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Microscopic calculation of electromagnetic fields in refraction at a jemum-vacuum interface*
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For a long-wavelength electromagnetic wave of frequency eo, incident on a jellium-vacuum interface, the
spatial dependence of the vector potential, A(r;co), is evaluated in the surface region. A simple integral

-+
~ ~

equation is derived which relates A(r;eo) to the jellium nonlocal conductivity tensor o(r;r, w); numerical

calculations based on this equation are reported, in which the random-phase approximation to o(r;r, u) was
used —the required single-electron wave functions were evaluated via the self-consistent surface-barrier
potentials of Lang and Kohn. Families of graphs of A(r;eo) are presented, for fixed bulk electron concentration
as a function of frequency and for fixed eo~/eo (where eo is the plasma frequency) as a function of bulk electron
concentration. The sensitivity of A(r;eo) to the shape of the surface potential barrier, at fixed co and bulk
electron concentration, is also explored. The use of the results obtained for A(r;co) is proposed for the
calculation of refraction effects in surface photoemission and in reflection spectroscopy.

I. INTRODUCTION

Recently there has been a great deal of interest
in using photoemission as a probe of the bonding of
the atoms which lie in the outermost layer(s) of a
solid. ' ' However, the detailed interpretation of
photoemission data requires the use of a theory of
photoemission, which even in its simplest form
(the independent-particle approximation 8) pre-
sumes one's ability to calculate initial and final
electron wave functions, as well as the spatial form
of the electromagnetic field which is responsible for
photoexcitation in the first place.

In the recent past, considerable progress has
been reported in the calculation of self-consistent
wave functions corresponding to electron states be-
low the vacuum level for semi-infinite solids. &'

At the same time, relatively reliable techniques
have been developed" ' (in connection with low-
energy-electron-diffraction theory) for the cal-
culation of electron wave functions at energies
30-300 eV above the vacuum level. It is not
known to what extent the approximations used at
energies —30 eV will have to be refined in order
to extend continuum wave-function calculations down
to the energy range 0-30 eV which is commonly
explored in photoemission experiments"; but in any
event a good sta.rt has been made in the work for
energies & 30 eV.

The same cannot be said for calculations of the
electromagnetic field which excites photoelectrons.
Of course in the high-frequency regime, defined as
the frequency range in which the index of refraction
of the solid under study is closely equal to 1, there
is no difficulty; the electromagnetic field may be
represented by a transverse plane wave, appro-
priately polarized, which is undisturbed by its
crossing of the solid surface. However, for a
wide variety of solids, in the vacuum ultraviolet

frequency range & 30 eV common to many photo-
emission experiments, the index of refraction is
fa,r from 1, ' and the amplitude and phase of an
electromagnetic wave will change sharply in the
surfa, ce region. ' Additionally, in the range of
frequencies corresponding to a solid's plasmon
band, sharp variations in the electromagnetic field
will be induced not only near the surface due to di-
electric mismatch, but also in the solid s interior,
due to bulk-plasmon excitation. ' Finally, because
of the nonuniformity of the charge density within
the solid (corresponding to the discrete nature of
the ionic charge), an electromagnetic wave will
suffer further scatterings, giving rise to what are
generally called local-field corrections" to the
spatial behavior.

To date, some calculations have been reported
of local-field corrections for infinite solids' ~

but none for semi-infinite ones. There has also
been some work concerning the behavior of the
electromagnetic field in the neighborhood of a sur-
face where refraction is occurring, ' ~ ' notably
that of Endriz ' which was specifically concerned
with refraction effects in surface photoemission;
but this work ha, s been based on approximations
whose reliability is open to some question. gin
Ref. 21 Endriz presents neither results for the
form of the vector potential in the surface region,
nor the equations used to obtain the results. In
any event, one may be inclined to doubt the validity
of the hydrodynamic approximation used in Ref. 21
to describe the dielectric response of a semi-in-
finite free-electron solid, because it does not take
account of Landau damping. The calculations of
Refs. 18, 22, and 23 are based on the a.ssumption
that the dielectric behavior of a semi-infinite free-
electron solid can be described in terms of the
(wave-vector-dependent) dielectric constant of the
infinite electron gas. ]
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FIG. 1. Real and imaginary parts of Aq„p,„()
calculated for electron-gas radii r, and photon. energies
ku given by (r~, @co)=(2, 13.125 eV), (3, 7.1443 eV), and

(4, 4.6404 eV). In each case, ~/&&(~, ) =0.7875, where
~&(x,) is the classical plasma frequency, given by
hen&4;) =47.139 6V/r~s . The normalization of Agj pfQ)(g)

has been arbitrarily chosen to guarantee that in each
case A.I„p,„(~ ~) =1. See Sec. 1V below for further
discussion of this graphs.

In the present article, the results are presented
of a microscopic calculation of the spatial behavior
of an electromagnetic field in the neighborhood of
a jellium-vacuum interface. The calculation takes
account of the possibility of plasmon excitation for
the appropriate range of frequencies. However,
local-field effects are totally ignored, by virtue
of the use of a smeared-out positive background
charge (the jellium approximation); for nearly-
free-electron metals, one hopes that the neglect

of such effects may not be too serious an approxi-
mation.

Examples of the main numerical results of the
present work are illustrated in Figs. 1(a) and 1(b),
and are thoroughly discussed in Sec. IV below.
However, one can immediately grasp from these
two figures their important implication with regard
to photoemission of electrons from a surface: the
electric field which is responsible for photoejection
from the surface region is anything but spatially
constant there.

Of course a rapid variation in field near a sur-
face will have a large effect on the matrix elements
which govern the probability that a surface electron
will be photoemitted. Experimentally, therefor e,
refraction effects should play an important role in
determining the intensities" of surface-related
peaks in photoelectron energy distributions (PED's),
and, via changes in the solid's index of refraction
with photon frequency &, in determining the way in
which these intensities change with ~.

One should also expect that a sharp variation in
field strength near a surface will affect one's inter-
pretation of observed photoelectron angular dis-
tribution (PAD's). After all, the implication of
Figs. 2 and 3 is that not only the electromagnetic
field's magnitude, but also its direction varies
rapidly riear a surface where refraction is impor-
tant. Thus, for example, in the photoemission of
an electron which is tightly bound near a solid's
surface, the field direction sensed by the electron
(which helps to determine, e. g. , the direction of
maximum photocurrent) will depend strongly on re-
fractive effects, and will change with co as the sol-
id's index of refraction does. Thus refraction
should cause PAD's to change with v.

Finally, it should be noted that refraction-in-
duced electromagnetic-field variation at surface
will affect not only photoemission data, but data
in any experiment in which surface electrons are
optically excited. Thus in the analysis of reflec-
tion spectroscopy, for example, one should also
expect the intensities of surface features to be
strongly affected by refraction.

With this motivation in mind, the present article
focuses on the calculation of the vector potential
A(r; ~) in the neighborhood of a flat jellium-vacuum
interface, for the case of a long-wavelength trans-
verse electromagnetic wave of frequency v, inci-
dent from the vacuum. The use of the calculated
values of A(r; ~) to estimate the importance of re-
fractive effects in photoemission is the subject of
an accompanying article. '

In Sec. II, M~ell's equations together with
appropriate boundary conditions are shown to lead
to a simple integral eIluation for A. (z), the
z component (normal to the surface) of the vector
potential corresponding to the reflection and re-
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of the vector potential A(r; v) corresponding to
the refraction and reflection of a long-wavelength
electromagnetic wave incident on a flat jellium
solid. The starting point for the derivation is the
Maxwell wave equation, which, in the gauge cor-
responding to scalar potential y identically zero,
may be written in the form26

v'X(r (o) +((o'/c') X(r (u) —v[v'. X(r (o)]

= —(477/c) J(r; u)) . (2. I)

For a sufficiently weak field, the induced current
J(r; v) is linear in A(r; &u), and is given by the
consitutive relation

J(r;ur) = d'x o (r, r;&u)(i&a/c)A(r;&u), (2.2)
4
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in which F(r, r; &a) is the solid's (in general non-
local) conductivity tensor, and where A(r; &o) is
the total vector potential at r, i.e. , where

A(r; &u) =- A„,(r'; &u) = A,„,(r; u&) +A„z(r;v),

(2.2)

A„,(r'; &u) and A„6(r;~) being, respectively, the
externally imposed and the induced vector poten-
tials.
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FIG. 2. Heal and imaginary parts of Ag, p ~(z) vs z cal-
culated using the g~ = 2 Lang-Kohn potential barrier (Ref.
51), for various photon frequencies below eo&(r~= 2)
Pz~&(r~=2) =16.666 eV]. In each case Aq„p,„(z ~)
has been normalized to 1; therefore tcf. , Eq. (2.46b)],
Azl„.,~, (z-- ) must equal s (0, ~)=1-~&t/d.

0 4

fraction of an electromagnetic wave of frequency
(d, and of small wave vectors k„along the jellium
surface. This integral equation permits one to
determine A„- (z) in terms of ot„.0 „(z,z'), the
z-z component of the jellium nonlocal conductivity
tensor. The method used to solve the equation is
described in Sec. III, and in Sec. IV, numerical
solutions for A&"„',„(z)are presented and discussed.

II. DERIVATION OF A SIMPLE EQUATION FOR VECTOR
POTENTIAL WHICH DESCRIBES THE REFRACTION OF A

LONG-WAVELENGTH ELECTROMAGNETIC WAVE

In this section a simple integral equation [Eq.
(2.45)] is derived, which yields the spatial behavior
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FIG. 2. Real and imaginary parts of A$p 0 „(z)vs z,
calculated using the r~= 2 Lang-Kohn potential barrier
(Hef. 51), for various photon frequencies above
~& (r~= 2). In each case A~ .«(z. ) has been normal-(+)Ig

ized to 1. Thus [cf., Eq. (2.46b)], A] ~,„(z -~)
necessarily equals 1-&u&t/u&t.
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——««'[««' A(P )])4m
(2.4)

It can easily be verified that the function A(r; (0)
defined by Eq. (2. 4) satisfies Eq. (2.1) provided
that

(Vz+(o /c2) A,„,(r; (o) —V[V ~ A, (r; v)] =0;
(2. 5)

and it is obvious by inspection of Eq. (2.4) that
the form of its kernel forces A(r; (o) to satisfy the

In order that A(r; (o) correspond to the scatter-
ing of an electromagnetic wave, it must of course
satisfy not only Eq. (2. 1), but also the scattering
boundary condition, i.e. , that

A„~(r;(u) -=A(r; (u) —A, (r; &u)

behave as a sum of outgoing waves as l r I-~. The
simultaneous satisfaction of the two conditions on
A(r; (o) is achieved by requiring that it satisfy the
particular integral form of Eq. (2. 1),

4 (co / c) Ir-x' I

A(r; (u) =A.„„(r;(o)+ d'y'
[ k/ =(o/c. (2.6c)

For the case of refraction by a flat jellium solid,
i.e. , one which is translationally invariant in (by
convention) x-y planes, the conductivity tensor
F(r, r'; (o) assumes the simpler form

7((r, r'; (o) —= o (x- x', z, z'; (u), (2. 7)

where x and x' are vectors in the x-y planes, i.e. ,
where

r=-(x, z). (2.6)

Thus, Eq. (2. 4) can be simplified by Fourier trans-
forming in x, yielding the equation

outgoing-wave boundary condition [except in the
range of frequencies where the homogeneous part
of Eq. (2. 4) has solutions (which correspond to
plasmons; cf. , below)].

For a plane wave incident on the solid, one takes

A, (r (u) =A~"„'e'"', (2. 6a)

which satisfies Eq. (2. 5) provided that

k.A.„""=0, (2. 6b)

and that

A (z) =Al" e""+(27(i/k, )
' dz'e'"'"' —' dz" o- (z', z") A (z")

0lj, CO

4kjj ++g l Ski) +Qg p A ~ 8 (2.9)

wherein kjj and k'& are defined by

k-=(k„,k,),
where A- (z) and o]I„„(z,z ) are defined by

II& ~

(2.10)

dk(zz)]Eel)))(ggl
2g

x )« "«()t «)+ ««"(«««))kk
k~

A(r (o) -=A- (z) e"))'"
~lj, Ou

(2. 11a)

o (x —x', z, z '; (o)

[d'k„/(2w)'] e"))' '" "' o- (z, z'), . (2. lib)
~ll't &

and where u, is a unit vector which points in the
+z direction.

The remainder of this section is devoted to the
reduction of Eq. (2.9) to a more manageable form,
for the case of a long-wavelength incident wave.
The reduction begins with the introduction of the
information that o Q) (zz ) is negligibly small if
either z or z' is only slightly (- 1 A) outside the

jellium surface, while it is given to a good ap-
proximation by its bulk jellium form (fixed by ro-
tational as well as translational invariance ),

(2. i2}
if z or z or s is any greater than a few A within
the jellium. [In Eq. (2.12), 1 is the unit matrix
and k=-

I k l=(lk„ I'+k, )'~2. ] This information
implies that A-„„(z)behaves "asymptotically" al-
ready at microscopic distances on either side of
the jellium surface, and thereby permits the sim-
plification of Eq. (2.9) in the long-wavelength
limit.

In order to take advantage of the knowledge that
7„" (z, z ) heals rapidly within the jellium (which

~jjqM
henceforth will be assumed to be in the right half-
space), one makes use of the identity

e"' * ' -=e'"'""—2i8(z' —z) sink, (z —z')
(2. ia)

in which 6()() is the ordinary step function. Sub-
stituting Eq. (2.12) into Eq. (2. 9), one finds that
if A];„,„(z)satisfies the homogeneous equation
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f+ )»0 ~ )» OO

Af„„(z)=— dz' sink, (z —z'), dz" g.„(z',z") A.„(z")
J Wg 4 Oo

kll f f»}

~
ik )+)u», ik„+u», A„- (z ) (2. 14a)

and is normalized according to the equation

(0) 2''
kll'f &

~ 00 ~ e 00

dz'e '"J'
2

+ a OO C
dz" o- (z', z") A- (z")

k}}fQ

(2.14b)

then Af „(z)will necessarily be the (unique) solu-
tion to Eq. (2.9).

The point of converting Eq. (2. 9) to the pair of
Eqs. (2. 14a), is that by virtue of the healing of
(7p )

(z z ) Eq (2 . 14a ) can be solved exp 1icit1y
for values of z greater than F~„„(z,z ) healing
depth. Thus assuming the jellium surface region
to be delimited by the relation,

0

where Z is of the order of a few A, one can re-
write Eq. (2. 14a) in the form

A- (z) =Ai » (z; Z)+A&r»» (z Z)
k}) ~ co

where A-"» (z; Z), given by
kll, aO

)kk00

A~'» (z; Z)=—— dz sink, (z —z ) Y dz o) (z, z ) ~ A„. (z ')
kii i)0 C R}1 ~ 40 kil 9»}

9 ~ ~ 8ik„,+k, ik„+ k'A- (k') },

can be explicitly evaluated by means of one's abili-
ty to solve Eq. (2. 14a} for z & Z. Since, as will be
shown shortly, A»,„„(z;Z) [defined by Eq. (2. 14a),
(2. 16), and (2. 1V)] can also be expressed in a sim-
ple form, Eq. (2. 14a} therefore provides the means
for reducing the determination of A», )., (z) in the

long-wavelength limit to a manageable prob-
lem.

The solution of Eq. (2. 14a} for z &Z proceeds
as follows: Since z has been specifically assumed
to be greater than the conductivity healing depth,
Eq. (2. 14a) may be written in the form

4m f'"
A. „(z&Z)=—) dz'sink, (z —z') ~ dz" o'- (z' —z") A- (z")

k})f 4»}
k)( ~ i») @If&

1 .+ ~ 8 .~ „
8

ik))+8
&

k i)9)+», Aa (z ) (2. 18)

which is trivially solved with the ansatz

A- „(z&Z)= T- „8'"". (2. 19)

Substituting Eq. (2. 19) into Eq. (2. 18), making use

of Eq. (2. 12}, and assuming k,' to have at least a
small positive imaginary part due to absorption,
one finds that Eq, (2. 19}solves Eq. (2. 18) pro-
vided that Tk„and kJ satisfy the equation

(2. 20)
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where

I(.
" =—(1(k„kA'). (2.21)

&(I &(k(L&'. &) 0 (2.28)

Taking the dot product of both sides of Eq. (2. 20)
with k', one obtains the requirement that

(k' T-„)z ( &(k'; &u) = 0, (2. 22)
Ala +

where the longitudinal dielectric constant z( &(I(.'; &u)

is defined by

z ( '(k'; (o) —= 1 +(4 )i&/(u) (&' '(k'; (u)

—= I+(4'/&u) [e"&(k'; &u)+o( & (k' ~)].
(2. 23)

Equation (2.22) implies that Eq. (2. 18) can have
both transverse and longitudinal solutions:

(i) The transverse solutions [denoted henceforth
by the superscript (T)] correspond to the satisfac-
tion of Eq. (2. 22} by means of the relation

f(r)' Tg) 0 (2.24)
Qls 40

In order to determine k& ', one substitutes Eq.
(2.24) back into Eq. (2. 20), thereby finding that

k,' ' =k +k [4zi(T' '(k' ' (u)/~] (2 25)

Noting that o'~&(k( '; (k&) is related to the transverse
dielectric constant z( '(k' '; &a) by the equation ~

z' '(k' '; (u)=l+(4zi/&u)o"&(k' ' ~ (u), (2. 26)

Eq. (2. 25) can be rewritten in the familiar form

k'=k""/z "&(k"'; ~). (2.27}

(ii) The longitudinal solutions of Eq. (2.28) [de-
noted henceforth with the superscript (I,}]corre-
spond to the satisfaction of Eq. (2. 22) by means of
the relation

Equation (2.28) is, of course, precisely the cri-
terion for the existence of a plasmon of wave-vec-

(I )'tor k' ' and frequency co, and only has real solu-
tions for k' ' if v lies in a band of frequencies for
which the jellium solid has undamped plasmons. '
[If the relation

Imk+& (v}«1/Z (2.29)

(z )Z) T(r&. z()&A Z TfL) e )&A Z

(2 33)
Wts k() ills ~ ills I()

(in which the longitudinal component vanishes for
&o outside the plasmon band), which can be sub-
stituted back into Eq. (2. 1V) to obtain an explicit
expression for A(f & (z; Z). ~( Carrying out the z'
and s" integrations, one thus obtains the formula33

is not satisfied, then clearly the longitudinal solu-
tion to Eq. (2. 18) will not play a role in the asymp-
totic behavior of A„„„(z»Z), ] In order to verify
that the satisfaction of Eq. (2. 28) implies that

AI„,&(z & Z) is longitudinal, one takes the cross
product of both sides of Eq. (2. 20) with k(~',
thereby deriving the condition

[k' "—k'z"'(k"' M)] (k'~' &( T-'~' ) =0. (2. 30)

Since, in general, the equation

k2 k(I&'2/e6 r (k z' ' (0} (2.31)

cannot be solved simultaneously with Eq. (2. 28),
Eq. (2. 30) implies that

l"'x T'-" =0
a~la ~

or that the wave corresponding to k' ' is longitu-
dinal.

The most general solution of Eq. (2. 18}can now

be written in the form

A!" (e; Z)=T!"' e"' * ccsk, (s —Z)+i * sink, (e —Z))
k~

- s ~a'"'z+T! ' e' ' cess, (e —Z)+i sink (s —Z)). (2.34)

k Z&&1,

and moreover, using Eq. (2. 27), that

k~'&' Z«1.

(2. 35)

(2. 36)

(However, in general one may not assume that

For long-wavelength incident light and for I z I 5 S,
one has that

kA(~&, givenby Eq. (2. 28), is small compared to
Z (. ) Thus in the long-wavelength limit, Eq.
(2. 34) assumes the simpler form

(&)'A'" (z Z)-T"' +Tl" 8'" '[I+ik"'(z-Z)]
(2.37)

To complete the reduction of Eq. (2. 14a), con-
sider finally the quantity A„"„'(»;Z), given by [cf.,
Eq. (2. 16)],

Zsg

A&"&(z; Z)=-—' dz'sink, (» —z') ~ dz" (&'- (z', z") ~ A- „(z")
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s'} .- . 8&

Equation (2. 38) may be rewritten in a more useful form, using the identity {charge conservation)

8 4mi, ", .~ -~ 8
ikI + Q A (») = — d»' ik„+I —~ a - (z z'} A- (z'),II g g Qils CO ~ ll g gg g, @ P g ~ ~ (2.39)

which is a directconsequence of Eqs. (2. 1) and (2. 2). Substituting Eq. (2.39) into Eq. (2. 38), one obtains
the equation for A~~~~' (z; Z),

A'-"'(z; Z)= ' dz' ' k 1+ ik„+ug, ik„+ug, I ~ Cz" a- (z', z") ~ A (z").

(2.40}
In the long-wavelength limit it is evident that the only term on the right-hand side of Eq. (2.40), which is
of Eeroth order in the small wave numbers (k, k~, )k„)),is the one which involves Sz/s»'z. Thus for long
wavelengths and for k, [z ) «1, Eq. (2. 40) assumes the approximate form

s l

(2.41)

A'-"' (z; S}= u,
~

(z - S) ,— e»" o "- (z' z") X"- (z")I,
I%Pl 4m~. I' 8

ag', $(s49 kgs40 & S

)
and the terms in Eq. (2.42) evaluated at z' =S may then be calculated explicitly, using Eq. (2. 33) for
Af,„„(zZ), and the "healed" form of o&, „(z',z") given in Eq. (2. 12). That is, one obtains from Eqs.
(2. 12) and (2. 33) the expression

+ ~ Cz" Eo- (Z z")-e- (» z")jA" (z")
jails 99 s40

(2.42)

CY
/»it (y p (zp»ll) /1 (zl p) — ou)(}t (r ) (g} pg F j+'»la J; Ir

Q(, 4d g && & & Rise

~herein summation over the repeated Cartesian index, y= x, y, s, is implied. The 8 integration in Eq.
(2.41) may be carried out trivially, yielding

I[S)»
+[@&&&(P& rI. ~) Z P &~+go)(yv )', ~) yu&'{PI)' ~ Tll l )/I (I rzzlaPe'] (2 43)

Substituting Eq (2 43) in«(2 42), and neglecting»I b«seroth order in k,' ' and in l„,one then arrives at
the greatly simplified expression for X&"„'„(z;S),"

(I, )'
Afu", „(z;Z)= '

u, s"~ »[1+fan,'."(z-S)j[e"'{a,"',ru)+e"'(kP', (o)]

TIE &s (1&{0, }Tg'&s dzgi &ss (z»n)~g (»IP)
~0l "Os 49 $l «0& 4d «1 Oe+ kg~~~ )

Substituting Eqs. (2.44) and (2. 3V) into Eq. (2. 16), one now obtains the promised simple integral equa-
tion for Af„~,„(»),"

A" (z) =T'- + u o"'(0 (u) T'-" — ' dz" e'-' (z z")4'- (z")~(g ) 4ff$ ~ 4'lf$
$l ~os 40 g).m0 f») ~ g y Kl 0&+ Q7 %l Os49 (2.45)

This equation is the bssis for aQ the calculations in
sec. HI and IV' below.

Note that in addition to providing a means for
calculating the behavior of Aa, .o,„(»)in the surface
region, Eq. (2.45) also guarantees that Afm. o,„(»)
mill satisfy the classical. matching conditions
across the surface, i.e. ,

(- S)=A»' (+ Z)
Ql~os ~ %t

A~ (-S)=z' '(0;(u)A-' '* (S),
Al' Os & I)~os &

(2.46a)

(2.46b)

whereq in Eq. (2.46b)q Ala' 0 (Z). 1s the z-compo-
nent of the transverse part of X&, 0,„(z)evaluated
at »=S. The satisfacbon of Eq. (2.46a) by Eq.
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(2.45) is obvious, since the latter implies that
(z) and &'»- ., (z) are constant in z. As for

Eq. (2.45b), note first that Eq. (2.44) does imply
that

g» (
~c~») ~(T)(( Zr (C )» S&»»»v.&'

"II™Qs f») II Qa + II Qz +
(2. 47)

as it should to be consistent with Eq. (2. 33). To
see this result, note that for z= Z,

(2. 48)

and therefore, that [cf., Eq. (2.43) and Ref. 33]

(fz»$»» (g z")[7 &T&' ~7 Y&' e&»» ' ]=~&'&(0 (d) 71'&'+[o&'&(y&'& ~ &) o (z&(y«& )] 7 &»»
Qs &»I QI~Q, Co i)I, ~Q, + k I I»I

J y +

(2. 49)

Substituting Eq. (2.49) into (2.45), and using Eqs.
(2.23) and (2. 28), one finds that Eq. (2. 45) does in-
deed imply the validity of Eq. (2.47). On the other
hand, at z= —Z, one has that

(2. 50)

Thus, Eq. (2. 45) also implies that 5

(- Z} = 1+—===-
&)

' '(0, &()) T '- "
"II'"Q~ "' (d II Qa C0

.—s(T)(0. ~) 7 &T )»
"II™Qs f»I

(2. 51)

III. DESCRIPTION OF METHOD USED TO SOLVE
Eq. {2.45)

In this section the method is described, by which
Eq. (2. 45) was solved for A'- (z}. Since the

Comparing Eqs. (2. 51) and (2.47), both implied by

Eq. (2.45), one sees finally that the latter implies
the satisfaction of Eq. (2. 46b), as was to be
demonstrated.

The next section of this article is addressed to
the problem of solving Eq. (2.45) numerically.

techniques involved here are closely similar to
those which have been used previously, in studies
of surface plasmons at a jellium-vacuum inter-
face, 6 and which have been described at length
in Ref. 38 (henceforth referred to as I), the dis-
cussion below is somewhat abbreviated. In par-
ticular a number of proofs are omitted, which have
already appeared in I.

Before one can solve Eq. (2.45), one obviously
needs to specify an explicit (if in general approxi-
mate) form for the response function,

o(z, z'; &())=o" (z, z'),
"II Qt & (3 1)

corresponding to the solid of interest. In the pres-
ent work, the form used for o'(z, z'; a&) is that given
by the random-phase approximation 8(RPA}, which
has the virtues that it can be expected to yield a
reasonable qualitative description of the collective
behavior of the electron gas, and that it is relative-
ly simple.

Within the RPA, &r(z, z'; (d) has the explicit repre-
sentation,

~(z, ~; ~) =- —. ——5(z-z')+ —~ — '. " '" i.~(z)i:.(z')
e' ~(z), 2 d'a " e, „-e,„.
$(d 'M 8 v (2(() ((» ~ &(&+»5 ((&»e + (()»

(3.2)

d
+ )'(z) —K~) e(g)=0, (3 4)

where V(z) is the ground-state self-consistent sin-
gle-electron potential. The frequencies ~„in Eq.
(3.2) are those given by Eq. (3.4).

fn Eq. (3, 2), the current density j„~(z)is defined by

j„„(z)=
&

. »."(s) z
— &" ». (*)), (3. 3)

ti ~ dq ~ (z) (f4)(z)

where the g&„(z)are the single-electron wave func-
tions vrhich correspond to the jellium solid in its
ground state; thus the 4'„(z)satisfy the Schrodinger
equation

e», „=—e(Ez —If k /2m —If(d»), (3. 5)

where

(3.6)

is the Fermi energy and e(x) is the ordinary step
function. Finally, so(z) is the electron-density
profile corresponding to the jellium solid in its
ground state; thus

The integrals on z and &&' in Eq. (3.2) cover all
solutions to Eq. (3.4), above as well as below the
vacuum level, and the quantities O~, „arezero-
temperature Fermi functions, i.e. ,
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dzk 2(ftc
(3.7)

a "'(0; (d) = lim
I

dz'()(z, z'; (d}.
gw40

(S.8)

The factor 2 in Eq. (3. 7) and in the second term of
Eq. (3.2) arises from spin summation, while the
weight 2/v in the z integral of Eq. (3.7) corresponds
to the normalization of the wave functions 4'„(z)be-
low the vacuum level to unit sinusoidal amplitude as
g~C)

The choice of a specific approximate form for
a{s,z'; &u), of course, automatically implies the
choice of a form for c"'(0; &o) [which is also re-
quired in Eq. (2. 45}], according to the relation
(cf. , Eq. (2.43))

Substituting Eq. (8. 2) into Eq. (8. 8) then, it can be
shown fairly straightforwardly (see Appendix A)
that Eq. (3.2) implies that

0' (Oq (L)) = —8 tLe/lSBdp (S.9)

n =-q)(z-~). (3.10)

At this point, one is prepared to take the first
step toward the numerical solution of Eq. (2.45},
namely, the numerical evaluation of o(z, z'; (()) via
Eq. (S.2}. In order to carry out this step, one at-
tempts to reduce the numbex of numex ical inte-
grations to the minimum. As is shown in Appendix
9, this task ean be accomplished directly, leading
to a form of Eq. (S.2) which requires only a single
numerical integration, viz. ,

(d ~kg'
v(s, a';~)=-Q + d~(k~ —d') s(e —z')(

(
j'„,(~)j;,„(8)+ ~(„)jr. (&)j;,. (z')).

(S.11)

In Eq. (8, 11), the quantities j '„,„(z)are defined by

i'...-=~.(z) "„" — „"~.„..(z), (3.»)d+~+~(z) (f@~(z)

where the wave functions 0 '„„,„aresolutions of the
Schrodinger equation

~ ~

„,+ )'(s) —))(ra„+ro)) 8',„(a)=0;
(3.13)

satisfying outgoing-wave boundary conditions, re-
spectively, as z-+~. The constants W, (tc) in Eq.
(8.6) are Wronskians, and serve to normalize the
g)'„„,„(z);they are defined by

-)):..( )
"""'"'*'j . (L(4)

g
Having developed a sufficiently simple means for

evaluating o(z, z'; &u}, the next problem one must
face in attempting to solve numerically for A&,.0, „(z)
is that the s' integration on the right-hand side of
Eq. (2.45) covers all values of z' from -~ to ~.
As a result, solution by conversion of Eq. (2.45)
to a matrix equation wouM seem to require storing
and inverting an infinite matrix in the computer,
no matter how coarse a mesh one used.

In order to circumvent this difficulty one takes

recourse to a method similar to one which was
previously developed in connection with the theory
of surface plasmons. " In particular, one detex-
mines the explicit asymptotic form of A)"„)0,„(z)
as s , and one makes use of this knowledge to
convert Eq. (2.45) to an approximate integral equa-
tion on a compact domain. [The asymptotic region
s- —~, i.e. , the vacuum region presents no real
difficulty because c(z, z'; ar) vanishes rapidly as
zor z ~ —o(). ]

Briefly, that is, one shows~~ that Eq. (2.45) im-
plies that as s-~,

(s)-r (+ +"-j(I')g c))8
II Os f)() Kl "Os fz)

&~i

vY
+ (L, )s f, a& (S.15)

where fk~] is a set of P constants which are known
explicitly, and where 1T )",.0, „/T~,, 0,„,&j is a42 (L )e g')g

set of P+1 constants which must be determined nu-
merically. The integer P equals 6 if Ro &E~ and
10 if A~& E~.~ Thus choosing Z& to be sufficient-
ly large that Eq. (8.15) is true to the desired ac-
curacy, one may rewrite Eq. (2.45) as an equa-
tion for the quantity X(z) defined by

7k(z) -=(Ji'-, (z)/7 -'~); „)I . (8.16)

in the form

c(z z' ~)e
deal +tZ
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4@i &)&{r&' i T" ) 4rrfdz'(r(z z' (d)e
z gP)g ) (d z

Q, co

dz' o(z, z' (d) A(z') . (S.1V)

In Eq. (3.17), Z„is positive and large enough
that to the desired accuracy,

o(z, z'& Z„;(o)= 0, (3.18)

c e&~& ~. 2
fr)&. gr) Q 0 (3 19)

p~f z pt

be a minimum, where (z~.}is a set of values of z
in the neighborhood of (but smaller than or equal
to) Z„.[Typically [zr,.}was taken to be the set of
the last 2(P+ 1) points of the z-integration mesh. ]
This minimization criterion, which may straight-
forwardly be translated into P+ 1 simultaneous
linear equations in the P+1 unknowns, (co, c&)},

amounts to the requirement that the behavior of
A(z) derived from Eq. (3. 17) for z & Z„beconsis-
tent, to within a least-squares best fit, with the
asymptotic form of A(z} given in Eq. (3.15).4~

The results reported in the following section of
this paper are all based on solving Eq. (3.17) for
A (z&,.; (co, c&,})and determining the {c&„c~}by mini-
mizing the function E((co, c~})of Eq. (3.19). This
method of determining A (z) was found to be in-
sensitive to the values chosen for Zz and Z, pro-
vided that they were taken to be sufficiently large,
and to the precise values chosen for the (z&.}.[For
example, the A(z) obtained using the last 2(P+ 1)
values of z for the set (z&,.}was essentially identi-
cal to that obtained using the last 3(P+1) values. ]

Finally, for frequencies overlapping the plasmon
band, ~9 it was verified that the computed values of

(r)'
~
A(z) o elr)& g

~

were actually decreasing with z, for z in the
neighborhood of Z&. The reason for carrying out
this latter test is that for frequencies overlapping
the plasmon band, the homogeneous part of Eq.
(2.45) [and, for that matter, of Eq. (2. 9)] has
solutions Ai"'„(z),corresponding to bulk plasmons

II z (g )sof frequency (d and of wave-vector k& in the re-
gion z&Z„,6 which impinge on the jellium-vacuum

Equation (3.17) can be solved numerically on a suf-
ficiently fine mesh of points, since in this equa-
tion the domain of z' integration is compact. 43

However, the solutions of Eq. (3.17) for A(z) will
depend on the as yet undetermined constants,

T{r.&g yT p'&g
0, ~

In order to specify these constants, one requires
that the function

P({eve~&)=g X(so., {co ee&}

g (» &u)-=dz'o(z, z' (o) e"r"/z'2
N

P

P(z &o)—= dz'o(z, z'; (o}e"&

(3.20)

(S.21)

and

o(z (d)—= dz' o(z z' &u) (3.22)

which appear in Eq. (3.1V}. However, the calcu-
lation of the g&,(z; (d) may be carried out by methods
previously described in I, while the evaluation of
E(z; (o) is straightforward, using the explicitly
known forms of j '„„(z)in the asymptotic region of
z'~ Zz (for details see Appendix A). Finally the
calculation of o(z; o&) is carried out by rewriting
Eq. (3.22} in the form49

N
~os

(r(z; (d)= ' dz'o(z, z'; (o)+ dz'o(z, z; (d),
ffl zN

(S.23)
wherein the first term may be computed by direct

interface from the jellium side and reflected from
it back into the jellium. Thus, to any particular
solution of Eq. (2.45), it would seem that one could
add an arbitrary constant times A z' (z} and there-
by obtain another solution. However, the AP&„(z)
are distinguished from the solutions of interest in
the present case by the fact that as z ~, they con-
tain "ingoing" components, of the form exp- ik&+' z.
Thus, the uniqueness of the numerical solution to
Eq. (2.45), for the case of light incident on the
jellium from the vacuum, can be guaranteed, but
only by ensuring that the boundary condition of Eq.
(3, 15) is properly taken into account. In the dis-
cussion to this point it has been tacitly assumed
that the conversion of Eq. (2.45) to the set of equa-
tions, (S.1V) plus those obtained in minimizing
F({co, c&}), is equivalent to the imposition of the
z boundary condition. However, by verifying
that the computed values of

( )'
~

A(z)-c, e'"
actually were decreasing with z, for z & Z„this
tacit assumption was explicitly tested. [Clearly
if A(z) contained a component of the form exp i&~ ' »-,

the verification would have failed. ]
Having recast Eq. (2.45) into a form which is

amenable to computation, one final step is neces-
sary before one can solve for A(z), namely, a
method must be specified for the evaluation of the
functions g&,(z; &o), E(»; (d), and o(z; (d), defined
by



MICROSCOPIC CA LCULATION OF E LE CTRGMAGNETIC FIR LOS. . . 1329

numerical integration, and the second can be eval-
uated by again using the expbcitly known asymp-
totic forms of the j'„,„(s).Thus at this point all of
the elements have been presented which were in-
corporated into the computer program used to
solve for X(s). The results of the computations
are discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

In this section, I present and discuss' the
results of solving Erl. (8. 1V) for a variety of
potential barriers V(s) [cf., Etl. (8.4)j, and as a
function of photon energy he. In general the re-
sults show that, to the extent that the behavior of

o
the electromagnetic field within a few A of a fxee-
electron metal surface is important, A& „e„(s)is
not at all well approximated by its classical (step-
function) form.

Among the specific questions explored below are
the following:

(i) How does AL„e„(s)scale with electron con-
centration (see Fige. 1)'?

n (2.')
'

I

0

1.2—

I I I
I I

I

dn (b)
0

dz

0.8—

l0—
0

a -.33A I
ll

/ ~

t 0
3 .9N

II

jI

o 06—
66A

-0.4—

/')

I
a ~ .99A

0-
"4

I I I I

4 8

zfA)

) I I I

0 4
0

zN)

FIG. 5. Comparison of the static electron densities
n(z) and of their derivatives dm/dz corresponding to the
potential barriers of Fig. 4. The densities have been
normalized to 1 in the limit z

2. 0
(a&

0
1 .33A

1.0—

Ie

I 9 — ~&I

I ' I
'

I
'

I

a .99A
(ii) How does A& .9 „(s)vary with &o for fixed

electron concentra~tion (see Figs. 2 and 8)V
(iii) How sensitive is A'- (s) to the shape of

. the surface potential barri~er V(s) for fixed bulk
electron concentration and photon energy (see Figs.
4 and 5) '?

(iv) Finally, what physics can be seen to underly
the specific form of A& e „(s)(see Figs. 6 and 7)'P

2.0—

I
'

I '
I

'
I

(b)
5u B.125eV, r 2

(z& - -lb. 4eV i1+ exp- +
z

12'�.
i

3

I I I I .I I I
I I

I
I

I I

1.0—
E *

II

I/
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0

a =.99A

p~ Re(dAldz), IleI = 9. 1875eV, r 2
2

t )

I —
/

0—

I r I .. I I I I I I I I I

4 0 4 8 o 12 16 20
zest, )

FIG. 4. Illustration of the sensitivity of AI„.0,„(z)to
, surface Potenbal barrier shaPee The curves shown
have been ca1culated for y~= 2, I~ = 13.125 ep, and for
the potential barriers V(s) = -16.4 sv/(1+ sxp
-[s/s+(s/6sP]j, with a=0. 6&, 0.66, and 0.99 A. At
s= 0.66k, Ir(s) intersects the Lang-Kohn ee= R potential
barrier at the values of z for vrhich V(z) = VI,K(z)=-1.648V and V(z)= VLK(z) =-14.76 eV.

I I I I I I I I I I I

0 4 8 12 l6 20
zfA)

FIGe 6s COmpariSOQ Of He jdAy II~0 ~(Z)/dZ] for AN
= 9.1875 ev with the normabzed static densityderivative
(dno/dz)n„. Both funcons were calculated for w~ = 2
using the corresponding Lang Kohn potential barrier
(B,ef. H).
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FIG. 7. Comparison of 1m[de„ f,„(z)/dz}for Sco
= 9.1875 eV with the function (O. 23 A-z)n (dna/dz),
where n„(dnp/dk) is the normalized static electron-
density derivative. Both functions were calculated for
~~= 2 using the, appropriate Lang-Kohn potential barrier
(H,ef. 51).

C

Tile llllpllcR'tiolls of tile 1'esults fol Aj s (z) re-
garding measurable optical properties of surfaces
[such as surface photoelectric currents, and off-
normal incidence ref lectivibes] are not discussed
in the present ax ticle; they are the subject of
forthcoming papers. 5'~0

Figure 1 (shown in Sec. I, above) indicates how
the calculated form of Al„o,„(z)scales with bulk-
eleetron concentration. The curves shown were
calculated using the self-consistent surface-poten-
tlR1 barriers VLx(z; t~) obtained by Lang Rlld Kollll

for electron gas radii x, =2, 3, and 4, and for fre-
quencies co chosen such that in each case ~/&u~(v, )
was equal to 0. 7675 and thus such that z (0, &u) was
the same for each pair of values (l„ho1), andthe ratio

Al, c,„)(z»00)/A)„s 1(z ~) WRs gllR1'Rllieed R't 'the

outset [by the classical matching condition, Eq.
(2.46b)j to be the same for all of the pairs. Thus
by normalizing A& (z-~) to 1, in each case,
the z- -~ values of ReA&. s „(z)were forced tosto

equal —0. 6125, and the z-+~ values of ImA& „s„(z)
were necessarily equal to zero.

With these points in mind note that the scaling of
Al, s „(z)with l'„in Fig. 1, is roughly what one
wouM expect. " The initial peaks in the curves for
different r, line up reasonably well, and the
Friedel-like oscillations in the region z- ~ behave
as they should, i.e. , they are of gxeater amplitude
and longer wavelength for lower electron concen-
trabon" (or higher r,). Note that, in general,
oscillations of A& s „(z)persist to quite large

dep'tlls (& 20 A) lllslde 'tile melaL Tllls behavior
presumably stems from the use of a model conduc-
tivity tensor which has no absorptive part in the
bulk region [an idea which is at present being
checked by introducing a relaxation time v' into
Eq. (3.2) for o(z, z'; &u)].

Before leaving Fig. 1, it is worth remarking on
the physical significance of ImAp„s~ (z)p R quRn-
tity which can apparently be quite large within a
few A of the surface. Classically, for light inci-
dent on a solid whose dielectric constant is a real
number, e.g. , 1 —&u~/uF, A&, s, (z) is everywhere
either in phase or 180' out of phase with Az„.o „

x (z-~). Thus if A;.s, „(z-~)equals 1, then
A"„,.s, (z-~) is everywhere reaL Microscopically,
by virtue of the satisfaction of Eq. (2. 46b), it is
still true that A1„.0, „(z-+~)are either in phase or
180' out of phase. However, there is no longer any
guarantee as to the phase of A~&,.s „(z)for z near
the surface. Thus in the microscopic case, the
quantity

(s„-., „(z)-=tan'[ImA'-., „(z}/H8A&,„(z)j (4. 1)

should be interpreted as the phase of A& „s„(z)
relative to that at ~- ~; as can be seen in Fig. l,
for example, this phase can be far from 6' or 180'
in the surface region, and it varies rapidly there.
Similarly, the magnitude of A.-„(z),

kii O, fd

IA'-„, , .( )I=-([H Al„-o,.( )]'+[I A*;, , „,( )1']"',
(4.2}

also varies sharply near the surface and can over-
. shoot its asymptotic value, 1, by 50/g or more in
it8 initial peak at the surface.

The spatial behavior of Azg s „(z}1s 110't only
markedly nonclassical in the surface region, but
also this behavior changes rapidly as a function of
photon frequency. The fxequency-dependence of
Az „s(z) is exhibited in Figs. 2 and 2, which were
calculated, respectively, for frequencies below
and above ~» for r, =2, using the Lang-Kohn poten-
tial barrier. "

In Fig. 2 it is seen that below the plasma fre-
quency [where 8 (0, &o) & 0], Af„.s „(z)has a sharp
peak near surface and then relaxes to its s- ~ val-
ue via I"riedel-like oscillations. '4 The strength of
the inibal peak appears to be quite strongly fre-
quency dependent, and indeed it seems to disappear
entirely for frequencies near to (but smaller than)

This behavior should cex tainly be observable,
for example, in a measurement of surface photo-
electric yield versus frequency. ' Above the plas-
ma frequency, the large initial peak in Af, , s, „(z)
does not reappear; at the same time the decaying
Friedel oscillabons in the bulk region (z- "~")
are completely overshadowed by non-deeaying ones.
These oscillations above ~~ clearly represent bulk
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plasmons. From their amplitude one easily ob-
tains a prediction of tbe strength vs. frequency of
the direct photoexcitation of bulk plasmons, a mea-
surable surface property, ' which may be ex-
pected to yield useful surface electronic structure
information. ) Inbothfrequency ranges, &o«o~, as
noted above, it is to be expected that the introduc-
tion of a finite relaxation time into the model
o(z, z', &o) will cause a damping of the oscillations
of A& „(z)as z ~. The degree to which this ef-

Kl Os 99

feet is important is being studied at present.
A final phenomenological question concerning the

behavior of A., 0, „

is its sensitivity to potential bar-
rier shape. In particular, it is important to know,
for a given electron concentration (i.e. , for a given
metal), the extent to which a measurement bearing
on the spatial behavior of A&,„0,„(z}will contain
surface electronic structure information. A partial
answer to this question is contained in the curves of
Figs. 4 and 5. In Fig. 4 is shown the forms of

„which correspond to x, =2 and @o=13.125
eV, and to the surface-potential barriers V(z)
given by

V(z) 16 4 eV/(I+ 8-&&*/~)+&e/5a& 1 (4 3)

with a=0. 33, 0.66, and 0. 99 A. [For all three val-
ues of a, V(z) agrees with the r, =2 Lang-Kohn po-
tential" at z=+~. For a =0.66 A, V(z}= VLx(z;
r, =2) at the two values of z, where V(z) = —0. 1

x 16.4 eV and —0.9x 16.4 eV. ] In Fig. 5 is shown
the static electron densities no(z) and dno/dz cor-
responding to the potentials used in Fig. 4.

The curves of Fig. 5(a) indicate that, as one
might expect, no(z) rises more gradually for a
more diffuse surface-potential barrier. However,
in Fig. 5(b) one sees that even so the value of z at
which no(z) is rising most rapidly (a value which
may reasonably be considered as the mean surface
position) is independent of a. Thus the three poten-
tials used correspond to electron surfaces in the
same mean position, but of differing diffuseness.
Returning to Figs. 4, then, one sees that for sur-
faces of different diffuseness the spatial behavior
of A

g~ ~
0 (z} is m arked1y different, and th us tha t

A~ „o„(z}is strongly surface-structure sensitive.
To this point, the discussion of the calculated be-

havior of Af„.o „(z)has been entirely phenomenolog-
ical. In contrast, Figs. 6 and 7 are intended to
provide some insight into the physics which under-
lies this behavior. Figure 6 is a comparison of
Re(dd;, .0,„/dz) at a photon energy (9.1875 eV) be-
low ko/~ (r, =2}, with the static electron-density
derivative dno/dz. (Both curves are calculated for
x, = 2 using the appropriate Lang-Kohn potential
barrier. '~) According to Poisson's equation, in
the limit Ik}}l 0, one has that

&fAkii &4(g(z) 417C
(4. 4

in which 5n& „o„(z)is the charge-density fluctua-
tion at z of frequency ~. Thus the fact that the
large initial peaks in Re[dA~ „o„(z}/dz]and dno/dz
line up with each other in Fig. 6 implies that
5n&,„o„(z)has an imaginary part roughly of the form

GD dno

4mcn„dg
where a is a proportionality constant.

In Fig. 7, for the same r, and Ro, Im[dA&jj, o (z)/
dz] is compared to the function (0.23 A —z) dno/dz,
and by virtue of the choice of the distance parameter

0
0.23 A in the comparison function, the two curves
again look reasonably similar in the surface re-
gion. (The value 0. 23 A was chosen by requiring
the ratio of initial peak height to initial trough
depth to be the same for the two curves. ) Thus,
again making use of Eq. (4. 3), one sees that the
real part of 5n&, I 0 (z} behaves roughly as

P 0.23 A —z

Combining the results of Figs. 6 and 7 (and mak-
ing use of the smallness of &o/c), one finally ob-
tains the expression

5n, .0, „(z)=nolz(l -p&d/4vcn„)

+[io&+(0.23 A) P] &d/4 vcn/ —no(z),
(4. 5)

which provides a straightforward interpretation of
the metal's response to the external electromag-
netic field. In particular the response consists of
a rigid motion of the mean electron surface with an

0
amplitude io&+ (0.23 A) P, plus an electron-surface-
thiekness oscillation with an amplitude p&d/4zcn .

Similar comparisons between dA~&, Q (z)/dz and
dno/dz can be made at any frequency sufficiently fa
below &o/, because (cf. Fig. 2) in this frequency
range the initial peaks at the surface are always
the most striking feature of AL„o„(z).It re-
mains then to interpret the disappearance of the
surface peaks above h~. A proposed interpretation
is as follows: Below ~~ the bulk electron gas is
effectively incompressible. Therefore for im-
posed fields with co & ~~ either the bulk electrons
can all move together, giving rise to an oscillation
in surface position, or the surface electrons can
compress and dilate, giving rise to surface thick-
ness oscillations. Thus for ~ & (d~ the solid's re-
sponse must be localized at the surface and should
be roughly of the form given in Eq. (4. 5). Above
(d~, however, the induced charge fluctuation cannot
be localized at the surface because plasmons exist
to transport charge oscillating at frequency co to
the interior. Thus 6np, „o,„nolonger peaks strong-
ly at the surface for v&or~

V. PROSPECTS

Within the limitations imposed by the assumption
of a flat surface and a free-electron metal, the
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calculations reported here provide a foundation for
evaluating a number of experimentally observable
quantities. Among these are surface photoelectric
currents (versus electron exit angle and energy
and versus photon frequency), and off-normal-in-
cidence ref lectivity. Calculations of these effects
are in progress, and will be reported shortly. 2~'~0

(A4)

ez ffz ekz

a(z; u&}=—. z d»(kz —» )
scops 4% Pl

y'. () y'.. ()l
W.(») W f'(») j

Thus one considers the behavior B,s z-~ of the
llltegl'als eT„, (z) defllled by

APPENDIX A
+OO

J'„,„(z)=- dz' j'„(z') (A5a)

a(z; &o)—= ' dz'a(z, z'; &o), (Al)

it is shogun that

lllll a'(z; (d) = - 8 II /i(0IÃ.
g w00

(A2)

In order to carry out the proof, it is necessary to
evaluate, in the limit as z ~, the quantity E„„(z)
defined by

This appendix comprises a derivation of Eq. (S.9)
as a consequence of Eq. (S.8). That is, using Eq.
(S.11) for a(z, z'; &o), and defining the quantity
a(z; aI) b„'~

@„(z-~)=sin(»z+ 5„) (A6a)

~ .(z)-=J «'j ...(z'). (A5b)

The asymptotic behavior of J'„,„(z}is easy to ob-
tain because in Eq. (A5a) z" is always greater than

Thus assume that s is sufficiently large that the
slllgle-elec tl'oil po'tell'tlal V(z) [cf, Eqs. (8 4) alld

(S.18)] has achieved its constant value —Fo for the
jellium interior. The wave functions 4'„(z)and
4'„,„may then be written in their asymptotic
for"ms~8:

+j„(z)' dz'j'„,„(z'),
kg

(AS}

in terms of which [cf., Eq. (S.11)] a(z; ~) may be
expressed in the form

4"„~„(z~)= f '„,„exp[i(» +2m(o/ff)l~zz], (A6b)

~here 6„and t'„„,„are,respectively, a phase shift
and a transmission amplitude @which depend on the
form of V(z).

Substituting Eqs. (A6) into Eq. (S.12), and sub-
stituting the result into Eq. (A5a), one finds that

J' (z- ) =f' ' dz'exp[i(» +2m(o/ff) z][i(» +2m@@/@)I sin(»z+5„)+»cos(»z+5„)]. {Av)

Although the z' integral in Eq. (A 7) appears to be ill defined, one recalls [cf., Eq. (S.2)] that the wave vec-
tor (» +2m&v/)I)I~ is, in fact, an abbreviation for

[»z+ (2m/iI ) (a) + i5)]I~1= (» + 2m(o/h)l~z+ i5m/k(» + 2m(o/N')I~1+ ~ ~ ~, (A8)

whose infinitesimal positive imaginary part permits one to obtain the well-defined expression for Z„„(z),
J'„„(z-~)= —(ff/m&o) '„f,„pe[xi(+»2m&v/fi) ~ z] [(» + mar/8) sin(»z+ 5„)+i»(»1+2m&v/ff) cos(»z+5„)],

(A97
or, making use of Eqs. (A6),

dz@
(A10)

In order to evaluate o(z-~; ~}[cf., Eq. (A4}],
one also needs the quantity J~~„(z-~).For values
of » &2ma1/ff, the wave function g"„*„(z)behaves
asymptotically according to

g'„*. „(z-~)=i'„~„exp[-i{»z—2m(o/II)l~zz], (A11)

in which as above, the wave vector (» —2IIIro/h) is
to be interpreted as

I »' —(2m/h)(&o+ i5}]= (»' —2m(o/g)'"

i5m/ff(»—' —2m(u/a)"'+ ~ ~ ~ .
(A12)

Making use of Eq. (A12), one finds for J'„„(z)that

~+g (z
R2QP 48 48 ~ Gz

-K'„.(z) +.(z),

or, just vrhat one would obtain by replacing e by
. —&o and complex conjugation in Eq. (A10). In
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the event that z & 2m&v/8'(which can obviously hap-
yen if if~& gzkz/2m), Eq. (A13}remains valid,
though the asymptotic form of q'„~„(z)then becomes

gj'„~„(z- ) =f'„~ exp[-(2m~/t- z )'~ »]. (A14}

The ~valuation of o(»- ~ &o) is completed by cal-
culating the asymptotic behavior of the integrals
J„;,„(»)and Z„~„(z).A new difficulty in this case
is that although s may be large, the range of s' in
the relevant integral, cf. , Eq. (A5b) is not con-
fined to the asymptotic region. Thus, in order to
obtain a useful expression for Z„,„(»-~),one
breaks the z' integration of Eq. (A5b) into two

parts, writing

J'„,(z) = dz'j „„(z')+dz'j „„(z'),(A15)

where

'V(z)~ —V0, z~ Z.

The first term on the right-hand side of Eq. (A16)
is a perfectly well-defined constant, by virtue of
the exponential decay of qj„(z)as z- -~. The sec-
ond term, because of Eq. (A16}, may be evaluated
explicitly using the asymptotic forms of gj'„(z}
[given in Eq. (A6a)] and of 4'„„(z),

4'„„„(»-~) =exp[- i( '»+2m')/Pr)'~'z],
~ {AlV)

+ r„„.„exp[i(z'+2m&v/ff }"'z].
Using Eqs. (3.12), (AGa), and (A1V), thenone finds
that

jg d4' d4 dag
"s

and similarly, that

(A18a)

(A18b)
j 8 d~Q 8 »kg

At this point one has all the information necessary to compute the quantities Il„,„(»-~) and E~ „(z-~)
which are needed in Eq. (A4). Using Eqs. (3.12), (3.14), (A10), and (A18a), for example, one easily finds
that

&...(z-")= ~. &,(z) „„," -g.(z) d, ." +g'.(z) +j'...(»)R .(Z),
2' g dQ„

(A19)

where R„, (Z) is defined by

R„,„(Z)-=, dz'j~„(»')— „"~" "-4„~„(S}z" +0„,„(Z)k„(Z).P . P ~, ~+cu~co &+g ~ +fc
(A20)

Similarly, one finds that

-h dag(I-")=
IV

)('.(")I &
' -j'.(&)

& .' +e'.(1)I+j:~„(z)j(„,„(s). . . (A21)

Thus, substituting Eqs. (A20) and (A21) into Eq. (A4), and using Eq. (3.V), one finds that

c(z- ~ &o) = e'n /i&em+ R(z—-~ &u) (A22)

ez ))p

j((s; ~)=—,dc(k~-~')(
)
j (z) j(„,(z)+ '„,„(j;~(s)j(„,„(s)). ,.„

(A23)

Clearly, if one can show that

R(z-~; &u) =0, (A24)

then (A22) is identical to Eq. (A2} and the proof is
complete. What follows, therefore, is a demon-
stration that Eq. (A24} is true.

The asymptotic properties of R(z; (jj) are governed

by both the behavior of j„',„(z)and j'„~.„(z},and the
analytic properties of the functions of z, R„,„(Z),
and R„„(S).Recalling the definition of R„,„(Z),
Eq. (A20)„one notes that because 4'„(z)falls expo-
nentially to sero as z- ~, for 0» z» kz, R„„(Z)
is an analytic function of e in the neighborhood of
the segment (0, kz} of the real z axis. At the same
t1me, as 8- o,
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(A26)

where C~ and Cz are constants.
Similarly, if kz & 2m&v/8, one finds that the term involving j„„(z)in Eq. (A23) behaves asymPtotically

as

j'„„(z-~) = f'„,„exp[i( «+2m'&/0) z] [i(«+2m(d/ff) sin(«, + 5„)+«cos(«, + 5„)]. (A25)

Thus one can easily show, ' using the Riemann-Lebesgue lemma, s that as z-~, the term in Eq. (A23) in-
volving j'„,„(z)behaves as

z~(Q exp[is[(kz + 2m&v/5) I + kz])+ Cz exp(iz]]kz + 2m~/ff) —kz]) ),

z (Cs exp(iz[(kz —2m&v/I) + kg]) + C4 exp(is[(kz —2m&v/5) —kr])), (A27)

and, in particular, that no difficulty arises in the «' integral at the point « =(2m(d/k)'lz. Finally, if ksz

& 2m(d/k, instead of Eq. (A27) one finds that the j„„(z)term in Eq. (A23) gives rise to an asymptotic be-
havior of R(z; &u) of the form

z+( C~exp(z[- (2m&v/}I —kr) ~ + i']) + C4exp(z[- (2m&v/k —kz) ~ —i']) ).

The important feature of Eqs. (A26)-(A28} is that all of these terms vanish as z-~, implying that
R(z; ~) vanishes as z- ~, which was to be proven. Thus Eq. (A2) is established as being correct.

APPENDIX B

(A28)

In this appendix, Eq. (3.11) is shown to be a consequence of Eq. (3.2).
The first step in the proof is an interchange of dummy indices in Eq. (3.2), leading to the equivalent

equation

e so(s), 2 "d k
"" 2d«' "t' 2'„.„(z}j„„.(z')' j„„.(z}j„.„(z')

o z, z'; &o = ——. 5 z —z')+-
i(u m kw (2z)z „0 z «'".('( (o+i5 —(d„+(op (B1)

One proceeds by making use of the spectral representations of the outgoing and incoming Green's functions
G'(z, z'; Q), viz. ,

G.( ~. Q)
1 " e.(z}e'(z')

z, z, A (B2)

in terms of which Eq. (Bl}can be written more compactly. Specifically, substituting Eq. (B2) into Eq.
(Bl), one obtains the formula

4sio(z, z'; (d)
+&a ~(z) 5 + k ' d k

" 2d«' lim lim 8 8 ( 8 8n„2mn ~ (2s) .o s «" '&"z ' 's"4 '
Sz& Szz ( Ss3 Sz4

x('k~(z~)'k„(z4)[G'(z~, g; re+re„,)+O (zl, z~; —rd+ru, )]j) (B3)

[In writing Eq. (B3), the wave functions 4'~(z) have

been assumed to be real. This assumption is pos-
sible since the Fermi factor e,„.forces S~„.to be
below the vacuum level. ]

The next steps in the derivation of Eq. (3.11) in-
volve the use of the explicit representations of
G (z, z'; Q),

G (s, s'; Q)= [e'„(z)e„-(z')e(z-+)

+y'„(z')4'„(z)e(z' —z)], (B4)

and a similar expression for G (z, s'; E}which is ob-
tained from Eq. (B4) using the relation [cf., Eq.
(B2}],

G (z, z', Q) = [G'(z, z'; (d)] (B5)

where the 4„'(z}have been defined in Eq. (3.13},
and the Wronskian W(Q) is defined by

Equation (B4) and the corresponding equation for
G (z, z'; Q} are, of course, direct consequences of
the differential equation satisfied by G'(z, z'; Q),
namely,

( „,—V(z) ~
G'(z, z'; Q) = 5(z —z') . (B7}

2m dz j
According to Eq. (B4), one has that
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6"(z, z'; 0)= " 9„(z')e(g—z')+4'„(s'}
d

e(a'--*)),

and consequently, that

+ i
)

"@o( ) +Q(z')
( I) d&Q(z') d+o(z) e( ) ~

8( P)

Using Eq. (B8), the analogous equation for dG'(z, z'; f1)/dz', and finally, Eq. (BQ), one sees that

8 8~& e 8
lim lim —

~ ~

— @„.(z~) @~(z4) G'(zz, zs; ~+ &u„)
g g,+gs e~g agp ] LI SZ3 884

(BS)

[e(z —z') jg (z)j g „(z')+e(z'—z)j e „(z')jg „(z)]+~s &(z —z'), (B10)

where W, (d) and the j'„.„(z)have been defined, re-
spectively, inEqs. (8. 14}and (8. 12). Taking the
complex conjugate of Eq. (B10) and replacing &o by
—&u, one obtains an equation equivalent to Eq. (B10}
for the incoming Green's function. Substituting

these two equations into Eq. (BS) one finds that the
6-function terms all cancel, ~ and finally, there-
fore, that Eq. (BS) is identical to Eq. (S.11), which
was to be proven.
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