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A Landau theory is proposed for charge-density waves (CDW) in transition-metal dichalcogenides with the

charge density as an order parameter. The theory predicts the sequence of phases, normal-state-incommensurate-
CDW-commensurate-CDW with decreasing temperature, separated by first-order phase transitions. The
peaks in charge density lie at "lattice sites" of a hexagonal crystal and for the incommensurate case the theory
predicts phononlike distortions of the CDW "lattice" as well as dislocations. Impurities pin the charge density
wave, broaden the phase transitions, and stabilize the incommensurate state relative to the commensurate
state.

I. INTRODUCTION

Recently the anomalous properties of TaSez and
similar materials have been attributed to charge-
density-wave (CDW) formation. ' 3 In the octahe-
drally coordinated structure, 1T-TaSe~ exhibits an
incommensurate-charge-density wave (ICDW) above
473 'K and a commensurate-charge-density wave
(CCDW) below 473 'K. In the trigonal prismatic
coordinated structure, 2H-TaSez is a normal metal
above 120'K and forms a CDW state below 120 'K.
These materials are essentially two-dimensional
metals with the transition-metal ions on a planar
hexagonal lattice. The band structure has sixfold
symmetry in the basal plane and the two-dimension-
al ICDW's form in the 1"M directions. The three
possible ICDW's are found to coexist. Electron-
diffraction, resistivity, and susceptibility mea-
surements have been made on a number of com-
pounds and binary alloys.

Wilson et al. have shown that CDW's in these
materials are Fermi-surface-driven instabilities
and are therefore related to spin-density waves in
chromium, I'~ to the spiral structures in rare-earth
metals, ' and to long-period ordering in alloys. '
Overhauser has proposed a CDW ground state for
alkali metals but this has not been confirmed.
Overhauser and Chan and Heine" discuss CDW
formation from a microscopic point of view, but the
microscopic theory is not well developed.

The purpose of this paper is to write down a phe-
nomenological Landau theory" for charge-density
waves in the layered compounds and to develop its
consequences. We will work with a two-dimen-
sional model of charge-density waves in one layer.
The transition temperatures are characteristic of
the layer type and are insensitive to the nature of
the neighboring layers; this indicates that the dom-
inant interactions are intralayer and that interlayer
interactions play only a secondary role. Interlayer
interactions do determine the relative phase of
CDW's on neighboring layers and provide a three-
dimensional stiffness to the structure; the CDW is

not two dimensional in the Kosterlitz-Thouless'
sense. We will choose the electron density as the
order parameter and write down the free energy as
a power-series expansion in the order parameter
and gradients of the order parameter. We include
an impurity potential to describe impurity effects.
This is accomplished in Sec. II, and the rest of the
paper is devoted to calculation of the properties of
CDW's using the Landau theory. We first study the
phase transitions and show that for the observed
triple CDW, the transitions are first order and the
phases occur in the order normal-incommensurate-
commensurate with decreasing temperature. Im-
purity effects are then studied, and we find that the
impurity potential drives the charge-density wave
and smears out the phase transitions. Each impu-
rity is dressed with a cloud of charge-density wave,
even in the normal state, and the impurity-impurity
i.nteraction is calculated. The incommensurate
wave i.s flexible and can distort in the impurity po-
tenti. al to lower its energy. This stabilizes the in-
commensurate wave relative to the commensurate
wave and depresses that transition temperature.
The fluctuation modes are then examined and two
hydrodynamic modes (small energy at long wave-
length) are found for the ICDW corresponding to the
transverse and longitudinal "phonons" of the two-
dimensional CDW "lattice. " Finally, a "dis loca-
tion" in the ICDW "lattice" is discussed, which is
the analog of the vortex in superfluid helium and
super conductors.

II. LANDAU THEORY

The natural order parameter for charge-density
waves is the electronic charge density of the d-band
conduction electrons. This charge density is cou-
pled linearly to the longitudinal lattice distortion
and the amplitude of the periodic lattice distortion
is simply proportional to the amplitude of the
charge-density wave. The charge density is a real
scalar quantity and one can construct a free-energy
functional of the charge density to describe the
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triple charge-density wave. With this approach,
the gradient terms in the free energy are compli-
cated, as is the fourth-order term. It turns out to
be simpler to use three complex order parameters,
one for each charge-density wave. We write for
the electronic charge density

p(r) = p, (r)[1+n(r)], (1)

where o.(r) is the real order parameter and po(r) is
the d-electron conduction-band charge density in
the normal state. Then we write o. (r) in terms of
three complex order parameters g;(r).

o(r) =Re[&,(r)+ g, (r)+ ps(r)] . (2)

The next step is to wr'ite down an expansion of
the free energy in powers of u (or g;) and gradients
of u (or itI;). We will discuss the various terms in-
dividually. For the free energy of one layer, we
write the expansion i.n powers of the order param-
eter as

F, = d'r[g(r) ct' —b(r) os+ c(r) n4

+ «r)(l tliea I'+
I
ea@sl'+

I ascii')],

where a(r), b(r), c(r), and d(r) exhibit the peri-
odicity of the crystal lattice. We will write, for
example,

and A is the wavelength of the ICDW, and the three
q& vectors lie in I'M directions 120' apart (Fig. 1).
eo and fo are the elastic constants for the CDW.
The total free energy is the sum of three terms

W'e make the usual Landau theory assumption that
the parameters go, bo, etc. , are smooth functions
of temperature and can be expanded in powers of
T- T„~ near the onset temperature. Since ao must
change sign near T», we assume that

ao=a (T- T*), (8)

and that the other parameters are temperature in-
dependent. In doing this, we have assumed that the
transition is,mean-field-like and that critical fluc-
tuations are unimportant.

III. PHASE TRANSITIONS

The Landau theory is capable of describing a
variety of situations depending on the magnitudes
of the parameters. Here we investigate several
phases of the clean metal with U=O. W'e proceed
by solving for the order parameters g;(r), which
minimize the free energy. When there are several

c(r) = co+ cg 8 (4)

where the six K; are the six shortest reciprocal-
lattice vectors characteristic of the planar hexago-
nal transition-metal lattice. The constant terms
such as co are sufficient to discuss ICDW's, but the
umklapp terms such as cq are necessary to discuss
CCDVP s. The unusual form of the fourth-order
term in Eq. (3) is chosen to permit description of
both single and triple CDW's (see Sec. III).

We next include the random potentia. l U(r), due to
impurities for the alloy case. U(r) could also be an

external potential.

F, = d'~ U(r) po(r) ci(r) .

The gradient terms are chosen so that the free
energy of the three charge-density waves is at a
minimum when they lie in the right direction and

have the right wavelength,

&, =' d'r e(r)g l(q~ v-fw~)4
I

where

+f(r) 2 Iq~«&; I', FIG. l. Sketch of the Fermi surface of 1T-TaS2 (Ref.
4) in the basal plane of the first Brillouin zone. The q
vectors of the three charge-density waves in the incom-
mensurate state are shown; q~ is shown as a spanning
vector of the Fermi surface. The vector from I' to M is
one half the first reciprocal-lattice vector.
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For the single incommensurate CDW, we write

y&(r)=foe"& ', y, =go=0. (0)

After integrating over a plane of unit area, we find
for the free energy per unit area for one layer

F = aaokp+ scoop .2 3

Minimizing F with respect to Qo, we find

0, T&T*
o [2a'(T*- T)/Sc]'~', T& T*

(10)

so that the phase transition from the incommensu-
rate to the normal phase is second order with tran-
sition temperature T» = T~. The free energy in the
incommensurate phase is

minima of the free energy, that is several possible
states of the system, the state with the lowest free
energy is thermodynamically stable. Throughout
the paper, we will compute the free energy per unit
area for one layer.

A. Single ICDW

dFgc dF&1
dT dT
I 2 1a coll(fl &+1) /3co (18)

In the presence of a periodic lattice distortion and

charge-density wave, there is an energy gap in the
band structure at the Fermi energy over the nested
portion of the Fermi. surface. Since the energy gap
is proportional to the order parameter, the energy
gap is larger in the commensurate phase and the
susceptibility smaller. The si.ngle CDW is a simple
example of a commensurate-incommensurate phase
transition driven by umklapp terms in the free en-
ergy. This case is not observed in practice, and

we turn now to the triple CDW.

C. Triple ICDW

We give the three CDW's identical amplitudes

and the phase transition is first order. The order
parameter is larger in the commensurate phase by

0 0 091(ql &+1) /~ 04 0 '

F&1=—ap/6cp .2

B. Single CDW

(12)
g, (r) = yp e"~"',

If the wave number of the incommensurate wave
is near one-third of a reciprocal-lattice vector,
the commensurate phase may be stable. For the
single commensurate CDW, we write

gq(o') =Ape' ~ ', go=go=0,

and find

[pap+ eoql(Ql &I~1) lko bffp+ 8cofo ~
1 2 1 2 2 1 3 3 (14)

Forcing the wave to be commensurate has cost
elastic energy from the gradient terms in the free
energy but has gained umklapp energy or "lock-in"
energy from the cubic term. The free energy
gained is approximately

2 1 x2 2
Fgc F/I eo'Vl(41 &+1) 401 4 b14 01 si (15}

where QQ1 is the amplitude of the CDW in the in-
commensurate phase

4Q. = [2a'(T.N —T)/3co]'" .

If F« —Fj, is positive, the incommensurate phase
is stable, whereas if F&c -F» is negative, the
commensurate phase is stable. At the phase tran-
sition from the incommensurate phase to the com-
mensurate phase F,c —F&I =0 and this conditio~ de-
termines the transition temperature

Sco 480ql(ql Kl)
)C I IN b1.

The transition energy is given by

and compute the free energy

F pappy —2bpfp+ o (15co 8do)Ao

Note the presence of a new cubic term (proportional
to bp) and a fourth-order cross term, which were
absent for the single CDW case. In order to take
advantage of the cubic term in reducing the free
energy, we choose the relative phases of the three
waves so that the cubic term is attractive. Thus
the cubic term acts as a "phasing energy. " With bo

positive, as assumed here, the three CDW's add,
as shown in Fig. 2, to give peaks in electron densi-
ty at lattice sites of a two-dimensional hexagonal
lattice with CDW "lattice spacing" equal to K,/q,
times the crystal-lattice spacing. We will show
below that the triple ICDW exhibits other proyer-
ties of a two-dimensional "lattice, " namely CDW
"phonons" and CDW "dislocations. " With bo nega-
tive, the signs of g& are reversed and the CDW "lat-
tice" is a hole lattice rather than an electron lat-
tice; henceforth, we assume bo&0.

There are two types of fourth-order terms in the
theory, a direct term —,

(Scp)(lpga

I + i/pi + l(ol ) and
a ~~o~s «rm —,'(12cp —Sdp)(l P,P, I'+

Iform,

I'+ Igp&ol').
With do= &co, the cross term vanishes and there is
no (fourth-order) interaction energy among the
three CDW's,' the free energy is 3 times that of the
single CDW case. For do& 2co, the cross term is
repulsive and the free energy of the triple CDW
state is increased relative to the single CDW state.

To compute the free energy of the triple CDW
state, we minimize F with respect to Qo and find
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To treat this commensurate case, we choose

(~) 4
( R(' r/s

The free energy per unit area for one layer is

(s(so 3coq1(q1 8+1) )4'0 (sbo+ 4bl)40

+ 8 (15co—Bdo)go .

(28)

To first order in ep and b& the free energy difference
between the commensurate and incommensurate
phases is

&sc —&8/ =3&oqi(ql 8If'1) 401 4b14 ol
2 j 8 8 3 3 (28)

with (t(o, given by Eq. (22). Forcing the wave to be
commensurate has lost elastic energy from the
gradient terms in the free energy but has gained
umklapp energy from the cubic term. Proceeding
as in Sec. III 8, we find (neglecting bo for simplic-
ity)

FIG. 2. Dots represent transition-metal atoms on the
hexagonal crystal lattice, and the lines represent maxima
in the charge density of each of, the three CDW's. At the
intersection of the lines, the charge densities of each of
the three CD%'s add up, and there is a peak in electron
density represented by the filled circles. These peaks
in electron density occur at lattice sites of the CDW
"lattice. "

15co —Bdo 4eoqg(qg —8Eg)
C I IX 7

1

Bn eoq1(ql 8+1)
St" 7

coque (ql 8+1)
(15co—Bdo)go

'

(28)

(30)

(31)

3&o 3&o
' 2&a

2(15co —Bdo) 2(15co —Bdo) 15co —Bdo

and a phase tran. sition which is first order with
transition temperature

Trg = I'*+ bos/(s'(15co Bdo)—

and transition entropy

&$=3(s bo/(15co —Bdo) .

(23)

(24)

With bo small, the phase transition is only weakly
first order. We now want to compare the free en,-
ergy of the triple ICDW with the single ICDW to find
out which is stable. We temporarily neglect bp and

find

E. Triple CCDW in octahedral layers

In 1T-TaSe&, q& is not close enough to 3K» and
it costs too much elastic energy to lock in with

q = —,'Kt. Instead, the CDW rotates 13'54' away
from the I"M direction so that Sp& - p2 = K&, and

p» p, and p, are 120' apart and Ipgl=lpgl=lysi
= lq& l. The wavelength of the charge-density wave
is almost unchanged, and it costs little longitudinal, -

elastic energy (proportional to eo); however, the
large angle of rotation costs transverse elastic en-
ergy (proportional to fo), and for this rotation to
occur, fo must be small. The umklapp energy now

comes from the fourth-order term. We write

(32)

&s/= - 3no/2(15co- Bdo) ~ (25)
an.d find

which is below Fj1 provided do& 43co The ampli-
tudes of the three CDW's are independent if do
== —,'3cp, this would be the case if the part of the
Fermi surface utilized by one CDW was not affected
by the energy gaps of the other two CDW's. One

expects a repulsive interaction of CDW's so that
dp&23cp', since one observes the triple CDW, not

the single CDW, we must have —,'Scp& dp& &Scp.

D. Triple CDW in trigonal primatic layers

In 28-TaSe2 and related materials, q& is very
close to 3K&, and the CDW locks in with q = 3K/.

+=t.s(so+3eo(q& ' ps A) +Bfo(q(+pi) ](t(o

8 bQAQ + 8 (15co + 4cy Bdo)fo (33)

Forcing the wave to be commensurate has cost
elastic energy to change the wavelength (neo) and
elastic energy to rotate the direction of the wave
(n f8), but has gained fourth-order umklapp energy
(nc, ). We assume c, &0 and neglect bo for simplic-
ity. The free energy in the commensurate phase is

3 I(so+2&8(qs ' ps —qs) +2fo(qs+ps) ]
3C 15cp 8dp + 4cf

The transition temperature is
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15co- 8do ~ p p
TC I +IN ( [so(q~ pI —qi) + fo(qI XpI) ]a'Ic, I

(85)
and we find

well as impurity- impurity interactions.

A. Normal phase

«[eo(qI pg qs) +fo(ql P1) ]~~CI =
15co —8do

2[co(q, p, —q,') + fo(q, Xp, ) ]
(15co 8do}(t)0

(s'7) (88)

We consider only one CDW and write the order
parameter as the product of a plane wave times a
smoothly varying part Q(r).

y, (r) = y(r) e'« ', y = q =O

This theory should describe the phase transition at
473 'K in 1 T-TaSea. The incommensurate-normal
metal transition is not observed in these materials
because the crystal structure converts to trigonal
prismatic at =600'K. 1T-Ta83 undergoes a phase
transition at 350 'K from an ICDW state to a com-
plex phase which has not been characterized yet.
The experimental situation on the 2H phases, to
which the theory of Sec. III D should apply, is not
yet clear.

The theory predicts that the onset transition from
normal metal to ICDW state is at least weakly first
order and that the ICDW-CCDW transition is first
order with an increased energy gap. The normal
order of the phases with decreasing temperature is
normal-ICDW-CCDW.

y(r) =Q 0;e"'. (88)

U(r) po(r) =g U; e""'~"+ c.c. (4O}

Since each of the Q, is small, we can expand the
free energy to second order in Q, .

& =g

[ohio+

so(qs ' q) + fo(qs q) ]0

+-g(U-4-+U-0-) .1
(41)

In the normal phase, there are only thermal fluc-
tuations and impurity driven fluctuations of (t)(0),

and Q(x} is small. We also Fourier transform the
impurity potential in the same way,

IV. A,LLOYS

In this section, we calculate the effects of the
impurity potential U(r) on the charge-density wave.
The other parameters of the Landau theory will
change in a, continuous way with impurity concen-
tration, and we are not interested in this effect.
The random impurity potential couples directly to
the charge-density wave and qualitatively changes
the nature of the phase transitions and the fluctua-
tion modes; it is these effects that we wish to de-
scribe.

To treat the impurity potential correctly, we
should take an ensemble of systems, each with a
particular distribution of impurities and a particu-
lar impurity potential U, (r). We should compute
the physical quantity of interest for each system
and then take an ensemble average. It is often im-
possible to carry out a calculation in this order, and
one must ensemble average at an intermediate step
in the calculation. This introduces an approxima-
tion which one should then discuss.

We will discuss impurity effects (i) in the normal
phase, (ii) on the incommensurate-normal phase
transition, and (iii) on the commensurate-incom-
mensurate phase transition. We will carry out the
calculations for the single CDW case; the physics
of the impurity effects is clear from this calcula-
tion, and the algebra is simpler than that for the
triple CDW. We will indicate, where possible, the
extensions to the triple CDW case. We will also
discuss the charge density near one impurity, as

Minimizing I' with respect to (I')„we find

(t) -= —U,/20;,0

0 2(.;=-,ao+ eo(qs ~ q) +fo(qi q)

(42)

Since the impurity potential has random phase, the
ensemble average of U, vanishes,

&U-&=O (y-&=O.

~ ~f(~+~~ )'r
4(r) = —0 II0~ 0

a

(48)

We find for the charge density (using eo= fo to sim-
plify the integral),

( ) ((
ss sos(t(, . )f(r/())

4n eoqg

However, the structure factor average 8, is non-

vanishing.

( ~
&

(Ua Ua& Nuo
(( 0 0 4( )0 4( 0)0

where uo is the space integral of the potential of one
impurity, and N is the impurity density. We see
that the impurity potential drives the charge-density
wave. The effect on the structure factor can be
stronger than thermal fluctuations and can produce
a visible pretransition effect in electron diffraction
well above the phase transition; this effect has been
observed in 2H- TaSez.

For one impurity at the origin U, =uo, and we
have
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where $ = (2e()qi/la() I)'~ is the correlation length,
and

f(~//&)= dye'" '(y —1) ' '. (46)

u() R2

U, , = —
z f —icos(q( R) .

4veoqi
(5o)

Thus, even in the normal state, impurities feel a

This function is asymptotically

~

~

ln(1. 12(/z), z./( «1
y(~/&)-

(v]/2r)'" e "", z/$»1 .
Thus, in the normal state, there is a charge-density
wave localized on the impurity whose amplitude
falls off as In((/z ) for z & $ and exponentially for

Expression (47) is only valid for rq, &I. For
the triple CDW, one merely replaces cos((I, r) by

K( cos((I( i').
A second impurity a distance 8 from the first is

' attracted to. the charge density of the first, and the
impurity-impurity interaction energy is

strong potential attracting them to the "lattice
sites" of the triple CDW. The i.mpurity interaction
is nothing new; it has been invoked to explain or-
dering in alloys where one does not observe a CD%
but where Fermi-surface effects are believed to be
important.

B. Commensurate-incommensurate phase transition

We consider now the ordered phases where the
higher-order terms in the free eriergy are impor-
tant. We write

A(r) = 4(r) e"",
e()=e, Z e;"", (52)

where p, = —,K, for the commensurate phase (K, is a
reciprocal-lattice vector), and pi =qi for the in-
commensurate phase; (f)z is real. Q() is the uniform
charge-density wave amplitude and the Q, are the
amplitudes of the thermal or impurity driven fluc-
tuations.

Then, the free energy is

F = &ohio+-'Scoho+2 Q (~,*4,+ U, 4,*)+Q e,'&,*0,+ zSco4'oQ (4,&-, + &,*&-*,+44,*&.)

(53)

where

~q=2~0+sz~qi (I-al (al-pi)]'+fo(al a)' (54)

o.„=—(U + U')/2W2i„

where

(6O)

where

—43f)i(&o &z)5-;,„-, ) (55)

The last term in (53) is the umklapp term, which
is present only for the commensurate phase. Mini-
mizing F with respect to ()t)(), we find

0 = 2eo(t)o+~zScoko+ z Scolo(2Xi+ Xz)

e + —6 + zSCp((t)() + Xi)

k ( SCO(40+ Xz) 351405",",) (61)

which is the energy of magnitude (+) and phase (-)
fluctuations. We must now determine the three
constants P(), Xi, and Xz self-consistently. At this
point in the calculation, we must ensemble average
expressions (56) and (57) for X, and Xz, This yields

(57)

F ( „)NU, P(l 1)

~.= g (e,e., ) = g &e,'e*,)

(62)

~„=(I/~~)(e, ~ e*,),
we find

(59)

Minimizing E with respect to Q,*, we find

0 = z U, +(e, + z SC()(Q()+ Xi))Q,

+ (—,'Scp(p()+ Xz) —43b, ()t)()e,", ;,)4)*, .

We find that Q, and (1).*, are coupled in the ordered
phases. Then, changing variables

(63)

Writing

p+-+ 80 [(Ii ' q Ii ' ((ll pi)] + f0((ll (I) ~ (64)

|3..= za()+ —,'SCO((t)O+ &i) + (43CO(4)O+ &Z) —43f)iAOez", , ((, ) )

(65)
we perform the integrals in (62) and (63) and find
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= —'C(1/P, +1/P ),
C =NUoo/(4m}o(eofo}ii qi~ .

(66)

(67)

P. =-',g+ (-,'go+-,'Scoc)'",

g = - ScoC/4
I so I+ [ soqs(A —Ps)

+ -'98i(2
I so I /3 co) '~']5, ,o,

(74)

(75)

The free-energy difference between the commensu-
rate and incommensurate phases is

Substituting (66) into (55) and (65), we find three
equations for P„P, and Qo which must be solved
self- consistently:

P. = 2ao+ —', 9cogo+ —,'ScoC(3/&, + 1/0-) —43&&4o5y, ,o, ~

(68)
p = ocEo+ gScogo+ 43coC(1/P++ 3/P ) + «35g4 o5o~, q) ~

(69)
Qo = (2/Sc, )(- 2E ——'Sc C(3/P, +1/P. )

+ [-,'Sb, y, + (35,C/8$o)(1/P, —1/P )]5;,„-,] (70)

The solution of these three equations will occupy
the rest of this section. There are two types of so-
lutions: (i} go=0, 1~= Xo, normal state; and (ii} Qo

& 0, ordered state. The phase transition from the
normal to the incommensurate phase will be taken
up in Sec. IV C. Here we study the commensurate-
incommensurate phase transition and assume that
it occurs well below the transition to the normal
state.

We first examine the solutions for the pure metal
(C =0). For the incommensurate phase, we find

yoo=2luol/Sco, & =Idol; P. =O (71)

From (64), the energy spectrum for amplitude fluc-
tuations e,, exhibits a gap (= lao l), whereas the en-
ergy spectrum for phase fluctuations e, vanishes
as q-0. For the commensurate phase, the ampli-
tude fluctuations are essentially unchanged, but the
phase fluctuation spectrum has a gap of

P- = '9&t(2
I ao I/Sco)' eoqBqs kff'i) ~ 0 ~

In the commensurate phase, the CDW is pinned to
the crystal lattice, and this introduces a gap in the
phase fluctuation spectrum as well.

W'e turn now to the dirty material where C is fi-
nite. If we try to use straightforward perturbation
theory for small C we get into trouble. In zeroth
order P =0 for the incommensurate phase and the
integral of 1/e, diverges. We can, however, use
a self-consistent perturbation scheme, being care-
ful to treat the long-wavelength phase fluctuations
correctly. We fi.rst eliminate the Qo term from
(68) and (69) using (70). Then using

(73)

we fi.nd

Fc —E~ = &S~(T —T)~)

1 1 , P-c
+33C go p2

—
~p +2C ln

P-c
(76)

C 4go 11
4&S~ sg C 2 (8o)

The principal effect of the impurities is to pin the
long-wavelength phase fluctuations in the incom-
mensurate phase and introduce a gap (43coC)'~' in
the excitation spectrum. The phase fluctuations of
the commensurate phase are already pinned to the
lattice and are essentially unmodified. Another way
of saying this is that the incommensurate CDW is
flexible and can adjust itself to take advantage of
the impurity potential, whereas the commensurate
CD% is inflexible. The expansion parameter used
above is (ScoC/4go) ~, which is the ratio of the
gaps. When this parameter is large, we have

Fc —F, = o9C(4go/ScoC) ~ + DS~(T —T~I), (8l )

Tc, = T~ —(9C/8&S~)(4g, /Sc C)'~o . (82)

The free energy is singular at C = 0, and this is why
straightforward perturbation theory fails. Within
the approximations used, the phase transition is
first order and sharp. We have, however, per-
formed the ensemble average at an intermediate
step in the calculation, and this is physically equiv-
alent to taking into account the average effects of
impurities on the excitation spectrum but omitting
fluctuations in impurity density. Since the transi-
tion temperature is a strong function of impurity
concentration, fluctuations i.n concentration will
broaden the phase transition. The correlation
length for phase fluctuations is finite in the dirty
case and is

=[2e q'/(3c C)'~ ]' o

The sharp reduction in T&, is observed in the iso-
electronic alloy Ta3.„Nb„Se&.

(83)

C. Incommensurate-normal~tate transition

In the normal state near the phase transition, we
must use the full nonlinear Eqs. (68)-(70) but with

go =0; this implies P. = P. , and we find

where &S~ is the transition entropy for the pure
metal, and T~&, is the transition temperature. For
small C, we have

P = (-'ScoC)' ' (77)

c=-g'o = 89bi(2 I gaol/Sco) —eoqi(qs
(78)

and

4 2

FC-Ft=-,'C ln ' ——' +esp T-TCI V9
ecoC

and the transition temperature of the dirty metal is
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cpF/ap pQp+Plp+ pg (lnp + lnP ) —og(1/P, + 1/P )

2.0--
+ o g P o'(3/P, + 1/P ) + o g'[(1/P, —1/P )'

+2(1/P. +1/P )'] . (92)

I.O
I

I

I

I

I

I

I

-IO

2o' (T-T )/ v'gc

I IG. 3. Detail of the heat capacity near the incom-
mer surate-normal-metal transition according to the ap-
proximate theory for the clean (dashed-line) and dirty
(solid-line) case. The cross hatched area is the transi-
tion entropy for the alloy case which is weakly first or-
der. The approximation used for the alloy neglects fluc-
tuations of impurity concentration and yields a spurious
first-order transition; this phase transition should be
smeared out.

P, = lao+ [(lao)'+ 3coC]'" (84)

P, = 2P,/(3c.C)"',

&o = 4o/(2 I
aol/3co)'",

and the dimensionless coupling constant

g = (3coC/4 ao)'~' .

(86)

(87)

(88)

At the pure-metal transition temperature (hp =0),
there is an energy gap in the fluctuation spectrum
of (3cpC)' o, and the correlation length is finite.

$ = [&om/(3coC) ] ' T = ~* . (86)

In the incommensurate state near the phase tran-
sition, we must solve Eqs. (68)-(VO) numerically.
We first define dimensionless variables

By minimizing F with respect to P, , P, and Pp,
one can rederive (89)-(91). To solve the equations,
we choose a value for P. and solve (90) for P„ then
we solve (89) for g and find Qp from (91); the free
energy is then found from (92). We must compare
free energies of the normal and incommensurate
states to decide which state is stable at a particular
temperature. From the free energy, one can com-
pute the heat capacity, and this is shown in Fig. 3.
There is a pretransition heat capacity in the nor-
mal phase due to the buildup of CDW driven by the
impurity potential. The transition temperature is
suppressed somewhat, and the transition to a f inite

Qo is weakly first order, with Po at the phase tran-
sition being 0. 8 of the pure-metal value. In the
ordered phase, the fourth-order interaction sup-
presses the Q, driven by the impurity potential.
The fact that one finds a sharp first-order phase
transition is undoubtedly an artifact arising from
the way that the impurity averaging is done. Fluc-
tuations in impurity concentration will smear the
"phase transition" and remove the sharp details.
Thus, one must be cautious in accepting at face
value the results of this type of effective-potential
method. The mechanism for the depression of the
commensurate-incommensurate transition appears
to be physically correct. Spatial fluctuations in im-
purity density will cause spatial fluctuations in the
energy gap for phase fluctuations but will not qual-
itatively affect the free-energy difference.

V. FLUCTUATION MODES

In this section, we. study the order-parameter
fluctuation modes for the triple ICDW in pure ma-
terial. In Sec. IV, we found the energies of these
modes for single ICDW's and CCDW's. For the
commensurate state, we found an amplitude fluc-
tuation mode with an energy gap laoI at long wave-
length and a phase fluctuation mode with an energy
gap given by (72). For the incommensurate state,
we found an amplitude fluctuation mode with an en-
ergy gap I a() I and a phase fluctuation mode with no

energy gap (a hydrodynamic mode). The energy of
the phase fluctuation mode is

Equations (68)-(VO) now read &, =co(q& ' q) +fo(qt (93)

P. =1!g (3/t). +1/—H-),

P = 1/P. 1/P-
~oo= 1 -g(3/P. .1/P. ),

and the free energy is

(89)

(90)

(91)

for the incommensurate wave. This last mode is
Overhauser's pbason, '

For the triple ICDW case, we omit the impurity
potential, while the umklapp terms drop out. We
write
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0;(r) = It «(r) e'"',

0;(r) =y..g e„e", (95)

where the P;(r) is slowly varying. The free energy
is then

2+0 i 43~0 1 2 3+ 1 P 3

+ 'ScoZ
I 0» I

+ (' Sco —do)( I 4«@a I
+

I tats I

+los&»l )+eoZ la '&e«l +fog
(98)

The minimum in the free energy is for Q», =0 and
'

Qo given by (22). Near that minimum, we can ex-
pand F in powers of Q», and keep only. second-order
terms. We find

F = F(po) +Q [a ««o+ aScofo+ (Sc«I 2do)go+ co(«l» «1) +f (o«lx»«l) ]Q» Q«

+ a Sco«t o g (Q;,«t;, + Q»*,«t»», ) ,'Sb—o«t—»o(P,,«I»a, + Q«, &f&a, +permutations) . (9V)

In order to find the eigenmodes, we first transform
to amplitude (+) and phase (-) variables

«a», = (1/v'2)(4», + 4»,),
and find

F = F(po) + F'+ F

F = P [ 8boy'o+ eo(q» ' q) + fo (q» x q) 1~, ~,

+ 4Sbogog («aj «aa + «aa «aj +permutations)
0 (loo)

with a similar expression for I '. The amplitude
fluctuations have a large energy gap 8 lao I co/(15co
—8do) at long wavelength and are uninteresting. We
now diagonalize the Sx S matrix of E«l. (100) and
find one phase fluctuation mode with an energy gap
—,'Qbogo involving relative motion of the three CDW's
and two hydrodynamic modes (i. e. , zero gap), with
energies

ae=4co«f«+ ~fo«f«)«f » (lol)

&«»
= (»co%+4 fo«f«)0' (lo2)

with q along a symmetry axis. These modes in-
volve long-wavelength distortions of the charge-
density lattice and a.re the transverse and longitudi-
nal "phonons" of the ICDW "lattice. " These modes
are probably overdamped (due to the resistivity of
electron motion relative to the crystal lattice), but
we do not yet have a dynamical theory to describe
the motion. The thermally excited "phonons" will
induce diffuse scattering near the CDW Bragg scat-
tering peak, with intensity proportional to

(loS)

VI. MSI.OCATIONS

We have seen that the triple ICDW has peaks of

electron density at the "lattice" sites of a hexagonal
"crystal" and that the long-wavelength distortions
of the ICDW are the "phonons. " One wonders if
there may be other imperfections or distortions
analogous to crystalline impex"fections or distor-
tions. Vacancies or interstitials are not possible
because the units maki. ng up the ICDW "lattice" are
not discrete. However, "dislocations" are possi-
ble, and we wi. ll now describe a, "dislocation" in the
charge-density wave. We emphasize that the host
crystal is assumed to be perfectly uniform and that
only the charge-density wave is distorted into a-
"dislocation. " It will be apparent that the ICDW
"dislocation" is perfectly analogous to the vortex
line in suyerfluid helium and superconductors.
Following (94}, we write a trial solution for the
order parameter with a "dislocation" at the origin.

y, (r) = f(e ) e '" '", (104)

y (r)=f(x) e««e-~pa& (105)

es(r) =f(~), (loe)

f(e) =do(1- e ™'), (lov)

where 8 is the angle between r and «l, . Using (1),
one ean compute the electron density and show that
(104)-(107) represent an edge dislocation with
Burger's vector in the q3 direction. Substituting
(104)-(loV) into the free-energy expression, we find

F =F(ko)+ (4»«/«as) IF(eo) I+8»»cow»yo»(»), (»8)
whex'e we have used the isotx'oplc approximation
(eo = fo), and R is the radius of the crystal or half
the distance to the nearest dislocation of opposite
sign. The two tex'ms are the condensation energy
of the core region (core radius =1/«a) and the dis-
tortion energy of the ICDW outside the core. In the
core, Q is. small and this region is normal. Mini-
mizing F with respect to o,, we find

«a = 8
I «so I /«o«f» = 8/25 (109)
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so that the core radius is approximately equal to
one correlation length. This describes the two-
dimensional properties of a "dislocation" in one
layer. As regards the three-dimensional struc-
ture, it is possible, in principle, to have a "dislo-
cation" pair in one layer with the other layers uni-
form. It is also possible to have a dislocation pro-
ceeding vertically through a number of layers. In
order to discuss these possibilities, it is necessary
to consider interlayer interactions in some detail,
and we will not pursue the matter here.

VII. CONCLUSIONS

We have written down a conventional but rather
complicated Landau theory to describe charge-den-
sity waves in layered compounds. We have dis-
cussed the nature of the phase transitions between
the normal incommensurate and commensurate
phases and concluded that the phases should appear
in this order with decreasing temperature and that
the phase transitions should be first order. The
peaks of electron density occur at lattice sites of a
hexagonal "crystal, " and we calculate the behavior
of two other crystalline properties, "phonons" and
"dislocations. " Impurities distort the charge-den-
sity wave and pin it. Since the incommensurate
wave is more flexible, it can distort more readily
and gain more energy from the impurity potential
than can the commensurate wave. This reduces
the commensurate-incommensurate transition tem-
perature for the alloy.

There are a number of things that we have not

done in this paper.
(i) We have not considered interlayer interac-

tions. The transition temperatures in one layer
are relatively insensitive to the nature of the neigh-
boring layers, which indicates that the intralayer
interactions are dominant. Interlayer interactions
are important in establishing the relative phase of
the CDW's in different layers and in converting the
two-dimensional "phdnon" spectrum into a three-
dimensional one. We want to emphasize that the
long-wavelength behavior is three dimensional, not
two dimensional in the Kosterlitz- Thouless sense.

(ii) At this point, the Landau theory is entirely
phenomenological, and the parameters must be de-
termined from experiment. It will be of great in-
terest to derive the Landau parameters from a mi-
croscopic theory once a quantitative microscopic
theory is developed. There is a small parameter
in the problem, kT, /(d bandwidth), and one antici-
pates that, as in superconductivity, the behavior
may be mean-field-like over a wide temperature
range.

(iii) We have not considered the dynamic behavior
of this system. Perhaps the next step is to develop
a dynamical Landau theory.

(iv) The most interesting properties of the CDW's

are the transport properties, and one would like to
have a microscopic transport theory, as well as
accurate measurements of resistivity and thermal
conductivity.

ACKNOWLEDGMENTS

The author would like to thank John Wilson for
initially stimulating the author s interest in this
problem and for a preprint of Ref. 3, and A10ver-
hauser for a helpful conversation.

*Hesearch supported in part by the Advanced Research
Projects Agency under Contract No. DAHC 15-73-610.

~J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Phys.
Rev. Lett. 32, 882 (1974).

2P. M. Vifilliams, G. S. Parry, and C. B. Scruby,
Philos. Mag. 29, 695 (1974),

3J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Adv.
Phys. (to be published).
L. F. Mattheiss, Phys. Rev. B (to be published).

5W. M. Lomer, Proc. Phys. Soc. Lond. 80, 489 (1962).
~A. W. Overhauser, Phys. Rev. 128, 1437 (1962).
~S. C. Keeton and T. L. Loucks, Phys. Rev. 168, 672

(1966).
W. M. Lomer, Phase Stability in Metals and Alloys,
edited by P. S. Rudman, J. Stringer, and R. I. Jaffe
(McGraw-Hill, London, 1967), pp. 569-588.

~A. W. Overhauser, Phys. Rev. 167, 691 (1968).
S.-K. Chan and V. Heine, J. Phys. F 3 795 {1973).
V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor.
Fiz. 20, 1064 (1950); Nuovo Cimento 2, (10), 1234
(1955).

~2J. M. Kosterlitz and D. J. Thouless, J. Phys. C ~6

1181 (1973).
~3A. W. Overhauser, Phys. Rev. B ~3 3173 {1971).


