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The nonlinear interaction of laser radiation with crystalline solids results in a modified band structure which

is a natural extension of the usual Bloch picture. A theoretical discussion is presented in which the existence
of field-induced gaps is predicted. Applications to model systems such as the Kronig-Penney model are
presented, Examination of realistic systems such as the narrow band gap semiconductors suggest that the
effect is large and should be readily observable with currently available laser sources.

I. INTRODUCTION

The current availability of high-powered lasers
has stimulated renewed interest in the nonlinear in-
teraction of radiation with matter. In this. paper,
we explore some elementary aspects of this inter-
action as it relates to crystalline solids. The prob-
lem is interesting in a formal sense because it is
described by a multiply periodic Hamiltonian.
Physically it is interesting because the strong per-
turbations of the solid caused by the intense field
may lead to the alteration of some of the basic char-
acteristics of the solid. One of the main purposes
of the paper is to study the evolution of the band
structure with increasing field strength. It is found
that at particular points in the Brillouin zone, there
is a strong modification of the band structure. Ra-
diation-induced gaps are opened up, the sizes of
which are related to the field strength.

Interest in temporally periodic quantum-mechan-
ical systems has been evident in recent years, '

mostly with regards to atomic systems. There has,
however, been little attention paid to the more
complicated problem of solid-state systems. To
summarize what has been learned about such sys-
tems would be difficult to do here, so we just con-
centr3te on points relevant to the present paper.
First of all, one realizes that energy, per se, is
not defined for a temporally periodic system. How-

ever, one may define a quasienergy whose value
is defined modulus h+, co being the laser frequency.
By specifying a value of this quasienergy, one is
actually denoting a ladder of eigenstates whose en-
ergy separation between successive states is her.

Shirley has shown the relation between the index
appearing in Floquet solutions to the Schrodinger
equation and this quasienergy.

For a finite basis Hamiltonian there is a one-to-
one correspondence between low-field eigenstates
and these quasistates, each zero-field eigenenergy
generating a ladder of its own. As the eigenener-
gies become Stark shifted, transitions between the
various rungs of the ladder manifest themselves
as a "splitting" of the spectral lines. This effect,

predicted by Mollow, ' has been observed experi-
mentally recently. ' These phenomena have been
investigated in atomic systems. It is the purpose
of the present paper to extend their study of the ac
Stark effect to solid-state situations.

In Sec. II, the basic theory for generalizing
Bloch's techniques to the radiation-solid system
are discussed. We find that the field-induced gaps
appear in the band structure whenever n laser pho-
tons are able to cause a direct multiphoton inter-
band transition. The two-band approximation is
also developed for the radiation-solid system. In

Sec. III we apply the theory to the Kronig-Penney
model. It is concluded that the Mollow effect, in
which the scattered light appears at shifted fre-
quencies, may occur in solid-state situations just
as in atomic systems. Section IV concerns itself
with an application to the narrow-band-gap semi-
conductors, where spin-orbit effects must be in-
cluded. These systems were chosen for study be-
cause of the large nonlinearities that occur. Fi-
nally, Sec. V contains a brief summary of the
paper.

A(t+ ~) =A(t),

V(r+ a,) = V(r),

(2)

(3)

a being a lattice translation. The object is to solve

II. BASIC THEORY

Consider the problem of a solid interacting with
an electromagnetic wave. Since typical optical
wavelengths are much greater than the lattice
parameter, we treat the wave as a homogeneous
time-varying electric field which is to be charac-
terized by the vector potential A(t). We shall ne-
glect many-body effects in this paper and only work
in the one-electron approximation. The Hamil-
tonian is thus

H= 2(p+ o.A) + V(r),

where we are employing atomic units (S= e= m= I,
n=r3~7). It wiL' be assumed that A(t) is periodic in
time and V(r) is periodic in space,
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the time-dependent Schrbdinger equation

ff(t)0(t) = t
sy(t)

(4)

It is convenient to make a canonical transforma-
tion to a new Hamiltonian where the spatial and
temporal character of the problem appear in the
same term. Thus, letting

tron to interact with a time varying potential for a
very long time. The Floquet states represent solu-
tions of the Schrbdinger equation which are, in a
sense, steady-state solutions. That is, if we com-
pare the solution with itself at two times translated
by a temporal period, they are the same up to a
phase factor

Q(r, t+ 7) = e ' ~
«I&(r, t) . (15)

2

«=exp(-ia p ~ Adt-d —~~d dt)d,2.
we find

(
p ~ Q—+ U(r t) —i—/=0

where

U(r, t)=V(F+ a '~ Xdt) .

(6)

(7)

In actuality, these states are not eigenstates of the
Hamiltonian appropriate to low electric fields but
rather represent linear combinations of all those
eigenstates. These linear combinations are inert
against transitions which might be induced by the
temporal variation of U(r, t), a property not shared
by those individual eigenstates.

Inserting Eq. (14) into Eq. (6) and expanding
U(r, t) in a Fourier sum leads to

Here U will be spatially and temporally periodic if
A is chosen so that on the average it is zero, i.e. ,

[2(k+ G) —t —n«d&]u„«&+ Z U„„.,o o.u„o.= 0, (16)
n'G

where
A(t) dt = 0. -

~0
(8)

u(r t) Q u 8 e««6" p nrat&- (17)

«me (9)

where (G]. is the set of reciprocal-lattice vectors.
While A(t) may also be expressed in a general Fou-
rier expansion

A(t) P A e«ndjt

where &v=2««/7, we choose to limit our discussion
to the case where it is harmonic in time, i.e. ,

A = —Af cos(ot.

Combining Eqs. (7), (9), and (10) leads to the re-
sult

U(r t) g U e««o r-nPd«& (12)

where

U- =V-J —G AGn G n 1 (13)

Following Shirley, 3 we study the Floquet solu-
tions to Eq. (6). I et

«t&(r, t) = e""'""'u(r, t), (14)

where u(r, t) is both spatially and temporally peri-
odic. Some remarks as to the significance of such
solutions are in order. Imagine allowing an elec-

Thus the problem we have set out to study is, in
reality, a special case of the problem of an elec-
tron interacting with an arbitrary multiply periodic
potential.

If we expand V(r) in a Fourier series, we have

t& (k f+ n«d&) = +(k 6) . (20)

Thus it follows that one need only study a domain
of c whose extent is zero to w. All the "band
structure" associated with this problem is contained
in a fundamental hyperrectangle in the a-k plane.
Thus we have a natural extension of Bloch's result
for conventional band structure. The Brillouin
zone is now a four-dimensional volume.

Let us proceed by examining the zero-field limit
of our solution. Since the Bessel function vanishes
for zero argument unless its order is zero, Eq.
(18) becomes

&(k, &)- = det 6„„66«&.+ 5„„,,A g»O ""
~ k+Vr —e —n«d&

(21)

The "eigenvalues" e of Eq. (16) are determined by
locating the zeroes of the Hill determinant &,
where

U. ".o-o
h(k, e) =det 5„„.5o6.+, -, ' . (18)

2 k+G —E —n«d&

Some general properties of the "eigenvalue" spec-
trum follow directly from this expression. Firstly,
as in the conventional solid-state case, the Hill
determinant is invariant under translations of the
R by a reciprocal-lattice vector

h(k+6, e) =t&(k, c). (19)

Hence, it follows that one need only study the first
Brillouin zone. Secondly, the Hill determinant is
invariant under translations of g by any integer
times +:
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The property that b is periodic in & is still main-
tained, and thus the zone 0 &( & e still contains all
the band-structure information. However, this
situation is rather artificial, since the band struc-
ture is generated by simply translating the disper-
sion curve downwards in energy by steps of ur and

superimposing the various curves. The fact that
there is no change induced in the band structure is
the clue that nothing has really happened, there
being no coupling between the translated and un-
translated curves.

When perturbations due to the electric field are
taken into account, however, the translated and un-
translated band structure begin to interact. The
interaction is particularly important in a place
where the curves have crossed in the zero-field
limit. The interaction results in the occurrence of
an avoided crossing, or to put it another way, the
opening of a gap in the band structure. For weak

N- (n/(o) GA~, (22)

provides a crude index for this number.
Some analytic expressions for the band gaps may

be obtained in the nearly-free-electron model. As-
suming V to be weak, one may approximate Eq.
(18) by

fields, the gap is only sizeable if the number of
translations that were involved in generating the
composite band structure is small. This means
that one is including only one- or two-photon effects
and disregarding higher-order effects, for example.
For higher field intensities, more translations
must be included into the prescription. A rough
estimate for the number of translations which re-
sult in sizeable gaps is obtained from Eq. (13).
The Bessel function tends to be small if its argu-
ment is exceeded by its order. Thus

I Vo o ~
I j„„[(a/(u)Ag (G —G')]

2 ~~@ [~ (k+ 6) —a —n&u] [2 (k+ G') —e —n'ur]
' (23)

In the vicinity of the intersection of two free-electron bands, both denominators are small for some partic-
ular set of values 6, 6', n, and n'. Thus the eigenvalues are determined through the relation

[2(k+6) —e —n(u][~(k+6') —e —n (o] —
~
Vo o.

~
Z„„.[(o./&u)A, (G —6')]=0.

Then the two branches have the form

(24)

1/2

a = a[a(k+6) + a(k+6') —n&u —n'to]+ (z[g(k+6) —a(k+6') + (n' —n)&u]]. +
~

Vo o.
~ (d

The actual size of the gap at the intersection is

& = 2
~
V," -,,

( ~
~„„.[(o'/~)A, (6- 6')]

)
. (26)

It should, perhaps, be emphasized that the field-
induced gaps discussed here will, in general, lie
anywhere inside the Brillouin zone, their position
determined by the radiation frequency & and the
weak-field band structure. They occur whenever
an n-photon process is capable of bridging two

gaps.

III. APPLICATION TO THE KRONIG-PENNEY MODEL

As an elementary example of the application of
the theory, we consider the Kronig-Penney model
in one dimension. In the field-independent case,
as is well known, analytic expressions that lead to
the band structure are readily available. For non-

zero fields, however, we have not been able to find

analogous expressions and have therefore resorted
to numerical computations.

We take V~ to be a constant independent of 6 in
the Kronig-Penney model. The following param-

eters are introduced: k =g$, & = ~gg, co = ~zg,
x= nA, g/&u, y=2VO/g~, where g=2v/a. In practice
we found it simpler to directly diagonalize the ma-
trix associated with Eq. (16) rather than to hunt

for the zeroes of Eq. (18). Since a truncation of
the infinite determinant was required, strict peri-
odicity was not maintained. Our main concern in
this project was the temporal periodicity, so we
included nine values for the index n (- 4 & n &+ 4)
but only three 6 values (+g and 0). It was found

that in the domain 0 & g & 1 and the neighboring do-
mains, the band structure replicated itself fairly
well. As the number of n-states increased, the
periodicity became more firmly established, con-
sistent with our expectation from Eq. (20).

In Fig. 1 we present the results of a model calcu-
lation for the fundamental half-rectangle (there
being symmetry under $- —f) Here we have .the
"dimensionless" field strength x=0, lattice poten-
tial y=0. 3, and frequency z =0.3. In Fig. 2 we

present the same curve for x =0.3. Note that the
band structure is largely unaffected aside from the
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FIG. 1. Band structure for a Kronig-Penney model.
The abcissa is the scaled wave vector and the ordinate
is the energy in units of the laser frequency. Here the
electromagnetic field strength x, is zero.

opening of a gap at the intersection of the two bands.
When @=0.5, as in Fig. 3, the gap has widened and

the band structure is beginning to deform, while in

Fig. 4, where x=1.0, the gap is rather substantial
and the structure is strongly perturbed. The val-
ues of the field strengths employed in this calcula-
tion were taken to be artificially large for illustra-
tive purposes, so we now turn to the practical ques-
tion as to how one may experimentally observe the

FIG. 3. Same as Fig. 1, buts=0. 5.

distorted band structure and, in particular, the
gaps.

Two approaches seem possible. One is to spec-
troscopically probe the perturbed solid and the
other is to monitor the transport properties of the
material. In either case, there are several re-
strictions placed on the lower limit to the field
strength that can be used. First of all, we would

like the gap to be larger than the thermal spread
of the electrons. From Eq. (26) we see that if an
nth-order transition is involved, it would imply that

2 Vc ad 6
nl 2'

i,o-
1.0-

p

Or-
Q,6-

04-

O. i 0.5
I

Oh
I

0.1 0.'X 0.$
I

O.+

FIG. 2. Same as Fig. 1, buts=0. 3 FIG. 4. Same as Fig. 1, bute=1. 0.
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Thus the laser intensity would have to satisfy the
inequality c

2 2
p Q—+ V+p ~ (k+ nA)+ —o ~ vVxp
2

e me@ ntk T
(26) + a(k+ nA)' —i—y =0.

&t
(31)

For typical parameters, &v=1.7x10 ' rad/sec,
V&=1 eV, G=2w&&10 cm", n=1, T=300'K, this
gives the condition I&600 W/cm~. This lower limit
can be reduced five orders of magnitude by lower-
ing the temperature to 1 'K. Thus, thermal effects
do not seem to impose an essential limitation on
the experiment.

Next let us consider radiative-lifetime constraints
Since phonon emission is generally highly favored
over photon emission, we would like the gap to be
larger than the decay width for phonon emission,
h/r~ Thi.s leads to the expression

Taking v~-10 sec and n=1, this leads to the in-
equality I &35 W/cm, again a nonrestrictive con-
dition.

Thus it appears that a direct spectroscopic probe
of the band structure seems possible. Needless
to say, the resolution of the spectrometer must be
fine enough to resolve the gap. A particular pre-
diction of the present model is that scattered light
should appear not only at frequency & but at (d + 5.
This is analogous to the situation in atoms where,
in fact, this effect has already been observed.

In a spectroscopic study, one is generally sensi-
tive to anomalies in the density of states. Such
anomalies would appear in the vicinity of a gap that
has been opened.

IV. APPLICATION TO NARROW-BAND-GAP

SEMICONDUCTORS

It is well known that there are strong nonlineari-
ties that occur in the narrow-band-gap semiconduc-
tors such as InSb. This is mainly due to the very
low effective mass of the conduction electrons,
which allows for a strong coupling to the electro-
magnetic field. It therefore seems reasonable to
study the perturbed band structure in such a material.

A rather complete survey of the theoretical mod-
el used to calculate the zero-field band structure
has been given by Kane. The Hamiltonian is taken
by us tobe

H=~(yak+ nA) + V+~n o ~ VVx(p+k+ nA), (30}

where t/' is the lattice potential and the last term is
the spin-orbit interaction. We have generalized
Kane's Hamiltonian by including an interaction with
the radiation field. Following Kane, we note that
o ~ VVxk is much smaller than the other terms and

disregard it. Similarly, one may neglect cr ~ VV&&A.

Thus the Schrbdinger equation to be studied becomes

r

) =exp (-ia - )— ) (k ax)'d)) y,2. (33)

be the Floquet solution to Eq. (31). Then

(
2 pQ ~ 9—+ V+ (k+ nA) p+ —cr ~ V Vx p —e —i )—t) = 0

2 4

(33)
where Q is a periodic spinor. In the limit where
the spin-orbit splitting dominates over the band

gap, one may decompose the solution to Eq. (33)
in the following way: The manifold of significant
states contributing to P consist of the three p-orbit-
als of the valence band and one s-orbital of the
conduction band. One valence and one conduction
orbital strongly couple and are described by the
equations

c
. aE —t —i— i—)A+aA)p). cu )C Bt 3

=0, (34a}

i -,')k ~ aA))' Z —a —' —)
where

(34b)

Here E, and E„arethe conduction and valence en-
ergies at the band center, I' denotes the matrix
element

(36)

and we have chosen jg and A along the 100 directions
Solution of Eq. (34) is equivalent to finding the
eigenvalues & of the following matrix:

&cm'
I

SCI cm& = (E,—m&o) 5„.
(cm'

~
X~ vm) = v-, g&6.. .+ —.'nA(6. .

~.„+6..,.,)],
(vm'

~

X
~
vm) = (E„-m(u) 6 ~ (36)

Thus the structure of the problem is similar to
that encountered in Eq. (16}, The only difference
is that Eq. (16) is valid throughout the entire Bril-
louin zone, and Eq. (36) is restricted to the bottom
of the band and is further restricted to a particular
manifold of states.

The eigenvalues of Eq. (36) result in a pair of
ladders whose rungs are separated by energy w.

For the present discussion, we limit our attention
to the vicinity of the bottom of the conduction band.
Here it is more convenient not to make the trans-
formation of Eq. (5), and we study Eq. (31) directly.
Let
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FIG. 5. Band structure
for InSb Here CE denotes
the conduction-electron
band, LH the light-hole
band, HH the heavy-hole
band, and SO the split-
off band. The abcissa, k,
is the wave vector in atom-,
ic units, while the ordi-
nate is the band energy in
units of the laser energy.
Here the electromagnetic
field strength is zero.
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FIG. 6. Same as Fig.
5, but E=10 V/cm.
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FIG. 7. Same as Fig.
5, but E=2&10 V/cm.
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.8 ~

.6 ~

4

SO FIG. 8. Same as Fig.
5, but E= 3x 10~ V/cm.

.005 .015

H„„=E„(1/2m-a„)(k+ nA)a . (37)

Since the solution to the Schrodinger equation is

(=exp(-i jl
[8„—()/mm )(lr+aA) ]d))('o, (38)

one may identify & as the nonperiodic part of g,

y2 n2~2
~HH Ev 2~re 4~ex

' (39)

Similarly, we can study the split-off band by
generalizing the expression given by Kane

P (k+ nA)
so v 3 E E (40)

where

(xi(vvxp), iz)

is a measure of the spin-orbit force. One finds
the following expression:

I' k + n A()/2
80 y 3 E (41)

In the present model, we are neglecting A.-depen-
dent couplings between the split-off (SO), heavy-hole
(HH), and other bands. The only bands that are
coupled by the radiation field are the light-hole
(I H) and conduction electron (CE) bands.

In Figs. 5-8, we explore the systematics of the

These are the distorted conduction-electron and
light-hole bands. In addition, we have as solutions
to Eq. (33) the heavy-hole band and the split-off
band. By making the appropriate minimal substi-
tution, the Hamiltonian for the heavy-hole band
becomes

evolution of the hyperband structure with increas-
ing field strength for fixed co. The parameters ap-
propriate to InSb, interacting with a COB laser
(&v= 0.0039 atomic units = 1.7x10" rad/sec) are

cp = 0, 016 =ILH& mHH = 0, 4& Ec Ev = 0.0085&
P=0.64, and ~=0.033. Figure 5 gives E as a
function of jg for zero-field strength. We see that
the CE and LH bands cross at three values of k

(0.008, 0.013, 0.017). In Fig. 6 where the field
is 10' V/cm, one sees that gape have opened up at
these crossings. Our model does not allow for gaps
to open at the crossings with the HH and SO bands.
They are expected to be much smaller than the
LH-CE gaps and so are neglected in the present
analysis. In Fig. 7 we see the gaps widen when
the field is 2&&10 V/cm. Also note that for non-
zero field, the LH and HH degeneracy at 4 = 0 has
been lifted. Finally, in Fig. 8 where E=3&&10

V/cm, the band structure has been significantly
altered with huge gaps now dominating the picture.
The tendency is for the bands to flatten out as the
field is increased.

V. SUMMARY

In this paper, we have considered the interaction
of a coherent radiation field with a solid. We found

that the usual Bloch band picture can be suitably
generalized and that new features appear in the
band structure. Gaps are opened up within the
Brillouin zone at locations where direct multiphoton
transitions can occur. We have calculated the
field-dependent magnitude of these gaps for the
Kronig-Penney model and for narrow-band-gap
semiconductors. It is concluded that these features
are observable in both spectroscopy and transport
experiments.
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