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%'e show that the cohesive energy, lattice constant, and bulk modulus of Li, Be, Na, A1, Ar, K, Ca, and Cu
can be calculated using the local-density scheme of Kohn and Sham, to within —20%, —0.3 Bohr radii, and
—10%, respectively, of experimental values. These calculations are truly a priori in that the only inputs are
the atomic number Z and the zero-point lattice properties. Self-consistent crystal calculations were performed
using the muffin-tin approximation, and atomic calculations were performed using the spin-polarized exchange-
correlation functional constructed by von Barth and Hedin. The results show that these approximations are
adequate for computing the equilibrium properties of crystals (errors in the computed pressure-volume
relations are less than —IO kbar), but errors occur in the atomic calculations for atoms with more than one
electron outside a closed shell, and possibly in the muNn-tin approximation for transition-element crystals.

I. INTRODUCTION

According to Hohenberg and Kobn, '
a3.l, ground-

state properties of an interacting electron system
are unique functionals of the ground-state charge
density. Furthermore, Kohn and Shama showered

that this charge density can be obtained, in princi. -.

ple, from a one-electron Schrodinger equation con-.
tains. ng an effective potential, although the exact
form of the exchange-correlation part of this po-
tential (though it is a unique and problem-indepen-
dent functional of the density) is not known. The
calculation of excited-state properties, on tbe other
hand, will require information (energy-dependent
self-energies, vertex corrections, etc. ) which is
not needed for the ground-state calculation, and
about which relatively little is known. ' Thus,
ground-state px'operties such as the- cohesive ener-
gy, lattice constant, and bulk modulus can be cal-
culated vrith less uncertainty than any other prop-
erties of a material.

We report here on calculations of these proper-
ties for I.i, Be, Na, Mg, Al, Ar, K, Ca, and Cu
in the fcc or bcc structures, using the local form
of tbe exchange-correlation potential obtained by
Hedin and I undqvist4 from the theory of the homoge-
neous electron gas constxucted by Singwi et al. '
The only input information required for our calcu-
lations is the atomic number Z and the zero-point
lattice properties (lattice structure, Debye tem-
perature eD, and Gruneisen constant y). By iterat-
ing the (muffin-tin) energy-band calculation to self-
consistency, @re find the tota1 energy, pressure,
and bulk modulus as functions of the lattice con-
stant. %'e then compare these quantities at the lat-
tice constant where the computed pressure curve
passes through zero to experiment. The results
are generally in very good agreement With experi-
ment (cohesive energies are within -20%%u~, lattice

coQstRnts within 0.3 Bohl .x'adll and bulk moduli
within -10% of experimental values).

II. ATOMIC CALCULATIONS

The cohesive energy of a crystal is the difference
in the total energy of an atom in, the crystal and the
energy of Rn isolated atom. The local exchange-
correlation potential used in our calculations is
rigorously valid only in the limit of slowly varying
electron density, and involves serious errors both
within the atomic cores, and far from the nucleus,
vrbere an electron begins to leave its exchange-cor-
relation hole beh'ind. To tbe extent that the core
charge density does not change in forming the crys-
tal, a cancellation in the cohesive energy of the er-
rors due to tbe rapidly-varying core charge density
can be effected by maintaining internal consistency,
and performing self-consistent calculations for the
isolated atoms using the same exchange-correlation
functional as has been used in the crystal calcula-
tionS.

Actually, atoms arith electrons in other than an
s configuration outside a closed shell have spin-
polarization effects which lower their total energy.
The magnitude of this effect is not insignificant
compared to the cohesive energy, as shown by
Gunnarsson et g/. for sodium, using a spin-po-
larized exchange-correlation functional constructed
by von Barth and Hedin. v Therefore, we have per-
fol med oux' atomic CRlculatlons using Rn exchRQge-
correlation functional which is appropriate for spin-
polarized systems. This functional has the same
form as the one used by Gunnarsson et al. , and
given in Egs. (2) and (3) of their paper. However,
we have used c~ = 0.045, r~ = 21.0, c& = c~/2' ~',

&
=2'/'z~ so that our functional reduces to the

one given by Hedin and Lundqyist4 (which we used
for the crystal calculations) whenever the spin po-
larization vanishes. '
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TABLE I. Total energies of atoms (Ry).

Element

Li
Be
Na
Mg
Al
Ar
K
Ca
Cu

EHF

-14, 865
—29. 146

—323.718
—399.229
-483, 753

—1053.635
—1198.330
—1353.517
—3277. 928

bE

14.709
-28, 909

—322. 902
—398, 274
-482, 637

—1051,862
—1196.382
—1351,442
—3275, 460

6E

0. 027
0, 0
0. 024
0. 0
0, 014
0, 0
0. 017
0. 0
0. 018

aAfter Mann (Ref. 9).
Total energy of the spin-polarized atom, in the local-

density scheme.
'Lowering of the energy due to spin-polarization (local-

density scheme). There are no spin-polarization effects
for atoms with closed-shell, or s2 outside a closed shell,
configurations.

The results of our atomic calculations are given
in Table I, where we show the Hartree-Fock ener-
gies obtained by Mann, the total energy of the spin-
polarized atom, obtained as discussed above, and
the lowering of the total energy produced by the
spin polarization, which we found by performing a
separate self-consistent atomic caIculation using
the spin-unpolarized exchange-correlation function-
al given by Hedin and Lundqvist. The relatively
large differences between the Hartree-Fock and
local-density total energies are similar to those
found by Tong and Sham, ' and are due to the neglect
of nonlocal exchange effects in the local-density
formalism. Our results for the total energy and
energy of spin pola. rization for sodium and lithium
are slightly different from those obtained by Gun-
narsson et al. e; this is presumably due to the dif-
ferent values used for the constants in the exchange-
correlation expression. '

to the pressure, which would otherwise have to be
accomplished numerically, is thus effected alge-
braically. It is estimated that the total energies
are numerically accurate to about 0.001 Ry, and
the pressures to about l kbar. ) Given the pres-
sure P(a) at several lattice constants, the bulk
modulus is obtained from

dPB=-3a-
da

by numerical differentiation.
In order to include thezero-point properties of

the lattice, we use the Debye model, '2 in which the
lattice motion contributes to the total energy an
amount

Eo = S8 k 8&(Ry/atom)

B, = (1 + y) Po (4)

These lattice quantities must be added to the elec-
tronic quantities to find the properties of the crys-
tal. (For all the materials discussed here, the lat-
tice quantities are small compared to the electronic
quantities. )

In Table II, we show the values used for O~ and

y; we also show in this table the discontinuity in the
self-consistent crystal potential at the muffin-tin
radius. This quantity, weighted by the fraction of
the volume to which it pertains. gives a measure
of the validity of the muffin-tin approximation.

where k is Boltzmann's constant, and e~ is the
Debye temperature. The contribution to the pres-
sure is

Po = yEO/0

where y is Gruneisen s constant, and 0 is the unit-
cell volume; if we assume that y is independent of
volume, the lattice contribution to the bulk modulus
1S

III ~ CRYSTAL CALCULATIONS

The crystal calculations were performed for the
bcc and fcc structures using the muffin-tin approxi-
mation. For each material, the calculation was
iterated until the rms difference between input and
output charge densities inside the muffin tin was
less than 10 electrons. Our method of construct-
ing the total energy and pressure from the charge
density has been described in detail in an earlier
paper. " (Briefly, the expression for the total en-
ergy is rearranged so that all contributions from
the nonoverlapping cores appear in a single term,
which can be calculated to the necessary accuracy
by using double-precision arithmetic in the core-
state calculations; and the expression for the pres-
sure is rearranged so that the cores do not appear
at all. The cancellation of large core contributions

Element Structure OH~ (K) MTD (Ry)'

Li
Be
Na

Mg
Al
Ar
K
Ca
Cu

bcc
fcc
bcc
fcc
'fcc
fcc
bcc
fcc
fcc

344 1.18
1440 1.18,
158 1,31
400 1,48
428 2, 19
93' 1.78'
91 l.37

230 1,16
343 2. 00

0.0273
0.0757
0. 0246
0, 0595
0. 0936
0. 0453
0.0210
0, 0401
0.0977

~Reference 13.
bReference 14.
Discontinuity in crystal potential at muffin-tin radius.
Reference 15.

TABLE II. Lattice properties and muffin-tin discon-
tinuity (MTD).
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TABLE JQ. predicted and measured equilibrium propertiess

Element Cohesive energy (Ry/atom) Lattice constant (a. u, ) Bulk modulus (Mbar)

1259

Theory Theory Expt. o Theory

0.122
O. 244
0, 083
0.112
0, 244
O. OO59'

O. 069
0.134
0.257

0.121
0.294
0, 081
0.121
0.282
0, 0067
0, 066
0, 164
0.- 309

6.60'
6.02e

7, 98
8.46'
7.60

e

9, 90
10,52d

6.81

6.40
'5, 93,
7.69
8, 42
7.59
9.5

'9, 57
10, 0
6.79

0.132
l.15
0.O85'

0, 369
0, 880
0 025
0, 040
O. 152'
1.42

0.148
1.35
0. 090
0.405
0. 801
0.060
0.044
0.167
l. 58

~Reference 14.
Reference 13.

'Reference 16.
Room-temperature value.

'For same atomic volume as hcp (O'K}.
Reference 17,
Reference 15.

IV. RESULTS AND DISCUSSION

The predicted cohesive energies, lattice con-
: stants, and bulk moduli are compared to experi-
ment in Table III. The theoretical cohesive ener-
gies include the lattice contribution given by Eq.
(2), and the theoretical lattice constants are defined.
by the point where the sum of the electron pressure
and the lattice pressure given by Eq. (3) passes
through zero. The theoretical bulk moduli are then
obtained from the slope of the total pressure curve
R't 'tilis polllt uslllg Eg. (1).

Calculations for Be and Mg were performed for
the fcc structure, whereas these materials actually
crystallize in the hep lattice, The difference in
energy between these two structures should be
small compared to the cohesive energy, so that a
comparison of cohesive energies is meaningful.
(Note that the theoretical cohesive energies for the
hcp structure for these two materials will be
slightly larger than the values found for the fcc
structure, and the latter are already greater tha, n
the experimental values. ) The pressure-volume
relation may be more sensitive to crystal structure,
and a comparison of the lattice constant and bulk
modulus to experimental values fox Be and Mg is
probably less meaningful. (The "'experimental"
lattice constant for these two materials is that val, -
ue of- the lattice constant for the fcc structure which
gives the same atomic volume as is observed ex-
perime'ntally at liIluid-helium temperatures. )

%'ith the exception of argon, the predicted bulk
moduli are generally within 10k of experimental
values. The results for the lattice constants show
that the computed pressure-lattice-constant curves
are consistently too low. One possibility is that
the y values given in Table II are too small, or that
y depends strongly on volume. Except for Be, for
which a y of 3.4 would bring the lattice constant
into agreement with experiment, the values of y

TABLE IV. Pressure errors.

Li
Be
Na
Mg
Al
Ar
K
Ca
Cu

13.2
63.2
9.6
5.2

0
3.7
4. 5

24
12.5

QM (ay/atom)"

0.012
0, 022
0.015
0.005
0, 003
0, 006
0, 013
0.041
0.007

*&P obtained from Eq.. (5).
"0 is the atomic volume.

required to bring the theoretical and experimental
lattice constants into agreement are much too la.rge.
Thus, the results for the lattice constants are con-
sistent with the statement that the approximations
used in the crystal calculations (muffin-tin approxi-
lllatloll, Rlld 'locR1 exchange-correlat1oll potential)
lead to errors of the order of —10 kbar in the corn
puted pressure-lattice constant curve for simple
metals. In Table IV, we give the pressuxe error
5I due to the lattice constant error 5d, obtained
from Eq. (1) according to

6P 3B ()a/a

We also give the energy error Q()P in Ry/atom, ob-
tained by multiplying by the atomic volume 0 i.n ap-
propriate units. This latter quantity is a better
measure of the accuracy of the muf'fin-tin approxi-
mation than errors in the cohesive energy, because
the core contributions can be explicitly removed
from the pressure expression. " The cohesive en-
ergy, on the other hand, contains additional uncer-
tainties due to the use of an approximate exchange-
correlation expression for the valence electrons
of the isolated atom, especially far from the nucleus
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where the valence-charge density is small. Thus
the errors Q6P in Table IV (except for beryllium
and calcium) are larger for bcc than fcc materials,
reflecting the commonplace that the muffin-tin ap-
proximation should be worse in bcc materials be-
cause of their larger interstitial volume. Calcium
is the only material in Table IV with a partially
filled d shell, and it is possible that its relatively
large value of 06P is due to the anisotropy of the
d-charge density, which is ignored in the muffin-tin
approximation. This suggests tha, t the muffin-tin
approximation or the local exchange-correlation po-
tential may involve serious errors when used for
energy-band calculations in transition metals.
(Preliminary calculations for vanadium and chro-
mium suggest pressure errors 5P around 100 kbar
and 06P values as large as 0. 1 Ry. )

Solid argon is unique among the materials con-
sidered here, in that its pressure-lattice constant
relation has a large second derivative. Shifting the
P-vs-a curve upwards by 4 kbar not only brings the
lattice constant into agreement with experiment,
but also reduces the theoretical bulk modulus to
about 35 kbar, in much better agreement with ex-

perimentt.

The cohesive-energy results a.re somewhat poor-
er for elements with more than one electron outside
a closed shell. As mentioned above, we believe
that this is due to errors in tbe atomic calculations
rather than in the crystal calculations. As further
evidence, tbe computed crystal energy is almost
independent of the lattice structure if the atomic
volume is kept fixed (this rule leads to lattice con-
stants which are quite close to the ones giving zero
pressure for the two cubic lattices considered).
This energy difference was found to be 9x10 By/
atom for beryllium and 6x10 By/atom for sodium,
with fcc lying lower than bcc in both cases. These
energy differences are beyond the estimated accu-
racy of the calculations, and should not be taken to
indicate the relative stability of the fcc structure;
but they are so much smaller than the errors in the
cohesive energies that the latter are almost cer-
tainly due to errors in the atomic calculations.
Thus, there appear to be effects, beyond the spin-
polarization effect, which must be taken into ac-
count in the local-density scheme for configura-
tions with more than one electron outside a closed
shell.

The cohesive energies obtained here are com-
pared to those found in earlier calculations' and
to experiment in Table V. Most of these calcula-
tions arrived at a cohesive energy based on a spin-
unpolarized atomic calculation. To provide the
reader with a basis for comparison, we have sub-
tracted the energy of spin polarization given in Ta-
ble I from the cohesive energies of these authors.
Since they used different approximations for the

TABLE V. Comparison of cohesive energies (Ry/atom).

Material Expt. a This work Previous work Previous work'

Lid

Li
Na
K
Ar
C.U

. 0.122
0. 122
0. 083
0, 069
O. OO59g

0.257

0. 121
0, 121
0„081
0, 066
0.0066
0. 309

0, 124
0, 148

O. OSob O. 1O2'

0 075"
o. oooo"
0.281i

0. 121
0. 072, 0, 078

0. 058

0.263

~Reference 14.
"Reference 19.
'For purposes of comparison, the spin-polarization

energies given in Table I have been subtracted from the
cohesive energies found by those authors who used un-
polarized atomic calculations (see text).

Using spin-polarized atomic calculation.
'Reference 18.
Reference 20.
'Reference 15.
"Reference 21.
Reference 22.
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exchange-correlation potential, the energies in the
last column of Table V are not necessarily the same
as the cohesive energies that these authors would
have obtained had they performed spin-polarized
atomic calculations. The energies given in the
last column of Table V are probably reasonable
estimates, however.

The calculation of Ching and Callaway' for Li
was a non-muffin-tin calculation using the Xn
method with n =—,'; Averill's calculations' on the
alkali metals, the calculations of Trickey et al.
on Ar, '

a,nd those of Snow on Cu, mere all muf-
fin-tin calculations using the X~ method with the

virial" a, and Tong's calculation on Na was
performed using a cellula, r method and an interpo-
lated form for the exchange-correlation potential.
Where these authors have computed lattice con-
stants and bulk moduli, the agreement of these
quantities with our results is comparable to the
agreement between cohesive energies appearing
in Table V.

In summary, we have shown that the equilibrium
properties of simple metals can be computed from
first principles with good accuracy using the local-
density scheme of Kobn and Sham. Because the
pressure-volume relation of a crystal can be cal-
culated with no reference to the atom, agreement
of the lattice constant and bulk modulus mith ex-
periment constitutes a better test of the muffin-tin
and local exchange-correlation approximations for
f'rystals than does the cohesive energy.
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