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It is demonstrated that in the limit of infinitely strong intra-atomic Coulomb repulsion (U — ) the Hubbard
chain can distort to become a Peierls band insulator with a low-temperature Curie law. The wavelength of
this Peierls distortion is different from that commonly obtained for the case U = 0.

In a recent publication in this journal, Beni, Hol-
stein, and Pincus' have considered the thermody-
‘namic properties of the Hubbard chain in the limit
of infinitely strong intra-atomic Coulomb repul-
sion U. We point out here that their study may be
extended to obtain some interesting rigorous re-
sults for the effects of a strong intra-atomic Cou-
lomb repulsion on the Peierls transition®=® in a
one-dimensional band conductor. Since our treat-
ment will not include fluctuation effects, ®7 the pres-
ent discussion of the distorted state will be re-
stricted to low temperatures (T-0).

We consider a linear chain of N atoms, not neces-
sarily regularly spaced, described by the Hamil-
tonian
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where ¢c¥, c;, and n;, =ck c;, are, respectively, the
creation, annihilation, and number operators for
electrons with spin ¢ at site ¢, The first two terms
of H represent a one-dimensional Hubbard Hamil-
tonian,® in which the matrix element #; ; (hopping
integral) for the transfer of an electron from the
ith to the jth atomic site is nonvanishing only for
pairs of sites that are nearest neighbors. Ude-
notes the intra-atomic Coulomb repulsion that acts
whenever two electrons occupy the same site. The
last term of H describes the interaction with a con-
stant external magnetic field of magnitude i/up,
where pg is the Bohr magneton. Finally, the num-
ber of electrons per atom will be denoted by v (0
<p<2).

For the case of a constant nearest-neighbor hop-
ping integral (regularly-spaced static linear chain),
the thermodynamic properties of the chain in the
limit U— « have been investigated, with different
techniques, by Sokoloff, ® Beni et al, ' and Klein, '°
They noted that in the limit U— « there is a complete
decoupling of the translational and spin degrees of
freedom. Specifically, the thermodynamic prop-
erties of the chain in the limit U- « are equivalent
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to those of a composite system consisting of

|1 -v | N noninteracting spinless tight-binding
fermions and N ( for v<1) or (2-v)N (for v >1)
independent spins. Their argument depended on the
fact that, in the U— « limit, no reordering of the
electronic spins can occur by nearest-neighbor
hopping in one dimension. We stress here that it
is actually the restriction to nearvest-neighbor
hopping that is crucial, and not the specific form
of the nearest-neighbor hopping integral. Conse-
quently, the arguments leading to the decoupling of
the translational and spin degrees of freedom are
valid for an arbitrary form of hopping integral
(linear chain of arbitrarily spaced atoms).

For the partition function corresponding to our
Hamiltonian H of Eq. (1), the limit U~-« can be
treated rigorously.!" (A counterterm has to be
added to H which shifts the lowest eigenvalue of the
Coulomb repulsion term in each k-particle subspace
F, to zero.) Let Z, denote the canonical partition
function for £ =vN electrons. Then

Z4(B, b, U) = Tr e *P'Pe | (2)

where Tr, denotes the trace in the k-electron sub-
space F,, P, the projector onto F,, and 8=1/ksT.
The first exact result'! can now be expressed as
follows:

: Bp(min) P(min)
Zu(B, h, ) = Tr,PMim g=6Pp Ho Py ®3)

where

N

Hy=- Z
i,4=

li=71

N
Z tijcfacio"h; ny=ni), (4)

1

"o

and P{™" ig the projector onto the subspace of
states in F, with a minimum number of doubly oc-
cupied sites. For the calculation of thermodynamic
quantities in the limit U~ «, H may thus be re-
placed by the projected Hamiltonian F ™® g E ™,
Furthermore, it can be shown'' that this projected
Hamiltonian is a unitary equivalent to the Hamil-
tonian

H=P,H,P,+H,, (5)
with
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H describes the composition of two very simple
mutually independent systems. I~10 is a tight-binding
Hamiltonian for a linear chain of spinless fermions,
and A is the Hamiltonian for a system of N, =vN
(for v< 1) or Ny=(2-v)N (for v>1) noninteracting
spins in a constant magnetic field. d; and d; de-
note creation and annihilation operators for a spin-
less fermion at the site ¢, and P, is the projector
on the space of states with m =NvU w=11=-vD spin-
less particles. o{® denotes the usual Pauli matrix.

These rigorous results tell us that in the U«
limit, our Hubbard system may be described (in
each k-particle subspace F, separately) as a com-
position of a system of spinless fermions with a
system of independent spins. The Hamiltonian &
of the composite system contains no interaction be-
tween the two subsystems, i.e., translational and
spin degrees of freedom are completely decoupled.

We note that the independent spins imply a Curie
law for the susceptibility and that with spinless
fermions a BCS ground state with singlet pairing
will, of course, never be possible.

In general, the spinless fermions will be coupled
to the linear lattice through the dependence of #;;
on the distance between sites ¢ and j. In the limit
N-« and at low temperatures, we may then rigor-
ously apply the usual Peierls argument®? to this
system of spinless fermions. This tells us that a
regularly-spaced chain structure of lattice constant
a will become unstable with respect to a periodic
distortion of period
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where % = (r/a) v is the Fermi wave vector of the
spinless fermions. We thus obtain for the wave-
length X\, =27/, of the Peierls distortion in the
limit of strong intra-atomic Coulomb repulsion
(U= )
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These results are significantly different from those
obtained in the usual U=0 case, 2

it |1-v|>L .
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FIG. 1. Inverse wavelengths A7l and A5l of the Peierls
distortion of a Hubbard chain with U= and U=0, re-
spectively, as functions of the electron density v [Egs.
(9) and (10)].
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A plot of A;! and X7 as a function of the elec-
tron density v is shown in Fig., 1 and gives a clear
illustration of the essential difference between the
two limiting cases. For U-«, we have to deal with
1 =v| spinless fermions, whereas for U=0 we
consider v fermions with spin.

The results for A, may be of relevance to actual
systems of experimental interest. It is known!?=16
that some quasi-one-dimensional tetracyanoquino-
dimethane (TCNQ) crystals, e.g., triethylamine
(TCNQ), and diethyltiacarbocyanine (TCNQ),, with
a quarter-filled band (v =3) consist of distorted
chains with wavelength A=2a. If this distortion is
interpreted as a Peierls instability, the usual argu-
ments (U=0) would lead to a wrong wavelength of
Ao =4a, whereas our results for strong intra-atomic
Coulomb repulsion (U-«) give the correct (ob-
served) wavelength of A, =2a. These experimental
observations could therefore be regarded as evi-
dence for the existence of strong Coulomb repul-
sion. We note that this interpretation of the dis-
tortion (Peierls instability) would be entirely differ-
ent from the usual one, '*'® where an a priori
dimerized Hubbard chain (alternating values of the
hopping integrals) is assumed.

We finally remark that from the present exact
analysis of the limit U— « nothing can be concluded
concerning the value of the Peierls wavelength for
large but finite U,

The authors are grateful to Dr, H. R. Zeller for
fruitful comments.
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