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The diagonal and the nondiagonal parts of the dielectric matrix are evaluated for ferromagnetic nickel
using a noninteracting-spin band model which is constructed with the help of the detailed
band-structure calculations of Callaway and Wang. The free-electron approximation is used for the
electrons in the s band, while the simple tight-binding wave function is used for electrons in the d
subbands. The calculations for the diagonal part are performed for the field vector q along the three
principal symmetry directions I'100], I110], and I111j and the anisotropy is found to be quite small.
Outside the first Brillouin zone, the calculations are performed only along the t001] direction for both
diagonal and nondiagonal parts. The contribution of minority-spin {&) bands is found to be much larger
as compared to the contribution of majority-spin (t ) bands. Away from the vicinity of q = 0 the
contribution due to interband transitions is found to be much smaller as compared to the contribution
due to intraband transitions. The nondiagonal part, i.e., the local-field corrections for interband and
intraband transitions are found to be 50% of the diagonal parts for the intermediate values of ~q + G

~,

where G is a reciprocal-lattice vector. The total diagonal part of the dielectric function is also
compared with the results for the paramagnetic phase and it is found that the dielectric function is
slightly larger for the paramagnetic phase.

I. INTRODUt TION

The formal microscopic theory of dielectric
screening in solids has been discussed by Adler, '
Vhser, ' and Ehrenreich and Cohen. ' Sinha et al."
proposed a factorization A.xsam for the dielectric
matrix which allows one to invert it exactly and
to take into account the effect of the local-field
correction, which is a manifestation of the off-
diagonal part of the dielectric matrix. These
authors made an extensive analysis of the dielec-
tric matrix for insulators and found that it leads
to correct analytic behavior as the field wave vec-
tor q- 0. In simple metals the free-electron ap-
proximation is fairly valid, and therefore the di-
electric matrix becomes diagonal. In transition
metals the conduction electrons are neither totally
free nor completely bound. An appropriate wave
function for conduction electrons in these metals
should lnclUde both the plane-wave RQd the t1ght-
binding parts. Therefore a self-consistent treat-
ment of the electron density response function
will include both the diagonal and the nondiagonal
parts of the dielectric matrix. Hayashi and Shi-
mizu' derived a generalized dielectric function
for a single-band model of d electrons and for a
two-band model of d and s electrons and applied
it to calculating the impurity screening and the in-
duced spin density of ferromagnetic nickel by using
the effective-mass approximation for the energy
bands.

Earlier, Prakash and Joshi'(PZ) proposed a

noninieracting band model for s and d conduction
electrons in transition metals and applied it to
calculating the diagonal part of the dielectric ma-
trix for paramagnetic nickel' for the configuration
(3d)'(4s)' and (Sd)"(4s)". The model wa, s applied
to calculating the phonon frequencies of paramag-
netic nickel' for both configurations. Hanke and
Bllz Rnd HRnke )Ustlf1ed the Rbove modeL 1Q the
Wannier representation neglecting the s-d hybridi-
zation which happens only in a small region of mo-
mentum space and much below the Fermi energy.
Hanke" extended the calculations for phonon fre-
quencies of paramagnetic nickel and palladium
using the intraband part of the dielectric function.
The intel bRnd pRrt of the d1elect11c fuQctlon hRS

been neglected in the above ealeulations because
of its smallness, but this may not be true in gen-
eral for other transition metals such as chromi-
um. "

In this paper the noninteraeting band model is ex-
tended for ferromagnetic nickel. The calculations
for the diagonal and nondiagonal parts of the di-
electric matrix, which include both intraband and
interband transitions, are carried out. A com-
plete inversion of the dielectric matrix and the
cRlculRtions of phonon frequencies for ferromRg-
netic nickel for which experimental data are avail-
able" will be reported in a subsequent paper. The

plan of this paper is as follows: The noninterac-
t1ng-splQ bRnd model 18 discussed 1Q Sec. II the
formalism is given in Sec. III; the results are
presented in See. IV and discussed in see. V.
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II. NONINTERACTING-SPIN BAND MODEL

Energy-band calculs', ~.ons for ferromagnetic
nickel have been done by several authors. " We
use the recent calculations of Callaway and Wang
to construct the noninteracting-spin band model
as discussed by PJ. Calculations for isotropic
energy bands are carried out separately for major-
ity and minority spins and these energy bands are
shown in Fig. 1. The Fermi momentum and the
average effective masses are tabulated in Tables
I and II, and the other parameters are the same
as in PJ. The energies are measured in rydbergs
and the distances are measured in bohr units. The
Brillouin zone is replaced by an equivalent sphere.
All the majority-spin d sub-bands are completely
filled, but the s band is partially filled, while the
minority-spin two d sub-bands and s band are
partially filled. The partially filled d sub-bands
are assigned the magnetic quantum numbers m = 1
and 2, as discussed in PJ. The filled minority-
spin d sub-bands are shifted upwards with respect
to the majority-spin d sub-bands by about 0.05
Ryd at the center of the zone and at the zone bound-
ary. This is in agreement with the detailed calcu-
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TABLE I. Fermi momentum and effective masses for
partially filled s and d sub-bands. Here ap is the Bohr
radius.

Fermi momentum for s bands
(in units of 1/ap)

Effective masses for s bands
(in a.u.)

Fermi momentum for partially
filled d sub-bands
(in units of 1/ap)

Effective masses for partially
filled d sub-bands

(in a.u. )

kist
kist
ms

s

0.6221
0.6221
0.5733
0.5725

0.8892
0.7489

5.5681
m„,) 11.9330

lations of Callaway and Wang. For the magnetic
configuration (Sd)'4(4s)o each s band is assigned
with 0.3 electron per atom and the remaining 1.4
electrons are distributed in m=1 and 2 minority-
spin d sub-bands. Let these two d sub-bands cross
the Fermi energy at. the distances k, and k, from
the origin, respectively. The volumes occupied by
these bands are —', wk ', and —', mk', . We distribute
the 1.4 electrons according to the ratio of volume
occupied by these bands and find 0.88 and 0.52
electron per atom in the m= 1 and 2 d sub-bands,
respectively.

In the noninteracting-spin band model the elec-
trons will readjust themselves through the ionic
motion which is due to the thermal field by the
following transitions: (i) intraband transitions in
partially filled majority- and minority-spin s
bands; (ii) interband transitions from filled
majority-spin d sub-bands to the partially filled
majority-spin s band; (iii) intraband transitions
in partially filled minority-spin d sub-bands and
interband transitions from partially and completely
filled minority-spin d sub-bands to partially filled
minority spin s and d sub-bands; (iv) interband
transitions from the partially filled minority-
spin s band to partially filled minority-spin d
sub -bands.

III. THEORY

The generalized spin-dependent dielectric ma-
trix obtained self-consistently' in the Hartree ap-
proximation is

00
0.0 0.2 0.4 O.e 08

FIG. l. Isotropic energy-band structure for ferro-
magnetic nickel. The solid lines represent the band
structure for the majority spins while the dashed lines
represent the band structure for minority spins. The
numbers written therein denote the magnetic quantum
number m assigned to them. k~ is Brillouin-sphere
radius.

TABLE II. Average effective masses (in a.u.) for
filled d sub-bands.

m 1 2 0 -1 -2
mg~) 9.0164 22.7694 —7.2480 -30.8452 -14.8412

m)
' ' ' ' ' —6.7295 —25.6972 —12.6470
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d(q+G, q+6')
ni .(k)-&i .(&')

e„(q+6)
m~ ~ ~/g (ye 4y/ —) q + G l

vrh'I q+GI' 4k~„i q+GI

2k~, + lq+Ql
xln

2k~, —Iq+Ql l

Here g, „(k) and E, ,(k) are the eigenfunction and

the eigenvalue for the electron with wave vector
k. I,, m, and g are orbital, magnetic, and spin
quantum numbers, respectively, and act as the
band indices. n, ,(k) is the Fermi occupation-
probability function, which is unity if the state is
occupied, otherwise zero. 0 and G' are recipro-
cal-lattice vectors and v(q) is the Fourier trans-
form of the electron-electron Coulomb interac-
tion. The electron wave vectors k and k' (=k+q)
lie in the first Brillouin zone. Because of the or-
thogonality of the spin functions, Eq. (1) simpli-
fies as

e(q+6, q+G')

= 6oG - v(q+G)[X»(q+G, q+G')

+Xtt(q+G q+6 )]

where

0 alma k &l'm'o

- E~ .(k)-Ei .(k')

~&4 ..(k)l ""'"'
l 0 ..(k'))

&&&0 ..(k')le*"""
I ti..(k)&.

X~~ and y~~ are the charge susceptibility functions
for the up- and down-spin electrons, respectively.
Symbolically, in terms of the contributions to the
dielectric matrix from various intra- and inter-
band transitions, we can write Eq. (1)

e(q+G, q+G')

= 5« —g [e'„(q+G, q+G')+ e«(q+G, q+G')

+e'd, (q'+G, q+G')+ e',d(q+G, q+ G')] .

(4)

Here e», c«, e~» and e,„correspond to s-band-
to-s-band, d-sub-bands-to-d-sub-bands, d-sub-
bands-to-s-band, and s-band-to —d-sub-bands
transitions, respectively. The expressions for
e„, ~«, c~„and c,„are evaluated similarly as
that in PJ. :We briefly review the formalism here
for the sake of completeness. Using the free-
electron approximation for the wave function and

the parabolic-band approximation for the energies
of the electrons in the s band, we obtain the well-
known expression for e„:

Here m, and k~, are the effective mass and Fer-
mi momentum for the s electrons in the g spin
band and e is the electronic charge. e'„(q+6) is
diagonal and does not give rise to the local-field
corrections.

Using a simple tight-binding wave function and
the parabolic-energy-band approximation for
electrons in d sub-bands, the expression for
edd(q+ G, q+ 6') simplifies to

cd'd (q+G, q+6')

=2v(q+G)Q Q b, d' , (q+G.)n,g „.(q+G')
yn m'

Ed (k) -Ed, (k+q) ' (6)

provided overlapping between d-wave functions on
different lattice sites is assumed to be negligible
and only the normal-process contribution is re-
tained. Here the matrix elements are

and Qd, (r) are the atomic orbitals. Replacing the
sum over k by an integration in Eq. (6), we get.

e«(q+G, q+G')
2e a

7T q+ G Id dma ~tdma +dmdm(q + G)

x ~ca (q +Gr) 1 + pdma ln Edma4Q -q 2' +q

4k~„oq 2k~~, —q

for m= m',

4e'
q+Q ~d. .&d, d. (q+G)

Xbda d (q+6') [I'(q)+I"(q)] fOr mom', (6)

where I'(q) and I"(q) are the same as defined in
PZ. The analytical expressions for n., d (q+G)
are evaluated as discussed in PJ. Watson's neu-
tral-atom 3d radial wave function is used in the

present calculation, and therefore the matrix ele-
ments (P,„,(k)le' " "l g, ,(k+q)) become the
same for both the up- and down-spin electrons
while the energy-dependent part of the dielectric
matrix remains spin dependent. Equation (6) con-
sists of both diagonal and nondiagonal parts, with
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local-field corrections arising from the latter.
Using free-electron and simple tight-binding

wave functions for s and d electrons, respective-
ly, and reta1nlng only the norxIlal-pl ocess conti"1-
bution, the expression for e~ becomes

~;,(q) =~(e) &:g (-1)

x pj's

&~(q+Q, q+ Q')

n~, {k)-n„{k+q)

Jt ~» (r) e i(k-G) r d~r

e-i(k-G')'r yr (9)

+ ((), D', „+() „„(), )i,] ), (1 ()

where D'„are the elements of the rotation matrix
with argument (-y, -P, —e). n, P, y are the Euler
angles. Io, I„ I, are the same as given in PJ.
For nonzero values of G, Eq. (10) is evaluated for
q along the Z direction. The analytical integration
over Q» is made by the method of partial fractions.
Equation (10) becomes

Here only transitions from d sub-bands to the s
band are considered, and therefore n, (k+q) =0.
Replacing the summation over 0 by an integra-
tion and using the parabolic-band approximation
for the energy values, the diagonal part of Eq.
(9) becomes

"Zuma
e~, (q+G) = v(q+6) ™g (-1) dl), f„'

=v(q+G) ' g JI dkk'
fft 0

iy, (8, „y„,) I' [F,(ik- G i)j'
() () (PB»~/my~ g 1)l2 —(f 2k(f cos8»»

&& sin 8» d8» d(t)„, (10)

where y, (8, (t)) are spherical harmonics, 8, o,
Q» o are the zenith and azimuthal angles, respec-
tively, of the vector k -G and (9„, is the angle be-
tween the vectors k and q. The coordinate system
and E,{k) are the same as defined in PJ. For
6 =0, the angular integration in Eq. (10) can be
carried out exactly for a general direction of q
using the rotation matrices as discussed in PJ.
This simplifies Eq. (10) to

where

I(»(k, 8»)

P2, (cos8o)»P»™(cos8»o) ik- 6!'

Substituting the values of the Legendre polynomials
for different magnetic quantum numbers, the inte-
grals in Eq. (13) are evaluated by the method of
partial fractions. The final expressions are very
lengthy and are not presented here. The integrals
over 4 and 8, are carried out numerically by the
Gauss quadrature method.

It is not possible to evaluate analytically the non-
diagonal part of F„,(q+G, q+G') in the present
noninteracting-spin band scheme. To estimate
the nondiagonal part, we substitute 6'=0 into Eq.
{9)and take the nonzero values of G. Equation
(9) becomes

,.(-,Q -),(-,Q)4m. a ~ '~
dqq»

" '" y. (8»-c 4» G)y» (8» 4»)&»(k)F»(ik-G ) „„8d8 d

(14)

To simplify Eq. (14) further, we calculated the
diagonal part ~'„{q+G)explicitly. We again cal-
culated e. ~,(q+ Q) for the m = 0 d sub-band using an
effective mass m„'" which is the simple average
of the effective masses of all the five d sub-bands,
and multiplied it by a weight factor N'which is the

number of active d sub-bands. %'e found that these
two calculations agree within + V/q. Therefore, we
put m = 0, replace m, , by m„" „and multiply Eq.
(14) by W. This approximation may not have too
much weight for a first estimate of the local-field
corrections due to interband transitions. Choos-



1080 NATTHI SINGH, JOGINDER SINGH, AND SATYA PRAKASH 12

ing q along the Z direction Eq. (14) simplifies to

C(q+G, q)
(00-

"~Fdoa
= v(q+ G)," dk O' F,(k)I(k), (15)

where I(k} is a function of k and is obtained after
integrating over 0„. The final expression is very
lengthy and is not presented here.

A similar calculation is carried out for ~',„.
When G=G'=0,

75-

50-

".&(q)=v(q) „.g(-1) m...
N

x D' D'
0

~iso
+(D', D', +D', D, ) I,'k dk

0

0

The expressions for I,', I,', and I,' can be written
just by replacing p by q in Eqs. (41), (43), and

(44) of PJ, respectively. When G = G'0 0,

c',~(q+6) = v(q+G), g (-1) m„, dkk'
m 0

48 ' a;a, z;z.

I' (k, 6,) sin&, de„
(m„„./m. .-()),'- e'-2) q cos&, )'

(17)

The analytical expression for I'(k, 6„) can be ob-
tained by replacing ~k-G~ by )k+a+6( in Eq. (13)
and is evaluated in the same way as I (k, 8„).

The nondiagonal part of ~',~ is

~:,(4+G, t()= (4+('*) „l"' j &»'('():),
0

where I'(k) is again a. complicated and lengthy
function of k involving the integration over 8„and
is not presented here. [The final expressions for
I (k, 0,), I'(k, 8~), I(k), and I'(k) may be obtained
on request. ]

IV. CALCULATIONS AND RESULTS

The dielectric function was calculated using Eqs.
(5), (7), (8), (11), (12), and (15)-(18}. First we
calcula. ted e(q, q) along the three principal sym-
metry directions [100], and [110], and [111],fol-

25-

I
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I
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I
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FIG. 2. ~(q) vs q for ferromagnetic nickel. The
solid, dashed-dot, and dashed lines represent the
dielectric function along [100l, [110j, and [3.11] direc-
tions, respectively.

lowing the procedure discussed in PJ for q in the
first Brillouin zone. The results are shown in
Fig. 2. We find that the anisotropy is small except
in the vicinity of q =0. We calculated e(q+G) for
q along the [001] direction. Since the electron-
electron interaction potential v(q+G) greatly en-
hances the dielectric function for small values of
~q+G~ while v(q+G) greatly suppresses it for
large values of ~q+G~, we plot the results for
X(q+G) defined as [e(q+G) —1] /v(q+G) to see
the band-structure effects more transparently.
These results are shown in Fig. 3. }t(q+G) es-
sentially is the polarizability function. We also
plot the intra- and interband parts separately, the
intraband part being defined as E,(}(„+g~~ for
m= m'} and interband part being defined as
Z (X~~ for m cm'+ }i~, + }t,~), while the total po-
larizability function is the sum of the intra- and

interband parts. Here g„, etc. are defined as
e"„(q+G)/v(q+G). Because of the nonorthogonali-

ty of the s and d wave functions, the interband
part does not reduce to the correct limit as q -0.
However, we have taken it to be zero at q =0. The
interband part shows a peak near @=0.1 and shows
an oscilla. tory nature for large values of

~
q+ G~.

Therefore few more broad maxima are found in
the total polarizability function. This is a conse-
quence of including the 4 band in our calculations.

Using the parameters of PJ, similar calcula-
tions are also performed for the diagonal and non-
diagonal parts of the dielectric function for the
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X -X gSd

0.1
0.2
0.4
0.6
1.0
1.52768
1.89781
2.81394
3.77977
4.71105

1.33061
1.32194
1.28654
1.22476
0.99243
0.35253
0.21153
0.09068
0.04950
0.03128

1.32875
1.32010
1.28475
1.22304
0.99108
0.35199
0.21111
0.09022
0.04950
0.03128

1346.37463
58.33454
45.48725
39.00742
24.17774
17.39716
17.05482
4.0728 V

4.57963
4.23629

0.36593
0.37512
0.40005
0.39578
0.56881
0.80581
0.61344
0.28996
0»05286
0.02085

0.32720
0.33770
0.36731
0.86241
0.43831
0.80472
0.61259
0.23996
0.05286
0.01043

-0.05056
-0.06002
-0.092 77
-0.18863
-0.33477
-0.19875
-0.09413
-0.04557
-0.01259
-0.00261
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parts converge smoothly. We further observe
that local-field corrections due to interband tran-
sitions are negligible as compared with local-
field corrections due to intraband transitions for
ferromagnetic nickel. By comparison, we find
that the nondiagonal part of the polarizability
function is of the same order of magnitude as
the diagonal part. Therefore we conclude that
for large values of Iq+GI the local-field correc-
tions become quite important.

l5-
INTRABANO

l2-

9-

q= 02

V. DISCUSSIONS

Exchange and correlation corrections in the di-
electric function for the ferromagnetic phase
should be very important. Kim et al."calculated
the charge susceptibility of a ferromagnetic elec-
tron gas including the exchange interaction. They
found that the dielectric function for negative-
spin electrons becomes negative for small values
of q and is singular at a finite value of q, while
the dielectric function for positive-spin electrons
shows the usual behavior. Hayashi and Shimizu'
pointed out that the effect of exchange on the im-
purity screening in ferromagnetic nickel is negli-
gible. However, the exact form of the exchange-
correlation corrections for d electrons is not well
established, and the inclusion of exchange and
correlation corrections for s electrons will have
little effect on the total dielectric function, be-
cause e« is dominating. Therefore we carried
out the calculations in the Hartree approximation
to investigate the local-field corrections in a
transition metal in the ferromagnetic phase.

The noninteracting-spin band model is a rather
simplified picture of the complicated ferromag-
netic-nickel system. We have completely neglect-
ed the s-d hybridization which splits the s and d
bands. However, this splitting is in a small region
of momentum space and well below the Fermi en-
ergy. Again, in principle we should use a wave
function for the s electrons which is orthogonal
to the core as well as to the d-wave functions. An

orthogonalized plane wave is a suitable choice,
but it was found that these orthogonalization cor-
rections are comparatively very small, and there-
fore a plane-wave approximation for the wave
function and a parabolic -band approximation for
the energy values of the s electrons are fairly
justified. On the other hand, the parabolic-band
approximation for d electrons is very crucial.
However, the present model band structure in-

fa
ten
+

fcr 6-
X

I

0

INTERBAND

3 I I

l.5 2.5 30
Is+7:I (~i~, )

FIG. 4. g(q+G, q) vs Iq+GI for ferromagnetic nickel.
The dashed line represents the intraband part and the
dashed-dot line represents the interband part. The
solid line represents the sum of these two.
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eludes all the essentail features of the detailed
band-structure calculations. The general behavior
of the polarizability function is the same for both
the paramagnetic and ferromagnetic phases in the
Hartree approximation. Our main emphasis has
been on a quantitative estimate of the local-field
corrections in a transition metal using a multi-
band-model band structure. We conclude that
these effects are quite important for large values
of Iq+GI and should be included in the calcula, —

tion of any physical property of these metals.
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