, and N, proceeding beyond this point is not jus-
tified here because of uncertainties in the data.
Among these are the phase setting of the microwave
spectrometer, which selects the absorptive corri-
ponent of the signal, mas determined only to within
about 5'; the precise zero level and field dependence
of the background were not well established; the
calibration of the de magnetic field was not suffi-
ciently precise; and finally, there are small un-
certainties in sample size and sphericity. In future
experiments these experimental uncertainties
could be largely eliminated.

Finally, it is appropriate to add that a number of
other experimental features, not illustrated by
Figs. 1-3 but reported in Befs. 1 and 2, are also
confirmed by the theory. These are (a) the excita-

«sgp

tions 8&J.BO, 8& II 80, and E, IBO are, respectively,
linearly independent; (b) the transverse-magnetic
resonance is excited by the component of Bz which
is circularly polarized in the cyclotron-resonance-
active sense, while the plasma-shifted cyclotron
resonance is (as is well known) excited by cyclo-
tx'on-x'esonanee-inactive cll eular component of Egq
and (c) the resonance amplitude of the transverse
magnetic resonance in the Bayleigh limit is pro-
portional to the fifth power of a.

UII. CONCLUMNG REMARKS

It is clear from the above comparison (Sec. VI)
that, the theory developed in this payer agrees with



1464 0 ~ W ~ FORD, J- K ~ FURDYNA~ AND S ~ A, ~ WERNER

all the observed features of microwave absorption
in small gyrotropic semiconductor spheres. Es-
sential in obtaining this agreement was the incor-
poration in the theory of the effects of displacement
current and an energy-dependent relaxation time.

With this precision theory it is now possible that
accurate values of the four electrical parameters
m*, &„N, and p, can be obtained for a given sam-
ple from one microwave experiment. In addition,

I

it appears that information regarding the nature of
the carrier-scattering mechanisms can be obtained
from detailed fits of the absorption spectrum.
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APPENDIX A: VECTOR SPHERICAL HARMONICS

For completeness and clarity, we reproduce some of the necessary elementary formulas for the vector
spherical harmonics. The reader should refer to Appendix 8 of Ref. 7 for additional formulas. We have
found the book by Edmonds particularly helpful on these functions. ~' The vector spherical harmonics are
defined by

&i, s=-

(l+ )(l+ +1) "' „, (l- +1)(i+m+1)
~

„(l-m)(l-m+1)
~2(l+1)(2l+1) ' ' (l+1)(2l+1) i

' ' 2(l+1)(2l+1) i
l+ m)(l —m+ I) z~z

Y z „m „„(l—m)(l+ m
2l(l 1) t 1+[l(l 1)]zlzz

r 0+ 2l(l 1) r -z s

(
(l —m)(l —m+1) z z„(l-m)(l+m) ~z (l+m)(i+m+1) "

2l(2l+ 1) ' l(2l+ 1) ' 2l(2l+ 1)

(A1)

(A2)

(AS)

The basis vectors N are given by

ez=-2 "'(x+zy), &O=z, e z=2 "'(x-iy),
and the usual (scalar) spherical harmonics are

(A4)

Y
~ (e, P) = (-) [(2l + 1)(l —m) t /4zz(l+ m) t ] ~ P, (cos8) e' (A6)

where the associated I egendre functions are. given by the Rodrigues formula

Pm( ) =[(1— z)"&2/2'll](d'+"/d i+")( z —1)' (A6)

The following formulas (in addition to the formulas for z && Y, , in Appendix 8 of Ref. 7) are necessary in
order to construct the electric field E from the current density J in Secs. III and IV:

(l —m+ 1)(l+ m+ 1) ~ (l —m+ 1)(l+m+ 1) (l —m+ 1)(l+ m+ 1)(l —m )
'+ ~ ' (l 1)(2l 1,) '+ ' l(l 1) (2l 1) " l(l+ 1)(2l+ 1)

(A7)
(l-m+1)(i+m+1) '" m l' —m'

l, z l(l+ 1)2(2l+ 1) 1+1,I+ l(l+ 1) l ~ I l2(l+ 1)(2l+ 1) l-l, l s

(l-m+1)(i+m+1)(l -m ) „(l-m)(i+m+1)(l —m ) „ l —m
l-z, l '

l(l 1)(2l 1)2 7+1, z 2l2(i 1)(2l 1) l ~
E+ l(2l+ 1) I-z, l ' (A9)

The following formulas are necessary in satisfying the boundary conditions in the electric-excitation prob-
lem:

r ~ YP, z=[l/(2l+1)] Y„r Y,",, =0, r ~ Y... &—- —[(l+1)/(2l+1)] f2F, , (A10)

r&& YP z z
——i[(l+ 1)/(2l+ 1)] Yz, ,

rx YP, =i([1/(2l+ 1)] YP „z+[(l+1)/(2l+ 1)] Y, , z},
rx YP,.z

= i [l(2l+ 1)]"'Yz, ,

(A11)

APPENDIX B: DIELECTRIC-TENSOR NOTATION mon practice to write the inverse of the Ohm-Hall
iaw (7) in terms of the so-called "dielectric tensor"

In microwave and infrared experiments it is corn- &. If we write
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J=- (i(o/4m)V E, (Bl)

we note immediately from Eqs. (2) and (3) that

i(o &„„+E~„s(g 2&et& i
4m &,„4w e,~+& ~

'

e„„=i(4g/u) C„&„„=—i(4w/&o) C~,

e„=i(4p/+)(C, + Cm),

and the form of & is

(B2)

3 2E + 6„, , 2&+&& &
7f

(&+&+ &-s)~0

(B6)

0

0

Furthermore, the expressions (42) and (70) for the
magnetic-dipole moment M and the electric-dipole
moment P, respectively, can be written

In the coordinate system described by the basis
vectors kz, e &, kp, the tensor g is diagonal:

(etc j
2

( /+)3~(etf) m 1 mu

where

0 0

0 q~ 0

(0 0

(B4)

where

1 3&m

f +& —5(&ay'Cj &

(BV)

~k 1 ~gg Sf~@] fp

In terms of the elements of &, the parameters p,
W, and y are with e„defined by (B5).
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