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Phonon dispersion curves of two transition-metal carbides TaC and HfC have been derived from the
three-body-force shell model (TSM). To account for the absence of the Lyddane-Sachs-Teller splitting
between the long-wave optic-mode frequencies the model has to be so set as to give a zero value to
the Lundqyvist effective charge. The TSM results are found to agree well with the experimental curves
of Smith and Glaser and are in this regard much better than the pseudopotential calculations of
Mostoller and almost as good as the double-shell-model and the simple-screened-shell-model results of

Weber for TaC and HfC, respectively.

I. INTRODUCTION

Since the publication of the neutron spectroscopic
measurements of the phonon frequencies of the
transition-metal carbides by Smith and Glaser!”? a
number of theoretical studies®~® have been reported
which interpret the dispersion curves either on the
basis of a modified shell model or through a pseudo-
potential formulation. The transition-metal car-
bides have certain points of similarity with ionic
and covalent solids, as also with metals. Thus
these solids generally crystallize in the NaCl struc-
ture, are hard, and have very high melting points,
similar to the homopolar crystals. They also have
large electrical conductivities and change over to
superconducting states at transition temperatures
T., which in many cases are much higher than in
the case of simple-metal superconductors. It is
therefore no wonder that both the shell-model and
pseudopotential theories are able to explain the dis-
persion relations in these solids with some suc-
cess,

The shell model (SM) with its various modifica-
tions has successfully explained the dispersion re-
lations in the ionic and covalent crystals, "2 and
the best description of the dynamical behavior of
ionic lattices is obtained from the breathing shell
model (BSM)!® and the three-body-force shell model
(TSM), ** which are to a large extent equivalent to
each other.'*’'®* However, as shown by Sinha, ¥
there is a close connection between the shell model
and the pseudopotential theory for the lattice dy-
namics of metals, so that the shell model can with
suitable choice of parameters describe the dynam-
ical behavior of metallic lattices also. A suitably
modified shell model can therefore be expected to
present a satisfactory explanation of the dispersion
relations in the transition-metal carbides. It may
be pointed out here that different modified versions
of the shell model applied to these crystals (Bilz, ®
Weber, * Weber et al.°) present much better agree-
ments with the experimental dispersion curves than
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the one obtained by the pseudopotential calculations
of Mostoller,

An interesting feature of the dispersion curves
of high-T, solids like TaC (Refs. 1, 18) and Nb
(Ref. 19) is the existence of anomalous wiggles in
certain branches. This anomaly is supposed to be
caused by some very-long-range ion-ion interac-
tions.® As suggested by Ganguly and Wood, % this
long-range interaction may be obtained by consider-
ing the electron-phonon interaction self-consistent-
ly: in other words, by including the w- and q-de-
pendent dielectric response function €(d, w). This
suggestion has led Weber et al. ® to use in their
analysis a short-range screened ion-electron-ion
interaction term. They have thus developed a sim-
ple screened shell model (SSM) for low-T, solids
and a double shell model (DSM) with the screening
term for high-T, solids. These models give a sat-
isfactory explanation of the phonon dispersion
curves., The anomalous wiggles in high-T, solids
have been explained as arising due to a resonance
effect. The resonance condition leads to the con-
clusion that the charge density represented by the
new electronic degree of freedom is weakly bound
at the metal ions and is in an unstable position with
respect to the displacements of neighboring charge
densities.,

As against this, the TSM is obtained by injecting
a long-range three-body interaction into the simple
shell model by Woods et al.?' Classically, the
three-body forces arise due to a charge transfer be-
tween neighboring ions and the transferred charge
varies with the relative displacements of nearest
neighbors. ® In this sense the physical content of
the TSM is nearly the same as that of the DSM. The
TSM is therefore expected to explain the dispersion
relations in the transition-metal carbides, partic-
ularly those with high T, sufficiently well. Fur-
ther, the TSM study of these solids will definitely
reveal whether or not the long-range ion-ion inter-
action responsible for the anomalous wiggles in the
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dispersion curves can be identified with the long-
range three-body interaction in ionic solids derived
by Lowdin® and Lundqvist, #

With this object in view we have applied the TSM
with a suitable modification to all the transition-
metal carbides. In this first communication we are
reporting results on TaC and HfC., The latter has
a low value of T, and its phonon dispersion curves
do not exhibit the anomalies observed in the case
of TaC. The TSM results on both TaC and HfC
compare very well with the results of Weber and
reproduce all the features of the experimental pho-
non dispersion curves to a very good approximation.

Quantum-mechanically, the TSM is based on the
Heitler-London approximation, while the SSM and
DSM use a free-electron-like screening of ion-ion
interaction. We can therefore conclude that the
behavior of electrons in transition-metal carbides
is described equally well by both the Heitler-London

" approximation and the free-electron approximation.
In Sec. II we discuss the applicability of the TSM
equations to the metal carbides under considera-
tion, and in Sec. III the results of our calculations.
A short discussion follows in Sec. IV,

II. TSM EQUATIONS FOR TRANSITION-METAL CARBIDES

The TSM equations have recently been corrected by
Verma and Agarwal® by choosing expressions for
the core and shell charges and hence of the elec-
tronic and distortion polarizabilities consistent with
the dynamical equations of the model. The authors
have also presented in this work a classical deriva-
tion of the Lundqvist potential based on the idea of
charge transfer due to overlap of outer electron
shells of neighboring ions. Since the second neigh-
bors in the NaCl structure are of the same kind
there cannot be a charge transfer between them,
This implies that the second-neighbor overlap will
not modify the three-body interaction term in the
lattice potential.
bor overlap potential can be included in the TSM
without modifying the three-body coupling coeffi-
cients. Since the carbon ion in the transition-metal
carbides is relatively small, the metal ions are ex-
pected to overlap substantially and the second-neigh-
bor short-range interaction between these ions may
not be negligible. Inclusion of this interaction mod-
ifies the basic equations determining the model pa-
rameters to

2 ’
Cp=-g [— 5.1122[Z +12f(a)] + A + 222
4a0 2
+9.3204Z (,ﬂM)] , (1)
da
r_ '

In other words, the second-neigh--
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where A’ and B’ are related to the short-range po-
tential %o, coupling the nearest-neighbor metal-
metal ions through

2 ZA' Z(R )

st (tt) (4a)
2B’ (1d(¢,)
4(aV 2y '<'r dr )r_m’ (4b)

and the other parameters have the same meanings
as in the corrected TSM equations of Verma and
Agarwal.®* The equilibrium condition now reads

B+B'=%12ayZ[Z +12f(a)] (5)

and the long-wave optical vibration frequencies are
given by

(hw})ge0=R{+ (f)feL) 3 (Z+12f(a)+6adf‘(la)> ,
(8)
(Bp)y-o=Rf - (ifer) 3 21z +12f(a)], ()
where
R4=Ro - (%f iz) (8)
ez
Ro="1')“(A+ZB), (9)
2y 2
%=* Y“izéj 2, K=1,2 (10)
' dy—d
z —1—{2[2:12]‘1(a)]}1/2: (11)
= ROY"{Z[Ii Izlzz.,f(a)]}l/z , k=1,2  (12)
_ 1. 810Z{Z +121(a) + 6a[df(a)/da)}
Jemt 3vZ[Z +12(a)] »  (13)
4ra
Jr=1- 35 14)

k are the isotropic force constants coupling the
core and shell of the «th ion and eY,{Z[Z +12f(a)]}*/2
is the shell charge.

Equations (6) and (7) have been put into a sym-
metrical form by Verma and Agarwal® who have
critically analyzed the dielectric properties of ionic
solids as described by the TSM. This analysis
leads to an expression for the Szigeti effective
charge, %

=1 -d)e,[1+Ma’/v)]™?, (15)
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TABLE I.
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Input data.

Elastic constants

Lattice pa{ameter 104 dyn/cm? Wy =wp o (used)
Compounds 2a, (A) Cy Ci Cy 0¥ rad/sec) (A9
TaC 4.5550* 5.5 1.2 1.6 10.8064° 0.39
HfC 4,642 5.0° 0.90 1.4 8.1676° 0.52

2Reference 29.

where ¢, is the Lundqvist effective charge,

eL=[Z(Z+ 12f(a)+4a££—ﬂ>]“2, (16)
and
7\=1—36—ﬂ- -egg(a‘zai)) am

d’ and o', representing the distortion and electron-
ic polarizabilities, are related to shell charges
through equations similar to Eqs. (12) and (10),
with e, replacing {Z[Z+12f(a)]}*/2. X goes to
zero for solids with Cauchy discrepancy zero and
is usually small. Of the remaining two factors in
Eq. (15), (1 -d’) entirely depends on the distortion
polarization parameter d and e, entirely on the
three-body force parameters f(a) and a[df(a)/da).
The dispersion curves of the transition-metal
carbides do not show Lyddane-Sachs-Teller (LST)
splitting between the long-wave transverse and
longitudinal polar vibration frequencies w; and
wy at ¢=0. This property can be directly con-
nected to the large electrical conductivities of these
solids. Imposition of the condition w; = w, on the
TSM equations directly leads to a vanishing Szigeti
charge. This demands either (1-d’)=0 or ¢, =0.
The former corresponds to an unusually large dis-
tortion polarization which is physically unrealistic.
In a preliminary study we have tried both these
conditions and have found that Eqs. (1)-(14) cannot
be solved for (1 -d’)=0, while e; =0 does not pose
any such difficulty. We therefore include

(18)

in the list of the basic equations for determining
the model parameters of the carbide crystals un-

eL=0

TABLE II. Model parameters.

PReference 4.

Values
Parameters TaC HiC

A 26.2443 27.0969

B -0.8611 -1.2558

A’ 5.9068 6.0722
a ég%)- —0.2148 - 0.2596

Y ~1.7 -1.1

d 0.2505 0.4818

°Reference 4.

der study. Substitution of e; =0 in Eqgs. (13), (14),
(6), and (7) directly leads to f; =f, and wy, = wp.
As suggested by Bilz® and by Weber ef al.,* the
polarizability of the carbon ion in the solids under
consideration should be extremely small and can
easily be neglected.

Equations (1)-(14) together with (18) represent
only seven independent constraints to determine the
eight model parameters in a one-ion polarizable
version of the theory given above. We have there-
fore chosen to represent the second-neighbor short-
range interaction by a single force constant 4’ as-
suming B’ =0, Inview of Eq. (18) the three-body
force parameters f(a) and a[df (a)/da)] cease to be
independent and the short-range force parameter B
is determined by the equilibrium condition. Thus
our model is essentially a five-parameter model.

IIIl. CALCULATION AND RESULTS

The input data for the two metal carbides are
given in Table I with their original references. To -
obtain the best agreement with the experimental
dispersion curves the values of the elastic constants
Cy2 and C, had to be slightly modified. The cal-
culated values of the model parameters A, B, A’,
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FIG. 1. Phonon dispersion curves of TaC. Triangles
and circles show the experimental points (Ref, 2). Solid
lines show results from a TSM calculation. Dashed lines
show Mostoller’s results (Ref. 6).
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FIG. 2. Phonon dispersion curves of HfC. Triangles
and circles show the experimental points (Ref. 2). Solid
lines show results from a TSM calculation. Dashed lines
show Mostoller’s results (Ref. 6).

aldf(a)/da), d(=d,), and Y(=Y;) are listed in Table
II. These parameters were used for evaluating the
coupling coefficients. The secular equations for
the lattice vibration frequencies break in 2x 2
determinants for wave vectors in the principal

. symmetry directions, and can be easily solved on
a desk calculator. The vibration frequencies

w ,(31) so determined are plotted against ¢ in the
three principal symmetry directions and are shown
by continuous lines together with experimental points
of Smith and Glaser'? and Smith!®in Figs. 1and 2. The
pseudopotential-model calculations® are also shown
in the figures by dotted curves for comparison.

It is obvious that the agreements presented by
the TSM calculations are much better than the
pseudopotential calculations. A comparison with
Weber’s curves shows that the TSM results are
as good as his DSM results on TaC and the simple-
screened-shell-model results on HfC. However,
we could obtain these results only by using values
of the polarizabilities of the metal ions about 50%
higher than those quoted by Pauling. %7

IV. DISCUSSION

The TSM formulation involves the valence Z only
in expressions like Z{Z+12f(a)] and Za|df(a)/da),
which are fixed by the input data. Variation of Z
will thus lead only to different values of the param-
eters f(a) and a[df(a)/da] and will not affect the
elements of the dynamical matrix. The valence Z,
however, is not a very meaningful parameter in
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the model, the ion charges with the transferred
charges being +[Z+6f(a)] = +{Z{ Z+12f(a)]}*/%. Our
calculations give {Z{ Z +12f(a)]}*/2=0. 86 and 1.03
for TaC and HfC, respectively, which are sub-
stantially lower than the valence 4 of the ions. The
values of Z[Z+12f(a)] with Z =4 will lead to unex-
pectedly large negative values for f(@), in which
case the TSM formulas may not be accurate. It
can, however, be presumed that the ions do not
carry charges +4e but much less. This is sub-
stantiated by the values of Z obtained by Weber*

in his calculations, which give for the carbon ion
inTaC Z=-0.71 and in HfC Z=-1.08.

The resemblance between the TSM and DSM re-
sults can be easily understood by comparing the
dynamical matrices derived from the two models.
These matrices nearly go into each other if we

-identify the three-body force matrix V of the TSM

by the short-range force matrix arising from the
second shell of the DSM. Further, the free-elec-
tron contribution included in the dynamical matrices
of both the SSM and the DSM is expressed by [Eq.
(2.4) of Weber]

sc _ Kk Qo __1_ - )
D*=41z%Z 75&(5((1) 1) . (19)
This contribution obviously affects only the longi-
tudinal branches in the dispersion curves. The
three-body force matrix also has a structure such
that it affects only the longitudinal branches and
can be approximated by a form similar to Weber’s
(2.4).2® Even though the meanings of the disposable
parameters may be somewhat different in the two
formulations, in a phenomenological theory the
TSM may lead to results similar to SSM and DSM.

The resonance effect in the DSM supposed to ex-
plain the anomalous wiggles in high- 7, transition-
metal carbides? is not obvious in the TSM formu-
lation, We may point out here that even in the
simple shell model one generally obtains dips in
the longitudinal acoustic branches near the zone
boundary in the [¢, 0, 0] direction. While such
dips appear in all shell-model calculations con-
cerning the alkali halides, they are completely
absent from the calculations on the alkaline-earth
oxides. The reason for this difference of be-
havior in the two systems is obviously not due to
the model, but to the values of the physical prop-
erties used as input data. In view of this observa-
tion we can possibly understand the difference in
the nature of the dispersion curves of the two
solids TaC and HfC as predicted by the TSM.
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