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Absolute de Haas —van Alphen amplitudes and g-factor measurements in Au using the
wave-shape-analysis technique*
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A technique of de Haas-van Alphen (dHvA) wave-shape analysis is described and used to determine
the absolute amplitude of the (111)neck and (110) dog-bone oscillations in pure Au. Only relative

amplitude and phase measurements of the first and second dHvA harmonics are required. The
technique projects out separately both the Lifshitz-Kosevitch dHvA second-harmonic content, and that

due to magnetic interaction effects, Measured dHvA absolute amplitudes are used to directly determine

electronic cyclotron-averaged g factors, with the result that g, = 1.04 + 0.03 for the (111)neck orbit

and g, = 2.04 + 0.28 for the (110) dog-bone orbit. The result for the neck orbit is about 15% less

than that obtained by Randles; there have been no previous g-factor determinations for the (110)
dog-bone orbit in the noble metals. The problem of experimentally determining the effective

demagnetizing factor of a nonellipsoidal sample is discussed.

I. INTRODUCTION

The de Haas-van Alphen (dHvA) effect may be
expressed in. a form similar to the original Lif-
schitz-Kosevitch (LK) expression as

M=+A,""si
n[ 2wr(E/B y)+ m/4-],

where

v ~

cos(7ItS) 8 avrX'g'IB-
sinhX„

(2)

I' is the dHvA frequency, B is the applied field, y
a phase factor, p, is the electronic reduced cyclo-
tron effective mass, S= (gg/2) where g is the elec-
tronic cyclotron-averaged g factor, X~ is the Din-
gle scattering temperature, X„=xApT/B, T is the.
temperature, X= 146.9 kG/K, and D is a geomet-
rical factor proportional to i d A/dk s I

'~ .
The dHvA wave shape which is observed is fre-

quently distorted from the relatively simple form
given by Eci. (1) by the self-modulation process
which is known as the magnetic-interaction (Ml)
effect. ' This wave-shape distortion arises be-
cause the dHvA signal is observed as a function of
changes in the applied field H, while the electrons
respond to the total magnetic induction B, includ-
ing the effect of the sample's own oscillatory mag-
netization M. MI effects are generally regarded
as a problem to be avoided; however, systems of
interest frequently display MI effects, and a pro-
cedure for accurately calculating the dHvA wave
shape in their presence is then required.

In addi. tion, MI effects may be used to great ad-
vantage, making it possible to measure the absolute
amplitude, )A, "t, of the dHvA oscillations without
an absolute cali.bration of the detection apparatus.
While earlier absolute- amplitude measurements
using the torsion method have been made with suf-

ficient accuracy to check the LK theory to within

10/0, the difficulties of either absolute calibration
or of accurate harmonic- content measurement
have previously limited absolute-amplitude mea-
surements by the modulation technique to about
+30%. The present results demonstrate that un-
der favorable conditions, the modulation technique
is capable of absolute-amplitude accuracy com-
parable to the torsion technique. For a material
with a well-known Fermi-surface (FS) geometry,
a determination of the absolute amplitude then
makes it possible to uniquely determine the numer-
ical value of any single unknown factor in IA&" l,
using Eq. (2). For example, the cosine spin-split-
ting factor (and from it a set of possible g val-

ues) may be determined in this way. This opens

up the possibility of g-factor measurements on the
larger regions of the FS, where the usual harmonic-
content method is inapplicable due to the dominance
of MI effects, and the spin-zero method is limited
to favorable circumstances where an (accidental)
spin zero occurs. It is also possible to measure
the scattering temperature X~ (proportional to the
cyclotron-averaged electronic scattering rate) in

this way, without making the usual logarithmic
"Dingle plot" of amplitude vs 1/H This can be.

very useful in magnetic alloy systems where X~
may be field dependent; Dingle plots obscure this
field dependence and at best give only a mean Din-

gle temperature, XD, in this case. We shall refer
to all such determinations of electronic cyclotron
properties, from IA&" I, as "absolute" measure-
ments.

II. %(AVE-SHAPE-ANALYSIS TECHNIQUES

Explicit relations describing the amplitude and

relative phase of the MI contribution to the ob-
served oscillatory magnetization have been derived
by Phillips and Gold and by Randles. The first
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FIG. l. Illustrating all possible ranges of values for
the observable phase parameter & =28~ —~2 (see text). In
general 8 lies between the appropriate pure-LK and pure-
MI limiting values, i.e. , to the lef't of the appropriate
vector representing the pure-LK limit and labeled by the
indices (p, q). The notation Q, q) is used to label the
various possible pure-LK limiting values, where p =-1
(+1) for an extremal orbit for which the extremal area
is a maximum (minimum) with respect to k&, while

q =-1 (+1) for cos(2mB) less (greater) than zero.

observable effect of MI is to leave the fundamental
(t = I) amplitude unchanged but to produce an addi-
tional second-harmonic contribution, Az ', to the
observed dHvA waveform which is phase shifted
relative to the LK contribution A2". The existence
of this phase shift makes it possible to separate the
MI and LK contributions and to determine the am-
plitude of each.

The field-modulation technique (FMT) is partic-
ularly useful for wave-shape measurements be-
cause of its "Bessel-function spectxometer" action
which makes it possible to enhance weak dHvA har-
monic content. ~ However, the FMT does intro-
duce both m and ns/2 phase shifts in the relative
phase (in I/H) between the various detection har-
monics, and these can be difficult to track down.
This difficulty may be avoided by usi. ng the px'oce-
dure described below, provided that one uses data
taken only at the even detection harmonics ttu (n
=2, 4, 6, . . . ) of the modulation frequency tc. s' In
addition, in pure samples, skin-depth effects can
alter As/A„ leading to a serious error, unless one
measures and properly combines signals from
quadrature detection phases, and in addition eor-
reets for the actual "modified Bessel function" in
the presense of skin effects.

A block of high-resolution dHvA data, consisting
of digitized voltages proportional to the oscillatory
magnetization and beginning at an ax'bitrary field
value Ho, is Fourier decomposed into sine and co-
sine components S„and C„relative to one edge of
the data block. This is done for each of the first

LK

R"
~2

Q

2

FIG. 2. Phasor diagram decomposition of the observed
g = 2 resultant amplitude, in terms of its I K and Ml com-
ponents: (a) for cos(2') &0 (g=+1); (b) for cos(2sS) &0
(q=-1). For either case, A2 —-v 2 B~ sine =tt (1-N)
x(R~ ) /2, while A2 =82 (cosa-@sine), where 0. is
the angle by which the observed r =2 resultant, B2
deviates from the pure-LK limit.

two dHvA harmonics in the observed oscillatory
voltage signal [Vos=(8„+C„)~s, r=l, 2] so that the
directly measured quantities are resultant haxmonie
voltage amplitudes V and harmonic phase angles
8„. The phase angle 8„ for each observed harmonic
amplitude, relative to Ho, is defined as

8„=tan-'(S„/C„).

Although 8„depends on Ho, the quantity 28& —8z
is independent of the (arbitrary) choice of He. ~ s

Furthermore, it can be shown's (i) that the value of
28j —83 for the observed voltage signal can differ
from 28, —8 for the oscillato~ magnetization only
by ns and (ii) that the resultant possible ambiguity
of g in the value of 28& —82 for the magnetization
can always be uniquely resolved using the observed
H or T dependence of 28, —8s. Since As "/As
~ Hs~s/T, increasing H (or decreasing T) will tend
to make A~L" dominant, and 8 wi. ll approach its pure-
LK limiting value. Figure 1 summarizes the range
of all possible values for 28, —83. The magnitude
of the relative phase angle,

8=- [28, —8, /, (4)

is always within either the range s/4 & 8 & v or the
range 3n/4& 8 &it, depending on the sign of the
spin-splitting factor, cos(2wS), with the value 8=it
corresponding to the pure-MI limit.

Figure 2 js a phasor diagram illustrating the ef-
fect of MI on the resultant &=2 magnetization am-
plitude Rsos and phase angle 8s. Each term (LK or
MI) contributing to Hsos is represented by a phasor
whose length and phase angle are the magmtude and
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dHvA phase of this term (with increasing dHvA
phase plotted counter clockwise from the positive
x axis). Zero phase angle corresponds to a pure-
I K r=2 signal A2LK. The phase of AIL depends on
the sign of the r=2 spin-splitting factor cos(22S),
so that there are the two possible phasor diagrams
shown in Fig. 2.

Since the observed value of e~ can deviate from
the pure-LK limiting value only because of an ap-
preciable MI component, it is convenient to define

—80B 8LK
2

—
a (5)

the angle by which 82, the observed value of 82,
deviates from the (known) pure-LK limiting value.
With this definition then

(28, —e,)"=(2e, —e,)""-~. (6)

Using Fig. 1, R2 may be projected into its LK and
MI components,

A2" = R2oB(cosn a sinn), (7)

(8)AMl W2 RoB s jn(y
1x(1 Pf)(RoB)2

with le=8m E/H, and N is the demagnetizing fac-
tor of the sample. A discussion of thi. s extension
of the Phillips and Gold expressions to include de-
magnetization is given in Appendix A. The positive
(negative) sign in (7) is for cos(22S) negative (posi-
tive). The three observable voltage amplitudes
are then GR, , GA~", and GA& ', where G is the
detection-system gain. G is dependent upon the de-
tection harmonic number n, and is proportional to
the modified Bessel function of order n, J„. The
ratio of these Bessel-function multipliers, for
dHvA frequencies I' and 2E, can be determined by
a separate calibration. ' Thus, three amplitude
ratios can then be formed, any pair of which are
independent, with the (unknown) absolute system
gain G canceling out in these ratios. For example,
for any detection harmonic n,

J„(x)GA2 v 2R2 sino!,
(1 gRoB

Z„(2x)CR", R,"
=-,'x(1 —X) ~A""~, (9)

so that, if N is known, it is only necessary to mea-
sure the relative amplitudes and phases of the re-
sultant first and second dHvA harmonics in order
to find the absolute dHvA fundamental amplitude
I+LE

I

III. EXPERIMENTAL

We have made precise dHvA wave-shape mea-
surements on the (111)neck and (110) dog-bone or-
bits in pure Au samples, in order to verify the
above quantitative expressions for MI and to evalu-
ate the g factor for these two orbits using two dif-
ferent and independent parts of the total information
available from wave-shape analysis. The g factor

for the neck orbit near (111)was measured earlier
by Handles, and dHvA spin-splitting zeros have
been observed for the neck oscillations -25' away
from (111). However, no g values have been re-
ported for the dog-bone orbit and the only deter-
mination for an orbit in the belly region of the Fer-
mi surface is the value g=2. 35+0.05, from a spin-
splitting zero Vl. 6' from (100) in the (110) plane. '~

The two samples used in these experiments were
single-crystal rectangular prisms of Au which were
grown by the Bridgman technique, spark cut from
the ingot, heavily etched to remove surface damage
and annealed before use to remove deep damage due
to spark cutting. The long axes of the two samples
were along (111)and (110), respectively; the sam-
ples were mounted in a small-angle rotator and
oriented parallel to the applied field within 0.05'.
The sample dimensions were 2. 60&&0. 89&&0. 97 mm

((111))and 2. 84x 1.05x0. V5 mm ((110)). The field-
modulation technique was employed in an automated
data-taking system centered on a laboratory com-
puter and designed to make precise wave-shape
measurements. ' The data used in obtaining the
results described below is the average of data ob-
tained from the 4(d, 6', and 8~ detection channels.
The amplitudes were computed by an iterative pro-
cedure combining precise Fourier analysis with the
successive subtraction of largest Fourier compo-
nents, so as to reveal weak harmonic amplitudes
(Appendix C).

IV. RESULTS

A. (111)neck orbit

The (111)neck orbit in Au is ideal for a test of
wave-shape-analysis techniques. The absolute
amplitude lA, "I is sufficiently large that appre-
ciable MI harmonic content is generated, yet the
LK second harmonic is also large, making it pos-
sible to verify the relations discussed above. The
first-harmonic resultant (voltage) amplitude Ros,
the ratio of first- and second-harmonic resultant
amplitudes R2o /RPB, and the relative phase 8 were
measured over a magnetic field range of 24 to 49
kG. The results of these measurements are given
in Fig. 3. The phase shift ~ of the r=2 resultant
exhibits the expected behavior, approaching zero
(LK contribution dominating} at high fields. The
comparable scatter in both R2 /R, and (1 —N)A~Lx,

in spite of the relatively small values of o, [see
Eq. (8)], is a measure of the precision with which
the phase measurements can be made.

The scattering temperature X~ may be deter-
mined from the slope (vs 1/H) of each of three
semi-independent functions which can be formed
from the data of Table I. Using Eqs. (2}, (7), and

(9), each of the following expressions is a linear
function of 1/H, with slope equal to —XpXB:
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(right-hand ordinates) and of e fEq. (6), left-hand ordi-
nate] vs magnetic field (in kOe) for the (ill) neck orbit
in Au at 2'=1.24 K. The theoretical limiting value of
e is 0 (corresponding to no y =2 MI contribution), at
high H and low T.

Expression (10) is just the conventional "Dingle
plot" used to find the scattering temperature from
the fundamental (r=1) dHvA amplitude. Note, how-

ever, that reductions in amplitude due to skin ef-
fects cancel in expressions (11) and (12). Expres-
sion (ll) uses the ratio of the LK projection of the
observed second-harmonic amplitude to the ob-
served first-harmonic amplitude. The gain of the
experimental detection system cancels in this ratio.
The function in Eq. (11) is equal to e»rn~" Icos
&& (2sS)/cos(sS) I, and so (11) may also be used to
evaluate the spin-splitting factor [Eq. (2)], once

Xg) is known.
Expression (12) utilizes the absolute LK funda-

mental dHvA amplitude determined from the MI
contribution to the observed second harmonic.
Again, the system gain cancels in this ratio so that
lA&~ I can be determined without an absolute cali-
bration of the experimental apparatus. The three
values of Xn, determined from expressions (10)-
(12) (see Fig. 4) agree rather well, being 0. 22
+ 0.003, 0.225+0. 05, and 0. 18+ 0. 04, respectively.
The consistency of these values obtained from three
independent ratios demonstrates the accuracy of the
projection technique, even when the MI component
is a small fraction of As. (The shift n from the LK
phase is only +10'. )

1. g factor from projected IK harmonic ratio.
Using Eqs. (11) and (2), the ratio of the r= 1 and
x=2 LK spin-splitting factors can be evaluated as

ln(Ro sinhX, /H ~sX,),
~

~

~R, (cosa —sino)W2sinllXc)
ln gOB sinhX~

~ ~

~

2 v 2Rs sina sinhX,
goB ~1/3X

(10)

(12)

cos(2sS)
cos (w S)

»x Is Rso (cosn —sinn) W2sinhXs
~)i,g D 8

gOB sinhX&

Taking p, = 0. 28, ' and using the measured value of
X~ =0.22, p was evaluated for each field value from

TABLE 1.. Harmonic amplitudes and phases and derived information for the (ill) neck
orbit. Left: relative harmonic amplitudes and phases. Center: ratio of cosine spin-split-
ting factors, derived from the LK component of R2/R~. Bight: cosine spin-splitting factor,
derived from the absolute amplitude obtained by a projection of the MI component of R2/R~.

(koe)

OB

RQB (deg)

LK harmonic ratio
p =

I cos(2mS)/cos(rS) I

cose + sine cose —sine
Abs. ampl. projection

(1 -N)~& cos(AS)

27. 55
31.30
34. 73
37.93
41.70
45.32
49.32

0. 064
0. 081
0. 096
0. 105
0. 116
0. 122
0. 134

ll. 1
8. 7
6. 8
5.5
4. 8
4.3
3.5

l. 00
0.95
0.92
0.86
0. 83
0. 80
0.78

0. 649
0.678
0. 706
0. 693
0. 686
0.663
0.671

0.488
0.505
0.496
0.464
0.482
0.490
0.528

monotonic
trend

0.678+ 0. 018
average

gN
= 1.04 + 0. 03

0.488' 0.015
average
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independently above. This test reveals a previous-
ly unsuspected skin-depth effect via the demagne-
tizing factor.

It is convenient to write the quantity of interest
by comblnlng Egs. (2) Rnd (9):

( ) ( )
2 &2ApsincE( Al

8, i, cos(mS)

780

770

0.02 0.05
I

0.04
t

0.05

/ (k08 )

FlG. 4. Dingle plots" for three different parameters
formed from the (ill) neck-orbit data of Table I (ordin-
ates in arbitrary units) vs 1/H: (a) Eq. (10); (b) Eq. (11)",
(c) Eq. (12). The dashed lines shown are drawn parallel
to the solid line, which is the best (least-squares) fit to
(a).

2V to 49 kG (Table I). The average value is p
=0.6V8+0. 018. The proper choice of sign in Eq.
(7) [minus is shown in Eq. (13)] is demonstrated in
Table I. Since the left side of (13) is field indepen-
dent, the measured combination on the right should
also be field independent. Note that although this
method determines the sign of cos(2vS), it does not

remove any of the ambiguity (tl + S) in the deter-
mination of g from the ratio of cosines. Following
the discussion of Bandies and using absolute-phase
measurements' to reduce the ambiguity yields a
value of the (ill) neck-orbit g factor of ~ = 1.04
+0.03. This is about 15% loteer than Bandies val-
ue of gg = 1.22 + 0, 12.

2. g factor from projected absolute amplitudes.
The g factor can also be obtained from absolute
amplitudes measured by the projection technique

[Eg. (9) and Fig. 2], which could be especially use-
ful for large orbits where the LK harmonic ampli-
tude is overwhelmed by MI, or where the (acciden-
tal) spin-zero technitiue is inapplicable. Compar-
ing the measured Al"* [Eq. (9)] with the same iluan-
tity calculated from Eq. (2) yields a value for
cos(vS). The principle uncertainty in (2) is the
curvature factor d A/dks contained in D. The prin-
cipal uncertainty in (9) is the demagnetizing factor.
As a test of the experimental technitiue (particular-
ly the measurement of phases) we choose the neck
orbj.t, for which the g factor has been determined

ft~tj SAMPLE P I lQ j SAMPLE

0.4

0.2 0.2

QQ I 1 l l i i i i i . QQ-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
END CENTER END

' FIG. 5. Spatially varying demagnetization factor cal-
culated using the method of Ref. 16 for a sample with the
dimensions used. Also shown are the skin depths calcu-
lated at f= 500 Hz, using measured magnetoresistance
(Ref. 17).

The first factor on the right comes from the mea-
surement. The second factor may be calculated
from Eq. (1), using the value of X determined
above. For the curvature factor in (1) we use
(d A/dks) '+=0. 26, obtained from an inversion fit
of Fermi-surface data. ' An independent check
using neck-orbit data only (Appendix B) gives 0.260,
so that tilts fRctoI' ls reliable to 1%. Tile x'eslllts,
shown j.n the right column of Table I, show no sys-
tematic field dependence, and are self-consistent
to within i 3%, in spite of the fact that the phase
shift 0, from which they are obtained is small
(&ll') and systematically decreasing wiih increas-
ing H. This demonstrates the relj.ability of the
projection technique. However, a comparison of

g values from the two methods requires an accurate
value for the demagnetization factor.

For a sample with a non-second-order surface,
the internal demagnetizing field is nonuniform, so
that the demagnetizing factor also depends upon
position, N=N(r). Joseph and Schlomann have
described a method for calculating the demagne-
tizing field, and bl(r), for uruformly magnetized
samples rvhich have the shape of a rectangular
prism. Thejr results show directly that the de-
111aglletlzlllg field, Rlld N(r), CRll be lligllly llollllnl. —

form. In samples with dj.mensional ratios of order
2:1:1 bl VRI'les fI'0111 0. 5 (ileRI' 'tile lollg-Rxls
end faces which are perpendicular to H) to -0.1
(near the center of the sample). An example is
show'n in Fig. 5. A volume average of this calcu-
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H '(kG ')

FIG. 6. Dingle plot" of »l.(1-N) I&~g I sinhX/X
x Ht t}J vs 1/H [see Eq. (14)]for the (110}dog-bone orbit
in Au at T =1.24 K. The slope corresponds toX~=0. 17
+ 0. 03 K. Also shown are conventional amplitudes B~
measured in the 4' and 8v detection channels. The var-
ious apparentX& values are due to skin-depth effects
(see text).

0.020

lation for the [ill] sample yields N« = 0.14, or
using Table I, cos(vS) =0. 51. This is to be com-
pared with a value cos(iiS) =0.89 from the I K har-
monic ratio (above). The difference amounts to
40%, far outside the limits of error of the mea-
surement (+ 5%%up for the MI measurement in Table I,
and + 3% for the I K measurement in Table I). Our
interpretation requires a discussion of skin effects
present in the measurement.

3. Skin effects and absolute amPlitudes Skin.
effects are made rather severe by the relatively
low magnetoresistance of Au, which reaches a
saturation value &p/p of 4 at [111]and of only 1 at
[110]. A computation of the skin depth 5 at a fre-
quency of 800 Hz (8pp) yields 0. IV mm at [111]and
0. 11 mm at [110]. As a result, the effective de-
magnetizing factor is not the average, but is
weighted towards the surfaces and end regions of
the sample, where n is largest. An estimate of N
within one skin depth yields N«=0. 41 (see Fig. 8),
which, together with Table I, gives cos(vS) = 0. 83,
less than 4% away from the value obtained from the
LK harmonic ratio. This good agreement is prob-
ably fortuitous, because of the complicated spatial
variation of N, but it does demonstrate that the ori-
gin of the discrepancy lies in skin effects entering
through the demagnetization factor. This demon-

A2IA1 (S2/St)f~tt '(&t)/~„"'(~a)].

Here, (St/S, }„is the ratio of measured signal levels
of second- and first-harmonic Fourier components
in the nip detection channel, and the ratio of effec-
tive Bessel functions is measured using a doubled
modulation field:

J"'(~,)/Z"'(~ ) = Z"'P. )/Z"'(3X, ) = S,(1.,)/S, (31.,).

These ratios are significantly different from the
ratios of J„. For example, using [111]neck-orbit
data at 1.24 K and 45 ko, with a modulation level
@=4.6:

n=4 n=8

[z„"'(x,)/z„"'(x,)]

(At/At) m,~:
[J„(i~.,)/J'„(ii.,)]„„:

7.12 2. 19 30.92

0. 1202 0. 1265 0. 1215

0.76 1.76 29.7

The good agreement (+3%) between At/A, values
in the different channels is evidence that this tech-
nique gives reliable results even when skin effects
modify the Bessel functions substantially (up to a
factor of 10) from Z„. Note that the modifications
are not largest at the higher frequencies but rather
the reverse. The modification is largest in the 4~
and 6+ channels because the principal effect of
skin effects is to shift the location of the Bessel
zeros.

strates the need in future g-factor measurements
with the absolute-amplitude technique either for
the use of ellipsoidal samples, or of long thin sam-
ples (N, small) and lower detection frequencies to
minimize uncertainty in (1 —N, }. We therefore re-
strict our attention in the balance of this paper to
one example where the direction of the uncertainty
leads to no error in the result. (See Sec. IVB).

Note that averaging data from the 4~, 6m, and
8+ detection-frequency channels does not introduce
a substantial error in the results due to skin effects.
The volume actually sampled drops out of the am-
plitude ratios used, and the demagnetization factor
is frequency insensitive when only the surface layer
is sampled, as in this case. To check this, am-
plitude ratios Az/A, were computed separately as
a function of detection frequency. The values dif-
fered typically by only + 3'%%up when the frequency
changed by a factor of 2. Note, however, that it
is essential not to use the usual Bessel functions
of the field-modulation technique to obtain these
numbers when in the skin-depth region. As re-
ported earlier for Cu-Fe, the dependence of A„
upon modulation amplitude differs significantly
from simple J„proportionality. In evaluating At/At,
the measured ratios of modified Bessel functions'
were used, i.e. ,
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TABLE Il. Results of p = 1 and r =2 wave-shape-analysis measurements
on the (110) dog-bone orbit in Au at T =1.24 K.

(kOe)

ao'
2

gOB

2 gOB
= (1-X)A~K (0)

~go(~

1
ALK

cos(FS) cale cos(~S)~

33, 02
34. 84
37.06
39.32
42. 02
45. 03
48. 61

0. 0406
0. 0497
0. 0577
0. 0705
0. 0835
0. 0949
0, 1118

0. 00580
0. 00790
0. 01037
0, 01427
0. 01930
0. 02519
0'. 03458

0. 00958
0. 01285
0. 01767
0. 02350
0. 03168
0, 04227
0. 05672

1.01
l. 03
0.98
l. Ol

l. 02
0.99
1.02

LX&=0.17s0.02; Id A/a%s I =0.26 (Ref. 14).
boos(sS) obtained from the ratio of (1-N)AP to IAP/ cos(sS)J~,.
A value of N,~&=0.40 was used (see text).

B. &110& dog-bone orbit

(tcR~ XH ~
(14)

vs I/H, as shown in Fig. 6. The slope gives Xn
=0.17+0.03 K. We note that a determination of

X~ by the usual method from the observed ampli-
tudes R~ leads to a serious error due to the field-
dependent skin depth in this case. Also shown in

Fig. 6 are plots of R~ as seen in the 4' and Se
detection channel. The values of Xn (0. 30 and

0. 64 K) differ by factors of 2 and 4, respectively,
from the value obtained from Az by the absolute-
amplitude method. The difference is due to the de-
creasing volume sampled by R, as I/If increases.
This effect is more serious in higher detection fre-

dHvA wave-shape-analysis measurements were
also made on the (110) dog-bone orbit in Au, using
another sample. This orbit is ordinarily somewhat
difficult for precise amplitude measurements be-
cause of the small magnetoresistance, which makes
skin-depth problems more noticeable. However,
by using only amplitude ratios Rso /Rt, amplitude
reductions due to the reduced volume seen as a re-
sult of skin effects cancel. There was no observ-
able Az for the dog bone at 1.24 K for 33~H~53
kQe, the value of n being 45'+ 2 for all field val-
ues. Thus, all of the observed dHvA second-har-
monic signal is due to MI, and the analysis does
not require the projection technique used for the
(111) neck orbit, though the lack of LK harmonic
content (in the range of field available to us) does
mean that the total information available from
wave-shape-analysis techniques is less.

Our results for Rz /R, vs If are given in Table
II. Using Eq. (9), the measured value of (1 —N)
x IAt I is just (2/a')(Rs /Rt ) and is also given in
Table II. The scattering temperature XD may then
be obtained from the absolute amplitudes by plotting

quencies, owing to the smaller skin depth, and
more serious at [110]than [111],owing to the
smaller magnetoresistance (see Sec. IVA 3) at [110].
As a check, we note that no such effects were ob-
served at [111](see Fig. 4), and the Xn value from
A~" is consistent both with the measured residual
resistance ratio and the Xn value at [111](both
samples were from the same crystal) but inconsis-
tent if the X~ values from R~ are used. Note that
the effective volume drops out in the ratio used to
extract A,"~'.

Using this value of Xn, [A, /cos(sS)], », may be
calculated and compared with (1 —N)At"x, as shown
in Table II. In calculating A~

K we use a value of
(d A/dk )

~ = 0 26 obtained from Ref. 14 which i,s
uncertain by at most a few percent (see Appendix
s).

The principal uncertainty comes in estimating
1 —N. The neck-orbit measurements of cos(vS)
demonstrated that N is dominated by the surface
region. In the absence of measureable LK second
harmonic as a check„we use as a first approxima-
tion the effective value of N determined in Sec.
IV A2. This value must be adjusted for the slightly
different dimension of the [111]and [110]samples.
Adjusting N, by the ratios of N values calculated by
the method of Ref. 16 gives N, = 0. 40. Using this
value (Table II) gives a mean value cos(vS) =1.01
+ 0.10, where the quoted error is principally the
effect of the + 0. 03 K uncertainty in X&. This gives

g, = 2. 04 + 0.28, assuming the most probable argu-
ment (S=1) for the cosine function. It should be
noted that the relatively large resultant uncertainty
in g, is due primarily to the insensitivity of the co-
sine function itself to small changes in g, (or S) in
the neighborhood of 8= 1, via the effect of the small
uncertainty in Xz& on the calculated value of Az",
but is not due to any large uncertainties in the mea-
sured A&" amplitudes, as demonstrated by the
small scatter in the last column of Table II.
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Our use of N,«obtained from [ill] does not lead
to an increased uncertainty in cos(wS) in spite of
the factor of 4 smaller magnetoresistance at [110].
Referring to Fig. 5 (right half), an improved esti-
mate of N,«may be obtained by scaling the mea-
sured N,«[111]by the ratio of calculated values
averaged over 1 skin depth. The result is N,«[110]
=0.47, giving cos(vS) =1.14+0.10. Although the
precise value of N,«[110] is uncertain, the direc-
tion of the change due to skin depth is quite clear,
and pushes cos(vS) to values larger than 1, which
is impossible.

V. SUMMARY

(i). A measurement of g from LK harmonic con-
tent for the neck orbit at [ill] in Au yields g„
= 1.04+ 0. 02, a value 15% lower than an earlier
measurement. 6

(ii). A test of g measurements from absolute
amplitudes determined from the magnetic-interac-
tion component of R2/R~ yields a value of cos(vS)
of 0. 51, which is 40% lower than the value deter-
mined from the LK harmonic content. The differ-
ence is interpreted as a skin-depth effect entering
through the demagnetizing factor N, which is spa-
tially varying in parallelipiped samples. Viewed
as an effective N,«, the value of N,« is quite con-
sistent with calculated N(r) averaged over the skin
depth.

(iii}. The determination of scattering tempera-
tures Xn for the [111]neck orbit has been made by
three independent methods: the conventional am-
plitude method (R~ ), the LK harmonic ratio
(A~ "/A& "), and the absolute amplitude A~"" deter-
mined from Am '/A,"". The internal consistency of
the results demonstrates the reliability of the pro-
jection technique.

(iv}. A determination of Kz& for the [110]dog
bone by two independent methods yields values
which are not consistent. Use of the conventional
amplitude method (R& ) yields values which vary
with detection frequency, and differ by more than
a factor of 2 with the value obtained from the abso-
lute amplitudes projected from R~/R~. The differ-
ence is shown to be a skin-depth effect, which is
severe at [110]due to the low magnetoresistance.

(v}. The g value for the [110]dog-bone orbit
has been measured from the absolute 'amplitudes
A, measured by projecting the magnetic interac-
tion component of Rm/R~. The results give cos(vS)
=1.01+0.10, or g, =2. 04+0. 28. Corrections due
to the smaller skin depth at [110]are shown to be
unimportant, owing to the fortunate accident that
the cosine has an upper bound of 1.0.
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In order to make accurate dHvA amplitude mea-
surements in nonspherical samples, it is important
to correctly include demagnetization effects. First,
since the usual derivation of demagnetization as-
sumes a linear relation between B and M, it is not
obvious that the same result emerges when M is
oscillatory in B. Second, with the primary change
just M- (1-N}M, then the second-harmonic con-
tent induced by magnetic interaction might be as-
sumed proportional to

A,"'~ ~[(I -N }A,]'~ (1-N)'.
It mill be shown that, instead, demagnetization
makes v- (1 —N)~, in which case

(1-N),

i. e. , linear rather than quadratic in (1 —N).
The first point follows by assuming that a given

value of M creates a demagnetizing B& and 8&..
B~ = (1 —N )4', H„= —N4vM.

The demagnetizing factor N may be viewed as
purely geomeA'ic, originating in a mapping of lines
of field under a coordinate transformation. There-
fore, the ~clue of N will n0I; depend on hou M
varies with B.~ Following Kittel 9 we assume the
electron sees the sum of the applied and induced
B fields.

B=Bo+B

but Bo = Ho (field applied outside the medium). It
follows that 8 =H+4m(l —N)M, and therefore

M =QA„sin(2'/ [Ho+(1 —N)4mM] + v/4 —rP],,

(A1)
proving the first point.

The second point follows from the above by anal-
ogy with the Phillips and Gold expansion technique.
For 4v(l —N)M/H«1, we can write (Al) as

M= A„sin r x-~'M vm 4,
where

x=2mE/H Pand d =(1 ——N)8v E/Ha.

(A2)

K' is identical with Phillips and Gold's v with the
additional factor of (1 —N). An expansion of (A2)
then yields

A"' dA2 = (1 —N)tcA3,
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APPENDIX A: MODIFICATIONS TO THE OSCILLATORY
MAGNETIZATION {INCLUDING MAGNETK' INTERACTIONS)

IN THE PRESENCE OF A DEMAGNETIZING FIELD
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proving the second point.

APPENDIX B: OBTAINING d~A ldka FROM
ROTATION CURVES

Hyperboloidal fit to neck A. (8):

Derivative of over-all FS fit:

(d'A/dk~s) '"
0. 260

2. General second-order surface

Here two rotation curves in perpendicular direc-
tions (1, 2) are required. The result, for H along

one of the principal axes, is

dA ' 1 dAt l. cPA

Fitting (110) dog-bone rotation curves~4 in two

orthogonal planes with the above expressions yields
a curvature value which may be compared with that
derived from a derivative of the over-all FS fit~:

Second-order fit to dog-bone A(8):

Derivative of over-all FS fit:

(dmA/dk~) ~~~

0.232

0.26

Although values of extremal areas are known

with very high precision (-0.0190) in metals such
as Au, and first-derivative quantities such as
m*/mo with reasonable (-1%) precision, there are
no direct measurements of d~A/dk~~, a quantity
which must be known in order to calculate g factors
from A,""[see Eq. (2)]. A fit to the area and m*

data yields parameters from which d'A/d&~s can be
calculated. However, in attempting to find a best
fit over the entire FS, accuracy at a given point
may be sacrificed. Since errors may increase in
the second derivative, it is useful as a check to
find a method which uses only data in the region of
interest. The method described below uses infor-
mation from rotation curves (d A/d8 ) for the orbit
of interest to get d A/dks. It is perhaps well
known but we include it here for completeness since
it has apparently not appeared previously in print.

l. Ellipsoid or hyperboloid of revolution

A straightforward expression of A(8) and A(B)
in terms of the parameters of a second-order sur-
face of revolution when B is along the axis of sym-
metry yields

daA 1 'r d~A
2 =2v 1 — —

i d 2, AD=A(8=0).
0) . J~

The neck orbit A(8) is well fit as a hyperboloid of
revolution, and accurate neck data exist. For
comparison, d~A/d&~~ values have been computed

from an over-all fit by Bossachi et al. ~ The re-
sults are as follows:

The agreement for neck data is excellent. The
agreement for the dog bone is adequate as a check,
given that the orbit is not a second-order surface.

APPENDIX C: FOURIER DECOMPOSITION

OF PRECISE AMPI. ITUDES AND PHASES

The precise determination of harmonic ampli-
tudes and phases was made possible (even though
the dHvA harmonic content amounts to only a few
percent in typical cases) by exploiting the capabili-
ties of the field-modulation technique, and by care-
ful, attention to spectral-analysis techniques. A
brief account is given here; more details are given
elsewhere.

Modulation spectrometry. The resolution of the
A/D converter limits the precision with which two

Fourier components can be compared. With weak
harmonics, this mould be a serious problem were
it not for the fact that the Bessel-function response
of the field-modulation technique allows an en-
hancement of harmonic amplitudes. Detecting at
the eighth harmonic, for example, allows an en-
hancement of Aa/A~ by a factor of 25 or more. As
a result, the first and second harmonics in the

measured signal at Sco may be made of roughly equal
magnitude, and A/D resolution is not a limiting factor.

The soindou. The field sweep is adjusted so as
to give about 8 dHvA cycles within a 256-point
sample or window. The modulation amplitude is
adjusted continuously to cover a constant fraction
of a cycle. With this small number of dHvA cycles,
the exponential variation of amplitude within a win-
dow is kept negligible. With a small number of
cycles per window, the number of samples per cycle
of the higher harmonics was kept large, allowing pre-
cise amplitude determination in the presence of noise.

I'ourier decomPosition. As a consequence of the
small window, sidebands of the fundamental in a
conventional Fourier transform (FT) would com-
pletely obscure small -harmonic amplitudes. Win-
dow weighting can reduce or eliminate sidebands,
but at the expense of spectral resolution. Trian-
gular window weighting was used to reduce side-
bands, and a combined Fourier-analysis-least-
squares procedure was developed to remove the
dominant Fourier components iteratively so that
successively smaller components at other frequen-
cies mere revealed. A Cooley-Tukey fast Fourier
transform mas not used, since a high-resolution
conventional FT allows far superior determination
of frequencies, amplitudes, and especially phases. ~~

The iterative procedure was as follows:
1. Determine precise windom frequency of fun-

damental (high-precision FT).
2. Determine precise amplitude of largest FT

peak, and subtract that signal from original data.
2. Fourier analyze new signal (data minus domi-
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nant Fourier component}.
4. Find the next largest peak in FT and subtract

it from signal.
5. Continue with succeeding peaks.

These amplitudes were used as starting values in
the next iteration:

1. Subtract all but the largest Fourier compo-
nent from the data. With precise FT, determine
its amplitude and phase precisely.

2. Subtract all but the second largest, and de-
termine its amplitude and phase precisely.

3. Continue until all peak amplitudes done.
4. Subtract everything, and calculate residual

"noise, "used as a measure of the error.

This iterative procedure was fast enough to be
carried out in a minute or two while the magnet
was being swept to the next window. It proved re-
markably successful. In tests with generated data,
Fourier components a factor of 100 smaller than
a dominant component (and far smaller than its
sidebands) could be recovered with an accuracy of
1'%%. Accurate phase measurements are more dif-
ficult, especially in the presence of noise, because
the calculated phase depends critically on knowing
the frequency very well. As long as one harmonic
was strong enough to serve as a frequency refer-
ence, phase measurements accurate to 1 deg were
possible.
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