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A simple ballistic model for vacancy migration is presented. An expression for the enthalpy of migration in
terms of the interatomic spacing and Debye temperature is derived and evaluated for 62 elemental crystals.
Calculated values agree with measured values within 15% for the 11 close-packed crystals where data were
found. For Si and Ge they equal high-temperature measurements. The model explains the anomalous
suppression of the low-temperature migration process near the melting points of Si and Ge.

Even for the simplest cases, such as the noble-
gas solids, attempts to calculate the enthalpy of
single-vacancy migration AH,(V), the enthalpy of
vacancy formation AH,(V), and the activation en-
thalpy for self-diffusion via a single vacancy pro-
cess

Q(V)=AH,(V) +AH,, (V) (1)

from atomic parameters, have attained only erratic
success.! One would expect calculations of AH.(V),
which involves an equilibrium state, to be simpler
and more accurate than calculations of AH,,(V),
which involves a dynamic process. For many ma-
terials of practical interest, such as semiconduc- -
tors, attempts to calculate even AH,(V) from first
principles,- have been disappointing to the point of
predicting the wrong sign.?3

In order to attain a reasonably quantitative de-
scription of AH,, for a range of crystals and to un-
derstand chemical trends, it has been necessary
to resort to highly simplified models which make
use of some empirical macroscopic parameters of
the normal crystal such as the Debye temperature
© or the elastic constants. The most successful
of these previous models seems to be that of Glyde*
and Flynn® (GFM), which is developed in terms of
the “dynamical” theory of diffusion.® The present
ballistic model (BM) is developed in terms of the
“absolute-rate” theory of diffusion.” While it has
been shown that the dynamical and absolute-rate
formalisms are nearly equivalent, ® the present
BM is quite distinct from the GFM in its descrip-
tion of the physics of the vacancy migration process
Moreover, the BM offers an explanation for the
fact that in Si and Ge the extrapolation of low-tem-
perature measurements® '* of the vacancy diffusi-
vity D, to high temperatures exceed the absolute
values measured!!!? at such temperatures!'® (see
Fig. 1). The GFM has produced no explanation of
this striking anomaly. This situation in Si and Ge
is strikingly different from other cases, e.g., Na,!*
where multiple processes contribute additively to
self-diffusion. One must conclude that the low-
temperature process in Si and Ge is somehow sup-
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pressed by high lattice temperatures.!®

The ballistic-migration process is illustrated
schematically in Fig. 2. In Fig. 2(a) we see a
close-packed array of spherical atoms with a va-
cancy. Suppose that the shaded atom is to move
directly into the vacant lattice site. It is necessary
that the two atoms butting against the shaded, mo-
bile atom move apart as indicated. Supposing the
atoms to be more or less hard spheres, as in a
Lennard-Jones model, it is evident that the butting
atoms need not move very far in the direction indi-
cated before the mobile atom can travel towards
the vacant lattice site almost as a free particle
[see Fig. 2(b)]. However, the mobile atom must
move from its original position #, to the midpoint
or saddle point 7, of its migration before the re-
storing forces acting on the butting atoms repell
them back to a point where they will again prevent
the mobile atom from passing into the vacancy ca-
vity. Therefore, the time allowed for the ballistic
migration of the mobile atom is only about 3 the
period 7, of the butting atoms in this particular
“migration” mode. Thus, the velocity of the mo-
bile atom must be

r=d/7, , (2)

where d is the distance that the mobile atom jumps
(here taken to be the interatomic spacing in the
perfect crystal), and

AH,(V)=sMr2+n/T, | (3)

where & is Planck’s constant and M is the mass of
the mobile atom. The second term represents the
phonon energy of the butting atoms in the migration
mode and is negligibly small compared with the
first term because the amplitude of their vibration
is not large. Thus, we approximate

AH, (V)=5Mr? . (4)

Evidently, the use of Egs. (2) and (4) will produce
an underestimate of AH,, (V) because (a) the fraction
of the phonon period 7, during which the mobile
atom can pass must be less than 3, and (b) the mo-
bile atom will experience some potential in the
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FIG. 1. Anomaly of single-vacancy diffusivity in Ge.
Si case is similar. High-temperature measurements,
Ref, 12, are less than the extrapolation of Whan’s low-
temperature measurements, Ref, 10. As Whan’s value
for the preexponential factor is somewhat imprecise, the
accurate Si measurements of Watkins are scaled by the
relative ®’s and plotted for comparison

saddle point region around »,, which will cause it
to slow down requiring a greater initial velocity
to complete the motion in the time allowed. In
keeping with the rate theory’ and the assumption
that the repulsive interatomic forces vary with a
large exponent of interatomic spacing, the repul-
sive potential is taken to be abrupt, short ranged,
and almost equal to AH,, (V) at 7, in Fig. 2(b). [Of
course, if the butting atoms experience a larger
amplitude vibration, the mobile atom may pass
without ever contacting them, but this would be a
migration mode of higher energy and would not de-
termine AH,,(V).]

In order to estimate 7,, note that a normal-mode
decomposition of the migration mode of the butting
atoms will emphasize a particular zone-boundary
phonon, or, for a lattice with a basis, a particular
optic phonon. As the atomic motion is perpendicu-
lar to the direction of migration and tangential to
the surface of the vacancy, it seems likely that
this mode will have approximately the same fre-
quency as in the perfect crystal. The particular
phonon corresponding to 7, will vary with crystal
structure and for anisotropic crystals, like Se and
Te, may vary with the direction of migration, Let
us leave such refinements to future study and adopt

here the Debye approximation
Ta=h/kO (5)

where k& is Boltzmann’s constant and © is the Debye
temperature of the perfect crystal.

Now the use of Eq. (5) will produce an underesti-
mate of the true period of the zone-boundary or
optic phonon'® 7,,. This will produce an overesti-
mate of AH, (V) which will compensate to some ex-
tent the underestimate produced by Eqs. (2) and
(4) noted above. Let us finally take

AH,(V)=3M(FdrO /n)? (6)

\

—BM— 1\ <-GFM: /
% \ 1\ /
4 \ /N /
w \ ;1\ /
& \ [ /

\ ! \ /

= \ / \ /
g \ / \ !
= / \ /
Z \ / \ /I
K \ £ A ’

X ;
e ./ l N,/ YaHW

lo fs fy

FIG. 2. (a) Schematic illustration of simple~-ballistic
process: close-packed array with vacancy V and mobile
atom (shaded). Butting atoms must move apart for mi-
gration to occur, (b) Assumed potential energy versus
position of mobile atom along reaction coordinate for two
models. In the present “rate~theory” ballistic model, the
mobile atom moves as a free particle, except for a small
region between the butting atoms, during the half-period
of the phonon during which the butting atoms are spread.
During the other half-period, the barrier potential around
7 is too high for the mobile atom to pass. The “dynami-
cal-theory” model of Refs., 4 and 5 assumes a time=-in-
variant effective potential which is derived from the
superposition of harmonic potentials fitted to the elastic
constants of the bulk crystal by assuming a smoothing of
the resulting cusps at a structure-dependent fraction,
0,067 to 0,104, of the cusp height.
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where F~1.0 may be treated as an empirically ad-
justed, structure-dependent parameter used to
correct the residual error betwen Egs. (2) and (5).
In Table I we see the values calculated with Eq.

(8) for the elemental crystals using the values of

d and © given in Ref. 15 and fixing

F(oce)=0.8 (7)
for body-centered-cubic crystals and
F(fcc) =F(hcp)=0.9 (8)

for face-centered-cubic and hexagonal-close-
packed crystals by reference to Franklin’s “pest
experimental values” for metals.!® The fcc value
of F was also used to calculate the values shown

in Table I for the diamond and other structure crys-
tals. The empirical values of F in Egs. (7) and

(8) seem physically reasonable in the BM. The
values calculated for the noble-gas solids are found
to be in excellent agreement with values obtained
by subtracting measured values' of AH;(V) from
measured values'® of Q(V).

It should be noted that while calculated values of
Se and Te have been included in Table I for the sake
of completeness, they are likely to be inaccurate
due to the anisotropy of these structures. An em-
pirical estimate of AH,,(V) for Te (Ref. 19) is about
50% greater than the calculated value. Rather than
simply assuming F(Te)=1.1, one should take prop-
er account of the symmetry and phonon modes of
these structures.

Now Eq. (6) is the same as that obtained by
Glyde* and essentially equivalent to that obtained
by Flynn® for the GFM, which is also illustrated
in Fig. 2(b). They apply the dynamic theory® and
consider the mobile atom to move in a particular
anharmonic potential. No special attention is given
to the motion of the butting atoms. The potential
seen by the mobile atom is taken to be invariant in
time and to be harmonic in the regions around the
lattice site 7, and 7,. The curvature of the har-
monic potentials is taken to be the same as that
deduced for the perfect crystal by analysis of 9, *
or of the elastic constants,® which is effectively the
same assumption. The simple superposition of
these harmonic potentials would produce much too
large an estimate of AH,, and a cusped potential
along the reaction coordinate, which would seem
unphysical. Therefore, this cusp is smoothed off
as shown by an assumption of anharmonicity in the
GFM. The height of the potential at »,, which
equals AH,(V), is assumed to be a constant frac-
tion of the simple-harmonic potential, the cusp
Py, (7,) for a given crystal structure. In Ref. 5
this constant fraction is denoted as 6% so that

AIIM(V) = 62 Ps'h(’rs) ’ (9)

with 5%(fcc)=0.104 and 5%(bcc)=0.067. These em-
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pirically adjusted parameters of the GFM are rad-
ically less than those of the BM, Egs. (7) and (8),
and are rather difficult to justify quantitatively.
They imply that the time required for the migration
event is longer in the GFM than in the BM by about
a factor of 3. Thus the GFM event would require
about three zone-boundary phonon periods, which
seems most unphysical for direct migration in a
simple structure. Moreover, the GFM assumes
that the potential for small displacements of the
mobile atom towards the vacancy. is the same as in
the perfect crystal. This assumption seems much
more dubious than that of the BM, that the tangen-
tial modes of the butting atoms are unaffected, and
has never been vigorously defended.*® We may
terminate this comparison of the GFM and BM by
concluding that the reason the two models lead to
the same formula is not that they are equivalent
but that momentum and position are conjugate vari-
ables which enter the harmonic Hamiltonian in the
same quadratic form, %

Consider now the problem of the anomalous sup-
pression of the low-temperature vacancy migration
processes in Si and Ge, *~*® noted in Fig. 1. One
can see in Table I that the calculated BM values
AH,(V,8i)=1,18 eV and AH,,(V,Ge)=1.11 eV agree
with the measured high-temperature values 1.2+0.3
eV, and 1.0+0.2 eV, '2 within experimental ac-
curacy. This does not prove that the high-temper-
ature migration process in these open, covalent
structures®® is ballistic or similar to that illus-
trated in Fig. 2, but it is clear that the low-tem-
perature process for which AH,,(V) is an order of
magnitude less® 1°

AH,(V* 8i)=0.33 eV, AH,(V™28i)=0.18 eV,
AH,(V*,Ge)=0.2 eV, AH,(V*,Ge)=0.1 eV

cannot possibly be simple direct ballistic migra-
tions. Because these low-temperature values of
AH, are so small for Si and Ge, the kinetic energy
of the mobile atoms in these processes must al-
ways be small., The mobile atom cannot move~
more than about 5 the distance to a saddle point in
the half-period of an optic or zone-boundary phonon
that the butting atoms are spread apart before they
rebound.

It has been shown!® that one can account for both
sets of values for AH, (V) in Si and Ge in terms of
the macroscopic cavity model.?! It was concluded
that the low-temperature process involves a cor-
related (or cooperative) motion of several sur-
rounding atoms so as to attain the minimum activa-
tion energy consistent with the necessity to break
nearest-neighbor covalent bonds.!® This correlated
motion with its exceptionally low AH,, (V) is possi-
ble because of the directional covalent bonding and
open structure of the Si lattice. Similar low-tem-
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perature vacancy processes are not expected or
observed in noncovalent close-packed structures.
They are observed in Si and Ge only at temperatures
well below @, typically around -é*Q, where optic and
zone-boundary phonons are not generally excited.

At such temperatures the mobile atom can slither
along a complex path in configuration space and
pass through the very lowest saddle point. How-
ever, when optic and zone-boundary phonons are
excited, the potential along this complex path is
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modulated with the frequency of these phonons and
the mobile atoms do not have sufficient time to
travel more than a small fraction of the distance

to the lowest saddle point before the surrounding
atoms rebound and knock the mobile atom back
towards #,. Thus, raising the crystal temperature
above © suppresses the contribution to D, from the
low-temperature process by causing the mobile
atom to reverse its course several times in its
transit from initial to final position.

*Present address: IBM Thomas J. Watson Research
Center, Yorktown Heights N,Y. 10598.
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