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A calculation is given of the equilibrium properties of a two-dimensional Fermi gas at 0 K. The

ladder diagrams for the self-energy are summed, corresponding to a low-density expansion. We obtain the

Fermi energy, the quasiparticle lifetime, the effective mass, the ground-state energy, and the discontinuity

at the Fermi surface.

INTRODUCTION

In the past few years there have been a number
of experiments with He adsorbed on liquid 4He, '
and on exfoliated graphite (Grafoil). ' With such
substrates the two-dimensional signatures of these
thin films have been clearly observed. A model
which has not been used to investigate the pro-
perties of He films is that of a two-dimensional
imperfect Fermi gas. In this model, one neglects
the substrate interaction and the attractive part of
the effective He-'He interaction. At 0 'K I have

been able to obtain the following expressions for
the quasiparticles's Fermi energy, effective mass,
and lifetime. One also obtains the ground-state
energy of the 'He system and the discontinuity at
the Fermi surface:
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In the above, a is the scattering length. Briefly,
the calculation proceeds by an approximation to
the self-energy. For low areal density, it is
shown that the ladder graphs are the appropriate
subset. The ensuing integral equation is solved
and an explicit answer is obtained for the self-
energy to second order in (Ink+a) '. These results
are generalized from a hard core to any short-
range repulsive interaction by introducing a two-

dimensional effective-range expansion of the scat-
tering amplitude.
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In second order there are six distinct diagrams
which can be grouped into two classes. Figures
1(c)-1(f) represent processes where two holes are
present. Because each of these diagrams has two
hole lines, their contributions to the self-energy
must be quadratic in the areal density, n. Alter-
natively, they must be proportional to k4~ V2(0)
= Vo (kza), where V(0) = nVoa . These dia'grams
are "events" in which the internal propagator of
the lowest-order diagrams is modified and where
the many-body medium makes its presence felt
via the additional hole line.

The remaining diagrams, 1(g) and 1(h) are the
second-order Born scattering terms. Since dia-
gram 1(h), the exchange scattering, is similar to
the direct interaction, we just consider diagram
1(g). In units where m = 1 and k'= 1,

GRAPH ANALYSIS

One of the obvious problems which plagues any
straightforward calculation for a dense Fermi
liquid is the lack of physical evidence pointing to
any subset of diagrams that should be summed.
Only in the low-density regime can a systematic
expansion be made. ' For a thin 'He film we can
use the same diagrammatic sum and obtain physi-
cally useful results.

To determine which graphs should be included,
we investigate contributions to the self-energy.
We first employ a potential U(r) which has a well-
behaved Fourier transform V(k). Figures 1(a) and

1(b), representing the two lowest-order processes
contributing to the self-energy are
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PIG. 1. (a) and (b) are the lowest-order self-energy
terms. The other diagrams are the second-order cor-
rections.

interaction between the two particles. We see
that for a dilute system, the graphs to retain are
the ladder diagrams with only one hole line. These
represent the repeated interaction of the same two

particles. All other "events" involve at least
three particle correlations and are less significant
for a low-density calculation. 8 the potential is
large or a hard core, any finite-order Born ap-
proximation is inadequate, and the whole series
must be summed. In three dimensions the essen-
tial effect of summing an infinite number of re-
peated scatterings is to change the Born scattering
length into the full scattering length. In two dimen-
sions, when the infinite series is summed, the
scattering length will appear only in the scattering
amplitude. It will be shown that the low-energy
a,mplitude goes as 1/ink+a. This is indicative of
the change in analytic properties of the self-energy
when an infinite class of terms is kept.

THE APPROXIMATION

&& G()(p —q)GO(q +k)G()(k) ~ &(')(z'(k~(z)z lnkza.

V, is the strength or the potential, and a is a pa-
rameter of the order of the spatial extent of the
potential, For low energy and a repulsive square
well, it is clear that Z, is smaller than Z~ by a
factor of the density. Of all the possible second-
order self-energy insertions that can be made for
a low-density system, the most important is the
Born scattering one. For higher-order processes,
we can amend this term by adding two different
types of corrections. The first type will involve
another hole line and must be of higher order in
the density. The second type will just add another

We can write the self-energy in terms of an
effective interaction
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Following Fedder and Walecka, the effective in-
teraction satisfies the integral equation
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Using relative wave vectors p =-,'(p, —p, ), p

'
= —,(p, —p, ), and G = p, +p„ the equation for F can
be reduced to
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In the above,
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)t) & (p —q) is the Fourier transform of the two-particle wave function. The quantity f (p, k) is related
to the scattering amplitude by f (p, k) = —(8v lk l)~~ e "~ f (p, k) for Ipl = Ikl. The advantage of using the
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modified scattering amplitude in I" and I'0 is that the potential has been formally eliminated from the prob-
lem. We can now expand the effective interaction in powers of 1/lnka. For the case of a hard core, we
employ the following expression' for f (p, k).

f (p, k) = —2)Tlkla c e" ~ (Ipla)[cos5 Z„,&(lkla) —sin5 y' „(lkla)]cosme.
m«

J and F are the cylindrical Bessel functions,

cos5. = 1'.(Ikla)/[y'. (fkla)+d'. (fkla)]'"

(5)

c =1 for m =0 and 2 otherwise, and 5 is the mth partial-wave phase shift. We see that for lpla= lkla«1,
f (p, k) is independent of Ipl. This is a useful result for the off-energy-shell behavior. We note that even
though the above was derived for a hard core of radius a, we can extend the result to any repulsive poten-
tial which is parameterized by a scattering length a. This is fully equivalent to the replacement of an ar-
bitrary potential with a hard core in the pseudopotential method. 6 A more detailed analysis appears in
Appendix B. For okla, Ipla «1,

f(p, k)=
- --

=
-2' 2'y'"

1nlkla (1nlkla)

where y=0. 11593. Using this expansion for f (p, k), the effective interaction [Eq, (4)] can now be solved
explicitly to second order in 1/in I k la.
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Here P denotes the principal part and q = —,'(p —k). The self-energy is now
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Integrating over ko yields the following expression for the self-energy:
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The Green's function for the sum of ladder diagrams is

1
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We can find the energy spectrum and quasiparticle lifetime from the location of the pole, e(p)+iy~= & p
+Z(p, 2t)o). A brief prescription for the calculation of the inverse lifetime appears in Appendix A:
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This behavior of the lifetime contrasts with the well know three-dimensional result
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To determine the Fermi energy and the effective mass we expand the real part of the self energy around
apl =kF..
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The constant terms are the Fermi energy, while
the linear terms are related to the effective mass
by m*=h ky/[Be(p)/B ~pl]),-) b„. In Appendix A a
short outline of the ca,lculation is given. The Fer-
mi energy is

k~ 1 0.45
2 le {lee e) )

and the effective mass is

m* 0. 86
m (Inky a)' '

(12)
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At this stage a discussion of the physical content
of the theory is in order. We must recognize that
the mass m is not that of a He atom but the effec-
tive mass of a single isotopic impurity in a dynam-
ic many-body medium. To date there is no calcu-
lation of it. Also, the implicit requirement in the
above peturbation calculation that the scattering
length be positive precludes any realistic compar-
ison with experiment. It has been known for some
time that the low angular momentum phase shifts
in mixtures of He and He, and in pure He are
positive for certain momenta. The remarkable be-
havior of bulk He at very low temperatures con-
firms the suspicions of many theorists that these
phase shifts imply a superfluid phase. Considering
the above arguments little direct connection can be
made between the preceeding calculation and ex-
periment. A more realistic calculation of the scat-
tering amplitude coupled with the known binding en-
ergy of a He atom would give information as to
the effective He- He interaction and to its bare
mass ~

To calculate the ground state energy we use the
fact that T = 0 K

Z y,' 1 0. 28
N 4 Ink), a (ink„a)

For the discontinuity at the Fermi surface we need

e Rey{p, p, ))
~Pp pp=s(&p )

In the first appendix an outline of the calculation is
presented, we here quote the result

0. 26
(1nk) a)'

If we set pp= —,
'

p in Zb(p, pp) the density in momen-
tum space becomes a step function. This is not
correct. Although the calculation of the momentum
distribution has not been done, one should get the
same behavior as found by Belyakov' for the three-
dimensional case. This view is supported by the
fact that a step function of height Z& would give an
areal density nZ~, which is less than the actual
value. Also, the finite lifetime of the quasiparti-
cles must alter the momentum distribution.

Finally we use our expression for the effective
mass to ca,lculate the low-temperature specific
heat, which is —, the three-dimensional value,

Cv= 2v /)/kbTm*/3/1 ky .
The result obtained is not expected to hold for all
temperatures. Experiments at very low tempera-
tures indicate a spin ordering which varies with
temperature and density. The spin ordering tem-
perature is in the m' K range in three dimensions
and is expected to be even lower in two. Above that
critical temperature this effect should be small.
For He adsorbed on He one must take into account
the contribution of surface capillary waves (rip-
plons). Density fluctuations can be disregarded
since the phonon specific heat goes as T .
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APPENDIX A

To calculate the lifetime we use the expression
~y= ImZ, (p, Pp). Taking the imaginary part of 8c
we get

) y d k d l
[

2 6 1 [(I )bk)+(p+f)/2+1 n(pek)/2-1 )(k(l )((yek)/2+1) (I +{pek)/2-1)]
4m jlnIql aj

We look for the limiting value as p approaches k~. Resurrecting Planck's constant and the masp we get
Eq. (IO).

Knowledge of ReZ(p, pp) can give us the Fermi energy and the effective mass.

Rz — du" 2
(&v)' " lnl ql a (Inl pl a)'

4m' dkd LReZ b(P Pp) 0 k
2 + 2 2 [)(k(I )1(y+k) /2+1) ( +(2+k) /2-1) + ( )(k))2(y+k) /2+1)1(p+k) /2-1 )(k ] '

~ink&a~ -l
An expansion in P is made around k~. The final integrals must be done by computer. Equation 11 is then
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For the discontinuity at the Fermi surface we start with the expression
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The part of the self-energy that is frequency dependent is Z, (k„,PO). We easily find
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This integral must be done numerically, and
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APPENDIX B

We now give a more detailed explanation of why

one can include any well behaved short range re-
pulsive potential. Using standard techniques of
partial wave analysis we can derive the following
expression for f(p, k)

f(p, k)=2wg e e"mcosme
m=0

x rdr U(r) F„(l k lr) z (Ip Ir),
0

where c is the same as before. The function
F„(ik is ) is related to the wave function P-„(r) by

g.„(r)=pc e" F (lklr)cosme.
m=0

For I p la«1 where a is the range of the potential,

f(p, k) =2wcoe"o U(r) Fo (lk I r) rdr
0

All other terms in the expansion go to zero at least
as fast as I p Ia. We reach the useful conclusion
that f(p, k) is independent of p. Because of this,
we can investigate the low energy behavior of
f(p, k) off the mass shell with iP i

= ik I. Once
again using two-dimensional scattering theory it
is easy to show that the modified scattering ampli-
tude can be written for low energy as

f(p, )=„,,

F.(1kl.) =-;[~.*(lkl.) +""-~.(I k I.)],
H (ikir) is the cylindrical Hankel function. One
can then obtain

cote, = ---' -a, r, ("a"~))/
9YO(ik iy)

eZO

For t k ja«1,
cotri, = (2/m)[ln(lk

I
a) —y],

which implies that

and

r, =w/2[in(lkla) &]

3(i&k) = —&w/fin(, l&la) —&I &—
2[in(tkla) —y]

This is the same formula that one obtains for a
hard core only now a is not the spatial extent of the
potential but some constant that parameterizes the
scattering.

Outside the region of the potential we must match
the logarithmic derivative of the wave function with
e (Z)

dF (lk Ir)
F (iki a) dv
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