
PHYSICAL REVIEW 8 VOLUME 12, NUMBER 4 15 AUGUST 1975

Stability of surface layers from a study of the mean-sfiuare disylacements of surface
atoms
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We consider the mean-square displacements (MSD) of atoms situated in a physisorbed monolayer.
These MSD are found to diverge logarithmically when the ratio between the force constant coupling
the physisorbed atoms to the substrate and the force constant coupling the physisorbed atoms between
themselves is divery'ng. When going towards the bulk, the difference between the surface MSD and the
bulk one is proportional to the inverse of the depth.

I. INTRODUCTION

A great deal of theoretical and experimental
activity has been expended on the study of the ef-
fect of a surface with and without adsorbate on
the lattice vibrations of a crystal. "There have
been a number of works in recent years (reviewed
inRefs. 1and 2)which have calculated the atomic
mean-square displacements (MSD) for a variety
of surfaces and a wide range of temperatures.
Other experimental and theoretical studies' ' of
the MSD of adsorbed atoms have been made. How-
ever, to our knowledge, the stability of a mono-
layer of physisorbed atoms was not discussed
from the point of view of the mean-square dis-
placements. The purpose of this paper is to go
into such a discussion.

It is well known that a two-dimensional solid is
unstable against long-wavelength acoustic vibra-
tions: the mean-square displacements of its
atoms are infinite. ' We wiQ therefore study the
physisorbed monolayer especially for these long-
wavelength phonons.

We choose a model' sufficiently simple to have
analytic results for the mean-square displace-
ments. While the model is highly oversimplified,
we feel it allows us to display the principal quali-
tative effects. It has already been used'" to
estimate several physical properties of bulk and
surface effects, and has been discussed at some
length.

Let us call (Fig. 1) P, P', and P" the force con-
stants coupling, respectively, the bulk atoms be-
tween themselves, the physisorbed atoms to the
substrate atoms, and the physisorbed atoms be-
tween themselves. When P' is going to zero, the
mean-square displacements of the physisorbed
atoms are found to behave as 1n(P"/P'). This ef-
fect penetrates into the bulk as the inverse of the

depth.
In Sec. II we introduce the phonon model and de-

rive the above result in a "frozen-substrate" mod-
el." In Sec. III we present the general expressions
which enable us to calculate the high-temperature
MSD and their damping into the bulk. In Sec. IV
we give the general results.

Here P is the nearest-neighbor force constant, and

the sum over 8 is restricted to first neighbors of

the atom 1. For an atom in the surface layer
(l, =1), one neighbor is missing, so the sum over
5 is confined to the five nearest neighbors in this
case. In this model, the equations of motion are

P t&cf 1 + —Q~ 1 —I Qa =0 (2)

II. "FROZEN-SUBSTRATE" CASE

In this section we first describe the very simple
model' we have chosen to represent the phonon
field of the semi-infinite crystal. Then we give
the perturbation due to one adsorbed monolayer.
Finally, we derive the expressions for the MSD
at high temperatures and their variation as they

go away from the surface.
We assume the crystal to be a monatomic simple

cubic crystal with a (001) surface (see Fig. 1).
The lattice vibrations are described by the model
introduced by Rosenstock and Newell and popular-
ized by Montroll and Potts. ' Let u (1 ) denote the
n component of the displacement from equilibrium
of the atom at site X(f) =&,(f,x+ ly" +l,2), where a,
is the lattice parameter. The potential energy 4
associated with the lattice vibrations has the
simple form

@=—,'pQ PP [u (6)-u„(1+E)j', n=x, y, z .
tX
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FIG. 1. Mode1 of interaction used.

where M is the mass of the atoms. In matrix nota-
tion, EII. (2) can be written

Lu=O. (3)

We now want to modify the model (see Fig. 1)by
changing to M' the mass of the surfaces atoms,
and, respectively, to P' and P" the adsorbate-sub-
strate and adsorbate-Rdsoxbate force constants.
After taking due account of the translational sym-
metry in the directions x and y parallel to the sur-
face, this perturbation to the equation of motion
of the free surface crystal may be written

&f.(1 P) = [(3f M')w'-+ P' —P+2(P" —P)

x (2 -cosg„- cosg„)]5, ,5...+ (P - P')

X(6...51ii+5,@5,i, —5,~5,, l), (4)

where g =%&, is the product of the propagation vec-
tox' Rnd of the 1Rttice parameter.

Let us now study the case of a "frozen sub-
strate. " The adsorbed monolayer is Rllovred to
vibrate and the substrate atoms are frozen. " The
frequencies of vibrations of the adsorbed atoms

M'&o'„= P'+2P"(2 —cosg, —cosg, ) .
At high tempexatures, the mean-square displaee-
ments of these atoms in the direction e are"

(M'JI) ~ ksT
0!

The elastic limit contribution is
ksT el

Q dQ

2 P P

where

0 =4x+@y ~

Finally, for P'«P",

(u'„(I)) = (kent/4SP")in[1+ (P"/P') P~],
where Qz is the limit value of Q fox which the
elastic approximation remains vRlid. Hex'8 %'8 Rs-
sumed the lattice to be perfect and to extend to
infinity in dixections parallel to the surface. But
for real surfaces, the range of parallel perfection
may be limited in an area of radius &0 thereby fix-
ing a nonzero lower limit (2IIS,/&, ) on integral (7).
Then, for P'&&P",

where P~ is of the order of unity.
The result (Qb) shows that the behavior dis-

played in (Qa) is physically significant for I;/a,
» 2w(P"/P')'~l. Even if we take a ratio P"/P'= 100,
we see that flat surfaces such that &,/s, »100 are
easily prepared, for example with a monolayer of
rare gas on graphite. " This shows then that these
physisorbed monolayers are stabilized by the in-
teractions with the substrate and not by the finite
range of parallel perfection of the surface.

Let us. now justify by an exact analysis the
"frozen-substate" approximation used above.

IH. FORMALISM

In general, at high temperatures, the mean-
sIluare dlsplacelneIlts ' of atoln f 111 the direction
o, may be written in the form

&&'(&)) = -4y[U (&, &)1 2=, , (10)

U =- (L+ m. )-'

is the so called Green's function for the crystal
with the adsoxbed layer,

The vix tue of using the Montroll-Potts model is
that the Green's function U~'~ for the crystal with
a clean (001) surface, is of a rather simple form.
We can write

Xg & & j~g 9 2 2~
y

(12)

where N, is the number of atoms in a (001) plane.
Then for the Montroll-Potts model studied here, "

V:~)(y„y„;I,&,') =d„,e&'&gP„; E,E;),
V '&(y y I,I')=U '&(y y ~

& -I') (13)

+(7&'&(y„y„;I, + I,' —1) .
In EII. (13), U ~'~ is the Green's function of the
bulk ex'ystRl. A closed' RnRlytlc expl esslon fox'
U ~'~ may be obtained for the model"

&'"(0 0 ' 0 ~') =(I/ti)f"("~/(f'-I) (14)

whe~e, for ~'=0, only needed here [see EII. (10)]
f =W- (X' —1)l'2, (15)

X=3 —cosf„—cosfy

To calculate the MSD of the atoms in the physi-
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U(l, l,') = U'(l, l,')

+ U'(l3l3")6L(l,"13"')U(l,'"l,') .
I) lit

3 3

Using Eqs. (10) and (13)-(15)and introducing

and

v =2)u" (2 —cosP, —cosp, ),
Eq. (17) reads

U(l, l,') = U'(l, l,')

+ P[(p, + v) U'(l, 1)—VU'(l, 2)]U(ll,')

+ plr[- U '(l31) + U'(l, 2)]U(2l,'),

(17)

(18a)

(18b)

(19)

(20)

sorbed layer, we need to know [Eq. (10)], the
Green's function U which may be obtained from
the relations

of vibrations are uncoupled. That is why the
Green's functions are independent of the directions
(2 =x, y, s. From Eq. (27) we then obtain the same
MSD for the three directions of space and in par-
ticular the MSD perpendicular and parallel to the
surface have the same value. This is not in gen-
eral the case" and is due to the model used here.
However, the qualitative properties we derive here
will remain in a more sophisticated model. '

Using the values given by Eqs. (25), (26), (15),
and (16) we can calculate from Eq. (27), the MSD
for all atoms in the solid with the physisorbed
monolayer. This can be done easily by numerical
integration. We will however prefer to use simple
approximations to obtain the results of interest in
closed nnalytic forms. As we stated at the begin-
ning we are mainly interested here in the contribu-
tion of long-wavelength phonons. We will then use
a Debye-like approximation and replace the exact
value of t given by Eq. (15) by

where t = 1 —(t) + —2' (t)2 + (28)

U (l l ) (tlr, 1'1+t-ll +2 -ll)
3 3 p t2 (21)

From Eq. (20}one obtains a system of two equa-
tions for two unknowns U(ll,') and U(2l,') which are
found to be for l3'&1

U(1 t.') = [(1 + tl )/P]t'3/t3, (22)

U(2l,') = (1/p)(t'3 '/6)[t2+ (lr + v —1)t+1],, (23)

where

6 =(1+2trt —v,t')(t —. 1) vt(1 +vt) . -
From Eq. (20}, one also easily obtains

U(») = (t/~)(1+~t)/~,

and for n& 1,

(24)

(25)

IV. MEAN-SQUARE DISPLACEMENTS OF ATOMS IN

A PHYSISORBED MONOLAYER

The high-temperatures mean-square displace-
ments for an atom in the l, plane can be obtained
from Eq. (10),

(u'(l, l& = — j dd,f dd, )I(()). (2'I), ,

In the Montroll-Potts model, the three branches

U(l. l.) = (t/P)(t "3-'+1)/(t '-1)
+ (t ' '3 ' /p4)[V(t ' —3t'+ vt '+ 3t —1)

+ v(1+tr)t /(t —1)] . (26)

In Sec. IV, we use these results to evaluate the
surface MSD and their damping when going away
from the surface.

0 & Q & fIt}~, (29)

where Q~(1.
The short-wavelength phonons will be described

by the Einstein approximation" in the rest of the
two-dimensional Brillouin zone. Finally, we will
use the approximate expression

(u'(l, )) =— ydy U(l„ t„y)
0

~2 l (30)

A. Free surface

To check these approximations, we will first
use them to derive the bulk- and free-surface
MSD, whose exact values can be obtained from
Eqs. (10) and (13):

(u (l3)) = ksT[U(3i(0, 0,-0)

+ U( ~(0, 0, 2l3 —1)]„2 3 .
The bulk Green's functions U(3) (l„ l„ l, ) are tabu-
lated" and one easily obtains

(31)

(u'(1) =0.338k T/P,

(rr }„„)„=0.252k' T/P .
(32a)

(32b)

An expansion in function of l3 for the perfect-
crystal Green's function was obtained' when re-
taining in ro2(k), the terms in k and kd„which give,

In Fig. 2, we plotted the exact values of t for two
directions in the two-dimensional Brillouin zone
and the value given by Eq. (28). From this com-
parison we see that our approximation will de-
scribe correctly the long-wavelength phonons for
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of 1% with the two terms displayed in Eq. (33).
Then we obtain

0 1 2 3

FlG. 2. Exact values of t [Eqs. (3.5) and (16)] as a
function of P =(Q„+Q ) for $„=0 (curve 1) and for

(curve 2). The approximate value of t [Eq. (28)]
is given by curve 3.

respectively, the coefficients in l, ' and l, ' in the
following equation:

[))'(0, o, ),)] = — ) + —, + ) . (3 )
1

4vp «3

The decay in function of l, displayed in expansion
(33) is due to the low-frequency acoustic phonons.
The high-frequency acoustic and (a fortiori the
optical phonons of a more sophisticated model) do
not contribute to this result.

From the above remarks, one sees that the de-
pendence on l, exhibited in expansion (33) is com-
pletely general. When going to a more sophisti-
cated model, one will have only another depen-
dence on the force constants P in front of the l, '
and t, '. Already for t, =3, expansion (33) is ap-
proaching the exact result, '~ with a precision of 4%
with the first term in (1/t, ) and with a precision

(u'(l, )) —(u') a 0.989
1

1

(ta), rr(2), —)) 4(2)—), )' )
(34)

Relation (34) already holds for the first layer un-
der the surface with a precision of 4% with the
first term and with a precision of 1% with the two
terms given above.

From the above discussion, one sees that for
t, »1 the term in Eq. (34), inversely proportional
to the depth, is derived in the elastic approxima-
tion and that when going to a more sophisticated
model, one will just have the multiplicative factor
appearing in front of this l, ' term function of c,
and c, rather than of the mean value c=a,(p/M)'t'
used in this model.

The precediag theoretical investigations re-
viewed in Refs. 1 and 2 do not give the surface
MSD outside the immediate neighborhood of the
surface. We feel that it is as important to know
how the surface MSD decay away from the surface
as their value in the immediate neighborhood of
the surface. Musser" gave numerical results for
the MSD in a 48-layer crystal. His numerical ap-
proach did not allow him to predict that the sur-
face-induced enhancement of the high-temperature
MSD of an atom in layer l, was inversely propor-
tional to t„at large t, . Equation (30) applied to
the case of a free surface (with Q~ =1) gives, for
the long- and short-wavelength contributions,

(u2(1)) = (kaT/P)(0. 116+0.184)= 0.300kaT/P, (35a)

(u )a = (ka T/P)(0. 079+ 0.153)= 0.232ka T/P . (35b)

We could improve approximation (30) by taking in-
to account the first correction" to the Einstein ap-
proximation which better describes the short-
wavelength phonons by including into the Einstein
approximation the first-near est-neighbors contri-
bution. We do not do it since we are primarily
interested here in the long-wavelength contribu-
tion. It is also easy to derive in this approach Eq.
(34) when noting that far from the surface (l,»1)
the short-wavelength contribution to the MSD of
two neighbors planes will be the same, then the
variation will be due to long-wavelength contribu-
tion. Using Eqs. (14), (31), and (28) one again
finds the result given by Eq. (34).

B. Physisorbed monolayer

The MSD calculation for an atom in the physisorbed layer is done along the same lines as above. Putting
expressions (24), (25), and (28) into Eq. (30), we obtain
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(,(I) &s& a&d 1+p —(1+2', )y+(1+4')sy' ~y' ttsr
2vp o I +a+(I+V)(V" s-)A -u(I+t ")0' 4«p" + p' '

The denominator of the integrand in Eq. (36) can never be zero, as its exact value a [Eq. (24)J has no
zeros. From a physical point of view this means that in the model studied here there is no soft surface
phonons and that the approximation (26) should not introduce them. Soft-surface phonons could of course
exist in a more realistic model especially if one took into account the first derivatives of the interatomic
potentials. "

The above condition is satisfied in the case which motivated this calculation (p'«p" s p). In this limit,
Eg. (36) takes after integration the simplest form for Ps =1:

(3V)

This expression shows that for P"/P'& 100, the ln(P"/P') term is the leading one for the MSD of an atom
in the physisorbed layer.

It is interesting also to see from Egs, (26) and (30) that here as well as in the case of a free surface dis-
cussed above, the difference (u'(I, )) —(u') s is proportional « I/I, for I,» l. In Sec. V, we»n «a phy»cai
discussion of the results given in this section.

V. CQNCLUSIQN

The results of this paper, we want to stress, are
more of a qualitative than quantitative nature.
First, the difference between surface (with or
without an adsorbed layer) and bulk MSD is pro-
portional to the inverse of the depth E, for l, »1.
Second, when a two-dimensional solid is physi-
sorbed on a crystal surface, the substrate tends
to stabilize it even for a weak coupling P' between
adsorbate and substrate as the divergence in the
MSD for P' going to zero is of a logarithmic type.

In a more sophisticated model, the MSD parallel
and perpendicular to the surface would no longer
be equal. This paper shows that the "frozen-sub-
strate" approximation leads to the same logarith-
mic divergence when p && p as an exact analysis.
%e ean then study the same problem for a real-
istic model using the same "frozen-substrate"
approximation. It is straightforward to see that in
general one can define different parameters for

vibrations parallel and perpendicular to the sur-
face, respectively, (P(„PII) and P,', P,"). For P',

«P~ and P~~ «P~( one will obtain in the same way
as ln this paper

The interesting physical point is to know if (H(] ))~~

can be bigger or smaller than the (tr(1)) when this
logarithmic term is the leading one, as these two
situations have clearly different physical mean-
ings, In the first case one could expect the physi-
sorbed layer to slide on the surface after losing
long-range order. In the second case desorption
would be the leading effect.
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