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Time-dependent Landau theory of charge-density waves in transition-metal dichalcogenides*
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A time-dependent Landau theory is proposed for the transition-metal dichalcogenides coupling the motion of
the charge-density waves to the electron liquid. The dissipative terms are related to the metallic resistance.
The "phason" or "phonon" excitations of the charge-density wave are found to be overdamped. Resistive

anomalies are predicted in the normal state.

I. INTRODUCTION

The anomalous properties of transition-metal
dichalcogenides such as TaSe~ have recently been
interpreted as being due to charge-density-wave
(CDW) formation. ' ' We have proposed a Landau

theory to describe the phase transitions and static
distortions of the charge-density-wave structure.
For the triple incommensurate charge-density
wave, the low-energy distortions are analogous to
phonons in a crystal.

In this paper, we write down a time-dependent
version of the Landau theory and calculate the dy-
namic behavior of these "phonon" modes. The
modes are found to be overdamped. The motion of
the CDW order parameter is coupled to the flow of
the electron liquid, and this flow is resistive. The
electrical resistance provides the dissipative mech-
anism in the Landau theory. We calculate the re-
sistance anomaly in the normal state due to order-
parameter fluctuations and to impurities. This
theory should provide the basis for a study of pin-
ning of the CDW to impurities, but we have not yet
undertaken such a study.

II. TIME-DEPENDENT LANDAU THEORY

The order parameter for the charge-density
wave is the electronic charge density of the d-band
conduction electrons. We write for the electronic
charge density

p(r) = p, (r)[1+n(r)] (l)

where p, (r) is the charge density in the normal
state, and n(r) is the real order parameter. In
order to describe the observed triple CDW state,
it is convenient to use three complex order param-
eters g, , one for each CDW,

n(r) =Re[&,(r)+y, (r)+y, (r)] . (2)

The free energy of one layer given previously is
then
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where U(r) is the impurity potential, and I q, I
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= Ig, 1=2m/X, where X is the wavelength of
the incommensurate CDW. The three q, vectors
lie in the I'M directions in the Brillouin zone 120'
apart. In order to study the commensurate CDW,
one must assume that a-f are periodic with the
periodicity of the crystal lattice. In the present
paper, we study only the incommensurate wave
and replace a-f by their constant parts ao-f, . We
assume

ao=a (T- T*),

and that the other parameters are temperature in-
dependent

The CDW order parameter n(r) describes the
short-wavelength components of charge density.
The long-wavelength components of the d-band con-
duction-electron charge density are treated as an
incompressible fluid. The macroscopic charge
density is ~, and the incompressible fluid motion
is described by the velocity field v(r), where

V ~ V=O.

The kinetic energy density is

(m*~/2e) v',
where m* is an average d-band effective mass.

We write two terms in the power dissipation

2
D= ~d'r vv vd r '+v vd,. ),

where the first term arises from the electrical
resistance when the electron fluid moves relative
to the crystal lattice, and the second term is the
dissipation arising from the motion of the CDW
relative to the electron fluid. In Sec. III, we will
relate y and g.

The equation of motion for the electron fluid is

m*po dv 1 eD' —=p E-- (88 dt 2
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where E is the electric field.
Neglecting inertial effects, the equation of mo-

tion for the order parameter is
8I 1 873
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III. VISCOSITY COEFFICIENTS

We now relate the two viscosity coefficients to
the resistivity. Applying a uniform electric field
to the pure metal, the equations of motion are

mpo dv ~ ~ 1 ~~ Bg;
— =poE-qv- —~ VP '+v ~ VP& +c.c.

8 dt 2 . Bt
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Equating (19) and (20), we find

r = no/2q) (21)

IV. FLUCTUATION-MODE RELAXATION TIMES

This microscopic picture would be quantitative if
the wavelength of the CDW were much longer than
Rn atomic length. This is not the case for CD%'s
since the wavelength is directly related to the Fermi
wave vector h. =o'/kz. Thus, we expect (21) to pro-
vide only an order of magnitude estimate for y. We
now return to the original physical picture treating
the CDW and the electron fluid as separate vari-
Rble8.

9 * +v. 7'g; =0

(10)

(11)

In the normal state, we write

y (r) —g y ei(o o&) & (22)

In the steady state, the CD% moves with the elec-
tron liquid, and the current density is v{r)=g v, e"'. (28)

] = pov = po E/'g = O'E,

where 0 is the electrical conductivity. Thus,

~ = po/o (13) 7' = pB+ po/e'q, (24)

The fluctuation. modes are uncoupled with the fluid
relaxation time

for the pure metal. If the CBW is pinned to the
lattice by impurities, dislocations, or grain bound-

aries, we have

and the CD% relaxation time

r,"=y/2z, ,

&, = —,'eo+e, (q, .q)'+f, (q, ~q)'.
(25)

{~r) y
e'l(og'& 4lf)

p(r) =po[1+ (i() cos(q, ~ r- (ut)] .
From the continuity equation, we have

v(r) = (po@o~qi/q &) cos(q& r - ~&) .
The dissipation per unit volume is

d 3 ~~o qpolo
2i

2g 1

(ls)

(17)

which is represented in the original physical pic-
ture by the second term of Eq. (7).

instead of Eq. (11), and we find

o'= po/('q+ k 3'0 o qy) ~

Up to this point, we have considered the charge
in the CDW and the uniform charge of the electron
Quid a,s two sepa, rate variables obeying macro-
scopic equRtlons of motion. In ox'dex' to relate the
two viscosity coefficients, we temporarily adopt R

more microscopic picture and treat the charge in
the CDW as part of the macroscopic cha, rge.

Consider a single CD%' moving with respect to
the electron f],uid:

In the ineommen, surate phase, the modes are un-

coupled at long wavelength with ~" and 9 given by

(24) and (2S) with

&q=(4eo+gfo) qgq

&o = (~ eo+Zfo& qsq
1

(27)

for the transverse and longitudinal "phonon" modes

of the CD% 'lattice. " These modes are over-
damped with long relaxation times at long wave-

length.

V. RESISTIVE ANOMALIES

A. Pore metal

A cha, x'ge-density wRve opens up Rn enex'gy gRp ln

the band structux'6 Rt the Fermi surface Rnd this
affects the resistivity in two ways. First of all,
carriers freeze out a.cross the gap and the number

of charge carriers is reduced provided the CDW is
pinned to the lattice; if the CD% moves with the

electron liquid, this does not affect the conductivity.

Secondly, the density of states available for elec-
tron-phonon scattering is reduced and the conduc-

tivity increased, For the pure metal, the second
effect can be represented in the context of the Lan-

dau theory as a reduction in g and we assume that
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the following expression is valid:

(29}

tential. The electron fluid moving past the im-
purity with velocity v experiences an additional
dissipation

In the normal state, we take the thermal expecta-
tion value of I « IP and find

1 3 U2 2

d'r Q y lv ~ vga I

=
imp in((/a), (34)

3211 ep p

(I«l ) =[AT/4m(epfpq', )' ']ln(&/a),

where $ is the longitudinal correlation length

which leads to an impurity resistivity of

0 g 32wpp(epf p) ( a (35)

$ =[2epqf /a (T- T*)]'~P (31)

and a is the lattice spacing. The conductivity of
the pure metal increases logarithmically with
T

3gq kT
&pp '6p

4 ( f 4}imp
ln— (32)

B. Impurity resistance

According to Ref. (4), an impurity is dressed
with a charge-density wave cloud even in the nor-
mal state. For an impurity at the origin, we have

U el (p+l1g)'8

2, —,'a, +e, (q ~ q, )'+fp(q& q, )'

where Uo is the space integral of the impurity po-

in addition to the electron-phonon resistivity given
by (32}, here N is the impurity density. For the
dirty material, the correlation length is finite at
the phase transition.

Thus, we expect a pretransition increase in con-
ductivity for the pure metal and a decrease for the
dirty metal.

VI. CONCLUSIONS

We have proposed a dynamical form of the Lan-
dau theory of charge-density waves in transition-
metal dichalcogenides. We have found that the
"phonon" modes of the charge-density wave lat-
tice are overdamped with long lifetimes at long
wavelength. We have also predicted resistive
anomalies in the normal state.
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