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Hot electrons on liquid helium
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Using a model of electrons trapped in image-potential-induced surface states, I have calculated the

mobility of electrons moving parallel to the liquid surface in high electric fields. To obtain agreement

with experiment, it is necessary to include a large number of quantum levels of the electron motion

perpendicular to the liquid surface. As the electrons are heated by the electric field they populate these

higher states.

I, INTRODUCTION

The unique system of mobile electrons on the
surface of liquid 4He has received extensive study
in the past few years. ' This system, whose motion
perpendicular to the liquid surface is quantized in
hydrogen-atom-like levels, was predicted~ to be
free-electron-like. Most of the experiments3'4 are
consistent with this view. The first calculation of
the mobility of electrons moving parallel to the
liquid surface indicated that gas atoms would be
the dominant electron scatterers above about 1.2

K, ' whereas electron-surface-wave scattering
would dominate at lower temperature. A more
recent calculation' showed that electron-surface-
wave scattering was unimportant above about 0. 85
K. Early mobility measurements ' showed only
gas-atom scattering, whereas recent measure-
ments' indicate that there is an additional scatter-
ing mechanism below about 1.5 K. An increase in
the mobility in high electric fields was predicted
but it has not been observed. However, a decrease
in the mobility with increasing electric field has
been observed. ""

In this paper, I shall discuss a calculation of
non-Ohmic electron transport on. liquid He. In an
earlier calculation of the non-Ohmic transport, I
assumed the electrons to be in the ground state of
the motion perpendicular to the liquid surface and
remain there in high electric fields. This assump-
tion ignores the increase in the population of higher
states as the electrons absorb energy from the
electric field. Therefore, it can not explain the
commonly observed decrease in the mobility with
increasing electric field. However, by including
the population of these higher quantum states, it
is possible to obtain good agreement with the ex-
perimental data. The main reason for the mobility
decrease as higher quantum states become popu-
lated is because the density of states increases
with increasing quantum level. Even though the
scattering cross section decreases for the higher
quantum states, the relaxation time increases for
higher states because the density of states in-
creases faster than the cross section decreases,

Therefore, as electrons populate higher quantum
states, the momentum relaxation time and, hence,
the mobility decrease.

In Sec. II, I will sketch a modification of the
earlier two-dimensional theory that includes high-
er quantum levels of the perpendicular motion and
also discuss the method used to calculate the scat-
tering cross sections in these levels. In Sec. III,
I shall compare the' results of calculations with
some recent non-Ohmic transport measurements. "

II. THEORY

A. Mobility

The image-potential-induced surface-state mod-
el' has great appeal because of its simplicity. An
electron is attracted to the liquid or other surface
by the image-potential attraction arising f rom the
polarization of the surface. If this polarization is
not strong enough to overcome the repulsive ex-
clusion-principle- interaction with the surface, the
electron will be localized outside the liquid surface.
The energy spectrum of this motion is nearly hy-
drogenic because the image potential varies in-
versely with the distance z from the surface. How-
ever, the finiteness of the potential barrier at the
surface causes deviations from the hydrogenic en-
ergy spectrum. '

One assumes the motion parallel to the liquid
surface is free- electron-like. Theory' shows
that electron-electron interactions cause the elec-
trons to crystallize into a two-dimensional lattice,
but the bulk of the experimental evidence' points to
f ree-electron-like motion. Nevertheless, these
measurements are not necessarily sensitive to the
short-range correlations that certainly exist be-
cause of electron-electron interactions. %ith this
reservation, I shall describe the parallel motion
as free- electron-like.

The image-potential model has been widely dis-
cussed. ' Therefore, I will not elaborate on the
model except to say that the total energy E is the
sum of the energy E„ for motion quantized perpen-
dicular to the surface and the free-electron-like
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energy E~ for the motion parallel to the surface;
i. e. , E=E„+E»= —Eo/na+IaK /2m, where Eo is
the binding energy, n is the quantum number, and
K is the wave vector parallel to the surface.

If more than one energy level is considered, the
Boltzmann transport equation is no longer two di-
mensional. Nevertheless, its solution proceeds
along the lines of my early calculation, ' which I
shall henceforth refer to as I. Because energy
and momentum changes are small in a collision,
the distribution function f (E„,K) is

y(E„,K) =y(E)+g(E) K, (1)

where f (E) is the part of the distribution function
that is isotropic in wave-vector space and depends
only on the total energy of the electron. The vec-
tor g(E) depends on the energy level E„and is in
the direction of, and proportional to, the electric
field F. The Boltzmann equation then factors into
two equations which are the same as Eqs. (7) and

(8) in I with f, replaced by f(E) The .energy E
that appears in I now represents the. total energy.
The collision integral Cf(E„,K) )Eq. (15) in I] re-
duces as in I tEqs. (18)-(23)], with the provision
that when converting from the summation over
quantum states to an integration over energy, the
density of states N(E) per unit energy per unit area
is used. It is defined as

and

.=-(--'. ~); ":,)
= fy exp[(- E+ E )/ka 7»],

~.=-p(-j'- '),

(6)

(8)

3Q Tm2yPG2

where M is the mass of a gas atom. This expres-
sion corrects a numerical error in I. For the
ground state, P(E) =G„= 1, and 7 and W(E) are the
same as in I.

The unnormalized electron distribution function
y(E) is

E dE
( k T 1+e F (E'1/k TmW(E'))'

(5)
Here e is the electron charge and k~ is Boltz-
mann's constant. This expression is the same
form as Eq. (13) in I. However, as notated above,
~(E) and W(E) are functions of the particular quan-
tum level, and the integration is over the total en-
ergy. If the integration variable in Eq. (5) is
changed from E' to E», f (E) can be readily evalu-
ated. It is, using Eqs. (3) and (4),

N(E)= „,g e(E-E„)

= No Q 8(E —E„)=N()P(E) .

= 1+ ~G2

V~ = eF 7b /m .

The quantum number N is defined by

(Oa)

(Ob)

Here e(E —E„) is the unit step function. The sum-
mation on n runs over all levels.

Because I am interested in analyzing measure-
ments made above 1 K, only gas-atom scattering
will be considered. This simplifies the calcula-
tions somewhat because the relaxation time 7. does
not depend on E~. In the Appendix, I shall outline
how to include other scattering mechanisms. Be-
cause the energy change in a collision is a small
fraction of the electron energy, scattering events
in which the quantum level changes are neglected.

The solution of the Boltzmann equation then pro-
ceeds along the lines in I. Details are in the Ap-
pendix. The momentum relaxation time is a func-
tion of the total energy; i. e. ,

Ex, g
&E &E (1O)

0

As an example, f(E) is plotted versus E in Fig.
1 at two values of V~/VR; T= 2 K, To amplify the
density-of-states effect, G„= 1. A Maxwellian is
shown by the dashed line. For Vn/Vs = 3, the dis-
tribution shows significant deviation from a Max-
wellian. It is, however, of Maxwellian form in

~(E) = r, IG„P(E)]-', (3) T=2K

W(E) = 3(m/M) wg G„P(E), (4)

where 7b is defined by Eq. (26) in I. The function

G„ is the ratio of the scattering cross section in
each quantum level n to the ground state n = 1.
Similarly the energy-loss-rate function W(E), de-
fined by Eq. (27) in I, is now

- I.O
I l I
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ENERGY~BINDING E'NERGY

FIG. 1. Logarithm of f(E) [Kq. (7)] vs. E/ED at 2 K
for different values of Vz/Vz. For the dashed lines
VD/V+=0; solid line VL)/Vz ——1; broken line VD/V+=3.
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each level. In the ground state T, = 10T. In higher
levels, . T„decreases markedly. T2= 3. 25T, T,
= 2T; T4 =~«T. This decrease in T„ is due solely
to the increase in the density of states. For com-
parison purposes, the f (F) were normalized to
unity at E=F-,.

The transport coeff icients are obtained in the
usual manner. The mobility is

dEE» 7(E)N(E) ' dEN(E) f (F).e sf (E),'
Pl

1
IC

(11)
After substituting Eqs. (2), (3), and (7) into Eq,
(11) and performing the integration over energy,
the mobility can be expressed as a summation over
all electron-bound states, It is

(i2}

—Ze/z + eF, z —Vz, z & 0
V —V, =0,

where Vs is the potential due to F, at a=0, Z is
the magnitude of the image charge, ' and Vo is the
surface barrier. ' If F, is small, it can be treated
as a perturbation of the first few hydrogenic energy
levels. Conversely, for the high quantum levels
or in a large field, the image term can be treated
as a perturbation. In this case, the unperturbed
wave functions' are Airy functions. For the en-
ergy levels in between these limits, the WKB
method can be used to find the wave functions and
energy levels.

It remains to calculate the matrix elements for
gas-atom scattering. For gas-atom scattering, it
is convenient to write

where po = ceo/rn and No is the quantum number of
the highest-energy-bound state. Since I am omitt-
ing the continuum states, f~ „=0.0+

Once the G„have been evaluated, Eq. (12} can be
used for p. . The evaluation of the G„ is the subject
of Sec. III. If all the G„are the same, it is ap-
parent from the structure of Eq. (12) that an in-
crease in F and hence, an increase in T„ leads to
a decrease in p. If there is a single level, then
Eq. (12) shows that ((( is independent of electric
field.

To proceed further with a quantitative evaluation
of the mobility expression, we must calculate the
scattering cross section in each quantum level to
determine G„.

B. Electron wave functions and scattering cross section

The electron mobility measurements that I will
analyze were made with an electric field F, nor-
mal to the liquid surface. This is in addition to
the field F parallel to the surface. The purpose
of F, is to insure that the electrons remain near
the surface at all temperatures. In the absence of
F„ the states are hydrogenic and therefore sub-
ject to spontaneous ionization above about 0. 5
K. "3 This happens because as n increases, the
level spacing goes to zero giving a divergent den-
sity of states and hence, a divergent partition
function. This level degeneracy can be reduced by
applying a small electric field perpendicular to
surface. This will then allow the electrons to
thermalize into the ground state by decreasing the
statistical weight of the excited states. This fact
was realized by some experimenters but appraently
not by others and has led to a failure to observe
the surface states in some cases. '

Therefore, it is necessary to consider the effect
of this field on the density-of-states function, as
well as the electron wave functions. The potential
energy of a single electron is

&& l@„(z,) I' IC„(z,') I'. (i8)

Averaging MG over all momentum transfers ~G,
inserts a 8(z, —z,') in the integral which allows the
integration over z,' to be performed. Therefore,

(17)

which is a convenient form since the integral is
just the average value of the square of the electron
charge density. The function G„ is, therefore,

»:. = a» i»„(»)i' Ja» i», (»)i'. (18)

This expression for C„and the energy levels found
by using the appropriate wave functions can be used
with Eq. (12) to obtain )u. This will be done in
Sec. III to analyze some recent experimental data.

III. COMPARISON BETWEEN THEORY AND EXPERIMENT

Non-Ohmic or hot-electron effects were first
observed by Sommer and Tanner. They measured

I +o(Ro) I' I4c(R') I'

~ I+.(R.) I' I4.(R.'I' V(R, R,) V(R, R,).
(i4)

Here the subscripts G and e refer to the gas atom
and electron, respectively. 8 is the radius vec-
tor, and 4'~ and@„are the wave functions of the
gas atom and electron, respectively. The pertur-
bation is

V(R„R.) n'2, &=,I '8 (R, —-R,),
where a, is the gas atom scattering length. The
gas atom wave functions are plane waves as are
the wave functions for electron motion parallel to
the liquid surface. Substitution of Eq. (15) into
Eq. (14) and subsequent integration gives

@2 )2
M — dz dz'e' z e».

m
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PIG. 2. Mobility vs the electric field parallel to the
liquid surface and different temperatures. Field I"&

perpendicular to the liquid surface is 20 V/cm. Circles
are the data of Hef. 11. Solid curves from Eq. (12)
with only gas-atom scattering. Dashed curves include
a phenomenoIogical surface scattering.

a mobility decrease with increasing applied electric
field. " This result can not be explained by the
strictly two-dimensional theory in I, since TG is
independent of energy. Therefore, even if the
electrons are heated by the applied electric field,
the mobility would not change. However, as Eq.
(12) indicates, the population of higher quantum

states of the electron motion perpendicular to the
liquid, can lead to a decrease in p, .

Recent measurements of the electron-drift mo-
bility were made by McGill and Bridges. ' They
also measured the field dependence of the electron
mobility in the temperature range between 1. 2 and

2. 1 K. Their data" are shown in Fig. 2. An elec-
tric field F, of 20 V/cm was applied perpendicular
to the liquid surface. The solid curves are calcu-
lated using Eq. (12) for the mobility, Expression
(7) is used for the distribution function. 1 treated
the field F, as a perturbation to obtain the wave
functions and energy-level spacing of the first
three quantum levels, The next 17 levels were ob-
tained using the WKB method. For the remaining
levels, the image potential was omitted, making
the wave functions Airy functions. Using these
wave functions, Eq. (17) was integrated numerical-
ly to find M~ and thus 6„. Only at the highest
fields was it necessary to include more than the
first 20 levels to obtain better than 1% precision.
Both the magnitude and field dependence are in
substantial agreement with experiment above 1.85
K. The agreement is surprisingly good considering
that there are no adjustable parameters in the the-
ory. However, one should note that the high-field
behavior arises from an average of the relaxation
time over many quantum levels and thus may not
be sensitive to fine details of the wave functions.

On the other hand, the theory, if only gas-atom

1/7(E) = P(z) (G„/v + R„/7', ),

where ~, is a constant that is determined by the
best fit of p, to the experimental data at zero elec-
tric field. The energy-loss function W(Z) is still
given by Eq. (4). R„has the same meaning as G„
but applies to the surface-scattering mechanism.
It is determined by the best fit to the non-Ohmie
data.

The dashed curves in Fig. 2 were obtained in
this manner with R„=n . While the fit could be
improved by a different choice of R„, there is not
much point in going any further with this method
of analysis. The real test of the non-Ohmie theory
is at the higher temperatures where gas atom scat-
tering predominates and, here, theory agrees well
with experiment.

An idea of how each quantum level contributes to
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FIG. 3. Integrated mobility up to level N normalized
to the total mobility vs level number at low and high
fields at 1.85 K.

scattering is considered, is at variance with ex-
periment below 1.85 K. Both the Ohmic and non-
Ohmic values of IL(, are higher than the experimen-
tal values. This is shown by the solid curve at 1.2

K. The result that the calculated mobility values
are larger than the experimental values means that
an additional scattering mechanism becomes im-
portant at low temperature It is presumably the
helium surface, The scattering can be described
by the electron- ripplon interaction. ' However,
because there is still some controversy over the
correct formulation of this interaction and, further-
more, because the experimental data is limited at
low temperature, I feel that a calculation using
this interaction may not be justified at this time.
In the Appendix, however, I show how to include
this scattering mechanism.

Nevertheless, I shall attempt to analyze the data
using a phenomenologieal energy- and temperature-
independent scattering cross section to represent
surface scattering. Furthermore, I assume that
surface scattering is elastic. In this case, the
momentum relaxation time is written as
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the current or mobility is given in Fig. 3 where

(uE(/p is plotted versus the level index ¹ pM is
defined as the fractional contribution to the mobili-
ty of all the levels up to and including level ¹ The
circles correspond to low electric field where the
electrons are in thermal equilibrium. The dots
correspond to a field of 1.2 V/cm. The liquid
temperature is 1.85 K in both cases. The high-
field results show that a large number of levels
give a significant contribution to the current. Be-
cause the electric field I, increases the level
spacing, the higher levels are significantly above
the hydrogenic binding energy E, . In fact, 50% of
the current is carried by energy levels that are
greater than 2. 5Eo above ground state.
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APPENDIX

To show in some detail how the Boltzmann equa-
tion can be reduced from an integro-differential
equation to a first-order differential equation, I
shall consider liquid-surface-wave scattering.
The interaction with the surface is conveniently
treated by quantizing the surface waves. In their
quantized form, they are called ripplons. The
collision integral, Eq. (18) in I, becomes for this
electron- ripplon interaction

Cf(Z, K) =
~ Lf dd dZ P(Z )'Mf(E )'((f(E , K'—q)n '—f(Z, K)(nnn 1)]i!(Z' —E En)

+ [f(E, K+ q)(n)q+ 1) —f(E', K)nz jb(E' —E —5(d))), (Al)

where Mfd(E) is the absolute square of the matrix
element for electron-ripplon scattering, n„ is the
ripplon occupation density, and 5(E) is the energy-
conserving 0 function. Since I am considering only
scattering events in which the electron quantum
number n remains unchanged, the summation over
n' contains only the term n'=n. The ~ functions in
Eq. (Al) are expanded as in I and then Cf (E, K) sep-
arates into two terms; one that is anisotropic in
wave vector space:

C(g. K) =g. K/~(z)

Cf (E) = ——Z —Er(E) sf(z)
m BE

(A5)

and solving the resulting differential equation.
If fact, because the equations are linear, gas-

atom and ripplon scattering can be combined to
give

l

Equations (A3) and (A4) define the energy-loss
function W(E) . Similarly, Eq. (A2) defines the
momentum relaxation time w(E). The distribution
function f (E) can be found by equating Eq. (A4) to
Eq. (11) in I, which is

r
d8g ~ K' —K ARE PE 2~„+1,

(A2)
and one that is isotropic in wave-vector space

and

1/~(z) = I/7' (E) + I/T„(E),

w(z) = w, (z)+ w, (z),

(A6)

(A7)

Cf(E) = „,—f dd M '(Z) P(E)E~

x E +hen v&+2
, s(z)

E W(E) f(E)+ k)q T
B sf (E)

BZ

(A3)

(A4)

where the subscripts G and R refer to gas-atom
and ripplon scattering, respectively. The differ-
ential equation resulting from equating Eqs. (A4)
and (A5) can readily be solved for the distribution
function. The momentum relaxation time r„(E)
and the energy-loss function W„(E) can be calcu-
lated once the form of Mg (E) is known,
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