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A nonlinear integral equation is obtained for the static structure factor of an electron liquid. The

equation is exact both in the small- and large-wave-vector limits. It has been solved self-consistently

and values of the structure factor thus obtained are used to calculate the pair-correlation function of
the system. The results are found to be almost positive over the entire metallic density range. An

integral equation for the magnetic structure factor is also obtained which is exact for large wave

vectors. The spin pair-correlation functions of the electron liquid are calculated using the self-consistent

values of the magnetic structure factor obtained by solving the integral equation. The quality of various

spin pair-correlation functions is quite good as compared to those obtained from earlier calculations.

I. INTRODUCTION

A few years ago, Mihara and Puff' (MP) derived
a nonlinear integral equation for the ground-state
static structure factor of interacting bosons and
applied it with reasonable success to study some
ground-s tate properties of liquid ~He. Following
similar arguments Kuglar' obtained an integral
equation for the static structure factor S(k) of an
interacting electron gas. This equation has res
cently been solved self-consistently by us. ' The
results for the pair-correlation function g(r) were
comparable with many of the earlier calcula-
tions' but remained negative for small inter-
particle separations. This is because the integral
equation of Kuglar is rigorously valid only for
small. k. It is not expected to yield a positive
pair correlation function for small x because g(0),
to a greater extent, is determined by the asymptot-
ic behavior of S(k). We have looked into Kuglar's
derivation of the integral equation and it is found
that there is some arbitrariness in the derivation.
This arbitrariness has now been removed by
constraining the integral equation to satisfy the
exact asymptotic result' "for the static structure
factor. In this way, we obtain an integral equation
for S(k) which is exact for large k. This equation
and the integral. equation of Kuglar are solved
self-consis tently. For intermediate wave vectors,
we obtain the structure factor by smoothly joining
the small- and large-k values of S(k). From this,
we suggest another prescription for obtaining the
structure factor which is equally good for inter-
mediate k. In this way, we obtain an integral
equation which is exact both in small- and large-k
limits. This equation is solved self-consistently.
We find that the electron pair-correlation function
that is subsequently calculated, remains almost
positive over the entire metallic-density range.

Recently, we derived" a nonlinear integral equa-
tion for the magnetic structure factor S(k) which

is expected to be good for small k. This equation
was solved self-consistently. It was found that
the quality of various spin pair-correlation
functions was comparable with some of the earlier
calculations"' "but the results were not quite
satisfactory for small interparticl. e separations.
We now derive an integral equation for the mag-
netic structure factor which is exact for large k.
A prescription similar to that of S(k) for inter-
mediate wave vectors is used to obtain an integral
equation which is assumed to be valid for all k.
The values of S(k) obtained by self-consistently
solving this integral equation are used to calculate
various spin pair-correlation functions. The pre-
sent results for the spin correlation function with
antiparallel spine [i.e., g~~ (r)] are positive over
the entire metallic-density range. The values
of the spin pair-correlation function with parallel
spine [i.e., gt t(r)] are negative for small r as
in all the earlier theories but the magnitude is
very sma11. These results are compared with
those based on earlier theories. 8'"'"

The general formalism of the paper is described
in Sec. II. The integral equations for S(k) and

S(k) are derived there. From these, a coupled
nonlinear integral equation for S(k) and S(k) has
also been obtained. The integral equations for
S(k) and 8(k) are solved in Sec. III and the results
obtained for various pair correlation functions
are discussed. Section Iv contains our concluding
remarks.

II. GENERAL FORMALISM

A. Integral equation for S(k)

We start with the following integral equation'
for the static structure factor:
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where t, (k)~ 0 for all k and(TxE) ls the exac
kinetic energy per electron. In Eq. (1),

G,(k)= Jl dqq'[8(q)-1]T(k, q),
0

where
5 q' k q' ' k+q

T(k, q) =- — + ——-1 ln
6 2P 4q k' k-q

Further

(u(k) =hk'/2m

ha (k). It has recently been founda'0 that

iim k'[8(k) -1]= -(6k~a/3«, )g(0),

where k+ is the Fermi wRve vectox' and ao is the
first Bohr radius. Using this expression in Eq.
(4), we obtain

ha (k) = 4 &u(k)& (Txz)/A+' —,
'

&uaa [g(0) —1]
This l.eads to an integral equation

+ 4)p+ A'+3 (dp g 0

(ua = (4trtt e'/m) ' j'
is the plasma frequency. The function t„(k) in
Eq. (1) can be deterinined by following the argu-
ments in Ref. 11 and Eq. (1) becomes

(
&(k) (k) a (k)

+(k)+(TxE ) h . (k)8(k) 80(k) a

(4)

3 k 1
0 «k «2k~

S(k)
4 k~ 16k

1y 2k~ «A

is the structure factor of a noninteracting electxon
gas. Further in Eq. (4), &(TKz) =(TIE) -(TxE)I,
where )Tgg)z is the kinetic energy per electron
for a free electron gas and

ha(k) =ta(k) -t„r(k), (6)

where to, (k) is the value of ta(k) for the noninter-
acting electron gaa It can be seen from Eq. (1)
that to have a nondivergent pair correlation func-
tion Rt the ox'lgln thedominant conti ibutlon to
function hk(k) must have the value 4&u(k) ck(2KF}/I,
for large &. In view of this one chooses

ka(k) =4tu{k) 6(T„E)/5 (6)

for all k. Then from Eqs. (4) and (6), one obtains

00(k) a &u(k} &

8(k)
=

8,{k)

This integral equation, w'hich is exact only for
small 4', eras derived by Kuglar~ and self-consis-
tently solved by us. '

However, the choice of function h„(k) as given
by Eq. (6) is arbitrary because one can always
add some constant on the right+and side of Eq.
(6) and still get a finite g(0). To avoid this
arbitrariness, we make use of an exact asymp-
totic result for 8(k) to determine the function

(10)

which being exact in large-k limit, automatically
ensures a well-behaved g{0).

It may be noted that in the large-0 limit, the
functional behavior of k' [8(k) —1] as given by
integral equation (V) is similar' to that given by
the exact result (6) but the coefficient of g{0) is
somewhat different. Similarly in the small, -k
limit, 8 (k) as given by integral equation (10) goes
'to Zero as 0 but its coefflclent 18 Qot exact. Thus
the integral equations ( I) and {10)are exact only
in smal. l- and large-4 limits, respectively. We
rewrite these equations into a single integral
equation as

(
tu(k) ' u(k)
8 (k)

—
8 (k)

+ Gpp + Ga (k)+ a ti (k)tup [g (0) —1]~
0

1 for large k,qk)=
0 for small k.

The important feRtux'e8 of thl8 lntegl Rl equation
are that it is consistent with the frequency moment
sum rules and gives the free-fermion structure
factor in the appropriate limit. Further, it yields
exact results for 8{k)both in the small- and
large-0 limits. It also gives a finite pair-cor-
relation function at the origin. Moreover, this
integra, l equation being exact for large k, is ex-
pected to yield a positive g (0) over the entire
metallic density range. However, at present we
do not know the function q (k).

B. Integral equation for~ SFkj

In Ref. 11,while deriving an integral equation
fox the magnetic structure factor, we had
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(15)

In the long-wavelength limit, this equation leads
toll

3 /3 g p2

1-gtl(0) 2 into~ 'iim S(k)= (16)

where gt~(0) is the antiparallel spin pair-cor-
relation function at the origin. The parallel and
antiparallel. spin pair-correlation functions are
obtained from g(t)and 'g(r) using the relatiIlns

g»(~) =g(l') +g(l')

Sli(~) =g(~) g(~)—
It may be noted that the expression (16) for the
magnetic structure factor is similar to the cor-
responding exact result for S(k).

However, there is an arbitrariness in the choice
of function hz(k) as was the case with the first
choice of h~ (k) in Sec. IIA. Here also we use
another exact result' for S(k) which reads as

lim k' [8 (k) —1] = -(Bkg/3wao}g (0).

This relation when used in Ell. (13) leads to

hs.(k) = 4 ~(k)&(~ice )/I+ ~p [g(0)- I] /3 . (16)

It is interesting to note that this expression is
exactly the same as that of h„(k} obtained earlier
[Eg. (9)]. From Elis. (1.3) and (17), we obtain an
integral equation

1

1Ill(k) '
&u(k)

S(k)
=

(k)
+l,(k)+ 3 &uP [g(0)-1],

0

(19}

I, (k) = dq q' [[S(q) —1][-', + T(k, q)]mv o

--;[s(q) —I]},
(14)

and as in earlier section

hs (k) = ts (k) —ts~(k),

where suffix s refers to spin density. In order to
have a finite g(0}, the spin pair-correlation
function at the origin, we chose hz(k} =4.
x &u (k) 4 (TKE )/h, in the Ref. 11, and arrived at
an integral equation

ill(k) ' cu(k)

S(k)
=

S (k)
+I,(k)+ 3 q(k)u)P' [g(0) —1].

0

(20)

Here we assume the function 1)(k) to be the same
as defined earlier, because S(k) and 8(k) behave
in the same way for small as well as large k.
Integrai equation (20), being exact in the large-k
limit, is expected to yield the spin pair-correla-
tion function of good quality.

Corresponding to three integral equations (7),
(10), and (ll) for S(k) we have analogous integral
elluattons (15), (19), and (20) for 8(k). Out of
these, the first set consisting of Eqs. (7) and

(15) ls good for small k alone and the second set
comprising of Eqs. (10) and (19) is exact only for
large k. While the third set consisting of Eqs.
(11) and (20) is expected to be good for all wave
vectors. Eliminating the common term in the
first set of equations, we obtain the following
coupled integral equation for S(k) and S (k):

+cd~ +6 k~

~(k) =Z, (k) G,(k)—
2 OQ

dq q' [S(q) -S(q)][3+T(k, q)]
0

(22)

The second set [i.e., Elis. (10) and (19)] also
yield the same coupled equation (21). This only
means (and this has already been seen) that the
contribution which was left over in Eqs. ( 1) and

(15) and which is now taken into account in Eqs.
(10) and (19), is the same in ail these four ellua-
tions. It follows from the foregoing that Eq. (21)
ShouM be valid for al. l, k. It may also be noted
that the Egs. (11) and (20) also lead to the same
coupled integral e&juation (21).

IH. SELF&ONSISTENT SOLUTION AND THE RESULTS

A. Solution for S(k) and the results

We shall now solve the integral elluation (9)
numerically. The dimensionless form of this
equation is

S'(k) = Ck4/(1+ Ck'/S,'(k)

+ G.(k)+ 4 n(k)~p [g(0) —1]}
where now

for the magnetic structure factor. This equation
is exact in the large k limit and also gives a
fllllte vallle fol' g(0). Colllbllllng Egs. (15) atld
(19), we get an integral elluation and'4

I

dq q' [S(q) —1.] T (k, q} (24)
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C = 3v/16u rs, n = (4/Qw)' ~'. (25)

Clearly, S(k) and G, (k) can be determined self-
consistently from Egs. (23) and (24) provided
rl(k) is known. To know this, we follow a method
similar to that followed by Nozieres and Pines"
in the calculation of the correlation energy of an
interacting electron gas. We first solve Eq. (23)
with q(k) = 1 and obtain a set of self-consistent
values of S(k) which are thus good for large k.
Then we set q(k) = 0 in Eq. (23). The resulting
integral equation has already been solved by us'
and the set of self-consistent values of S(k)
obtained from this equation are good only for
small k. These two sets of values of S(k) (one
of which is valid for small k and the other for
large k) are plotted in Fig. 1(a) for x~=4. The
structure factor is expected to be a smoothly
varying function of k for intermediate wave
vectors. Therefore, to get the values of S(k) for
intermediate k, we smoothly join the above two
curves to obtain the resultant dotted curve. The
two curves can be seen to join smoothly about
the plasmon cutoff wave vector k&=0.47 r~ = 1.
It is expected also because for small k the
structure factor is dominated by plasmons and

the maximum value of k (in units of k„) upto which
the plasmons are the well-defined modes" of the
system is

4ur
k

' " -04'
31r

(26)

Taking this value of k~ as the critical wave vector,
we solve Eq. (23) with three different choices of
g(k). These are, respectively, a step function,
a Gaussian and a Lorentzian function:

q(k) =9 (k -ko);

q(k) = exp ( —kc'/k3);

q(k) = k'/(k'+ kc').

(27)

(28)

(28)

3
g(r) = 1+— dq q[S(q) -1]sin qr (30)

The results obtained for g(r) are plotted in Fig. 2,
only for r~ = 2, 4, and 6 and are compared with
the corresponding results of Vashishta and Singwi4

(Ps). It is important to note that the present g(r)
is positive for a1.1 values of r up to rz= 4. For
r~&4, it is negative only for very small values
of r; however, its magnitude is so small that for
all practical purposes, it may be taken to be zero.
Thus, it indicates that the integral equation (23)
is valid over the entire metallic-density range
and that our choice of'kc as the plasmon cutoff
wave vector is also good.

To give an idea of the quality of the pair-cor-
relation function for all r~ values of interest, we
have plotted g(0) vs r~ in Fig. 3. The values of

The results given by these rl(k)'s differ only
slightly and thus we choose simplest of them-
the step function (27). Now we solve the integral

,
'$guation (23) self-consistently for the entire
metallic-density range. The self-consistent values
of the structure factor for r~= 2, 4, and 6 are plot-
ted in Fig. 1(b). It is noted with satisfaction that
these values of S(k) for rz =4, are almost the
same, as obtained from the dotted curve in Fig.
1(a)

The self-consistent values of S(k) are used to
calculate the pair-correlation function which is
defined as

I.O-
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FIG. 1. (a) Self-consistent values of structure factor, S(k) vs 0 for r&=4. Curves 1 and 2 are obtained from the

integral equations (7) and (10), respectively. Curve 3 is obtained by smoothly joining the curves 1 and 2 for inter-
mediate wave vectors. (b) Self-consistent values of structure factor, S(k) vs 4 for rz ——2, 4, and 6.
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FIG. 2. Pair-correIation function, g(t'} vs kyar for x&=2, 4, and 6.

g(0) from the theory of Singwi et al. ' lies almost
on the present curve and are thus not shown
separately. The present results are compared
with other results from earlier theories which
includes random-phase approximation (RPA);
Hubbard's approximation; moment-conserving
approximations to Toigo and Woodruff' (TW) and
that of Pathak and Vashishta' (PV); generalized
RPA of Vs, 4 and that of Hasegawa and Shimimu'

(HS).

0.5

04-
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B. Solution for g(k) snd the results
-0 5-

The integral equation (20) for the magnetic
structure factor can be solved self-consistently
along with Eq. (14), provided the values for S(k)
are known. For that, ere have used the values
of S(k) obtained in Sec. IIIA and have thus cal-
culated the self-consistent values of $(k) for the
electron-density range encountered in metals.

The self-consistent values of the magnetic
structure factor are used to calculate the spin
pair-correlation function which is defined as

00

g(r) = — dqq [S(q)-1] sin qr.
p

The values of g (r) are computed for r~ =1 to 6.

~4 mI, 4 a

I

-I.5-

-R.4-

FIG. 3. Values of the pair-correlation function at the
origin, g(0) vs wg,
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The results for g(r) for the corresponding r~

values have already been computed in Sec. IIIA.
These values of g(r) and g(r) are used to cal-
culate the spin pair-correlation functions with
antiparallel spins and parallel spins separately.
We have evaluated these correlation functions
over the entire metallic-density range. The
results for gal (r) and gli(t) are presented in

Figs. 4(a) and 4(b), . respectively, for re= 4 only.

The curves for other rz values follow the expected
pattern. To discuss the quality of these cor-
relation functions over the range of metallic
densities, we have plotted gl~(0) and gal(0) as
functions of rz in Figs. 4(c) and 4(d), respect-
ively. The results are compared with earlier
calculated values in RPA, generalized RPA of
Lobo etal. ", and HS.' It is clear from Fig. 4(c)
that the present gl~(0) satisfies the requirement

I-O- i.o- (b)

0.5
TS

0.5-

0.0
EP SiNt Wl ctrl.

-05
RPA

0 5a RPA

-I 0 -l.o-

(o)05-
k&r

0.5

0.0

LOBO et al.

PRESCIENT RESULTS

S)SOWl et ~L

-0.5

-0.5-

—I.O
RPA

-I-0
0

FIG. 4. (a) Spin pair-correlation function, g~~ (x) vs k&x for x~ =4. (b) Spin pair-correlation function, g~~(r) vs &zw
for rz ——4. (c) Values of the spin pair-correlation function at the origin, g~~(0) vs rq. (d) Values of the spin pair-
correlation function at the origin, gy~(0) vs w&.
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of positive definiteness over the entire metallic-
density range as is the case in the theory of Lobo
etal. [It may be noted that gi~ (0) in the theory
of Lobo etal. is slightly negative at r~-6, while
the present g~~ (0) is positive even well beyond
&&=6.] The results of HS (Ref. 8) seem to become
negative for r~ & 4. As regards gt~ (0), the present
results are negative as in all the earlier theories.
However, the magnitude is quite small, . It can
be seen from I'ig. 4(d) that the present curve
lies in between the curves of H8 and Lobo etaI.
Thus, one can say that the overall quality of the

present spin pair-correlation functions is almost
as good as in the theory of Lobo etaI, . and is
bettex' tI1an that obtained from other theories.

IV. CONCLUDING REMARKS

The main results in the present paper are the
three expressions (11), (20), and (21). Of these,
(11) is the integral equation for static structure
S(k). This integral equation is exact both in the
small- and long-wavelength limit. Further, it is
consistent with the frequency moment sum rules
and also yields the free-fermion structure factor
in the appropriate limit. The derivation of this
integral equation is soundly based on the low-
order moment sum rules and known exact re-
sults for the structure factor. However, there
is some arbitrariness in the choice of function
q(k). The basic requirement on function q(k) is
that its value should be 0 and j. in the small- and

large-4 limits, respectively. This could be
accomplished through many choices of q(k). How-

ever, we have found numerically that our results
are not quite sensitive to the particular choice
of 6(&) and thus we have chosen its simplest form
which is given by step function about the plasmon
cut-off wave vector. The quality of the pair-corre-

lation function, obtained by using the self-con-
sistent values of S(k) as given by Eq. (11), is
good ovex the entire metallic-density range. It
gives a posteriori justification for the above
px'oc edux'e.

Expression (20) is the integral equation for the
magnetic structure factor, 8(k) and its special
features are simi. lar to those of integral equation
(11). The derivation of this equation is also based
on exact results. Hut again there is an arbitrari-
ness in the choice of function q(k) which we have
assumed to be same as choosen for solving the
integral equation (ll). The good quality of
various spin-corx elation functions over the entire
metallic density range& obtained by self-consis-
tently solving Eq. (20), ensures the reasonableness
of this assumption.

The another important expression (21) is the
coupled integral equation between S(k) and S(k).
If either S{k)or S(k) is known, the other can be
calculated from Eq. (21) self-consistently. In the
Iong wavelength limit( using result (16) for S (0)
in Eq. (21), one obtains the corresponding exact
result for S(k) and vice versa. Similarly using
the exact result (8) for S{k) in Eq. (21) in the
large-0 limit, we get the corresponding exact
result (17) for S{k)and vice versa. Thus it may
be hoped that the integral equation (21) may turn
out to be an exact relation.
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