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The Green s-function diagrammatic expansion technique developed by the authors is applied to a spin-1
Heisenberg ferromagnet with easy-axis single-ion anisotropy. Inconsistency, which prevails in the previous
random-phase-approximation equation-of-motion calculations, is examined and shown to be eliminated in the
present calculation, Spin-wave energies, correlation functions, and magnetization are calculated to the zeroth
order and first order in 1/z. Critical temperature is determined (in fact, for a more general system which
includes also the anisotropic exchange interaction) and compared with the values obtained by the high-
temperature-expansion technique. The agreement is generally within a few percent (less than 1% for the Ising
cases). At low temperatures, the second order in 1/z calculation is carried out. %e show, in the temperature
expansion of the magnetization, Dyson's T' correction to the first Born approximation, along with a series of
terms led by T'e ~ due to the single-ion anisotropy.

I. ImRODUnloz

The Green's-function approach to the spin-1
Heisenberg ferromagnetic system with an easy-
axis single-ion anisotropy has been a subject of in-
terest in recent years. The reason is quite obvi-
ous. First of all, the single-ion anisotropy pre-
vails in almost all magnetic crystals, its effects
are thus of prime interest. For a spin-1 system,
the single-ion anisotropy is of second order in the
spin variables, and becomes further simplified if
the system has a uniaxial symmetry. Thus, the
spin-1 uniaxial ferromagnet provides a simple sys-
tem fox the theoretical investigation using the
Green's-function technique which has been proved
successful in treating the simpler isotropic Hei-
senberg systems.

In general, there are two ways to calculate the
Green's functions: the equation-of-motion tech-
nique and the diagrammatic expansion method.
Double-time temperature-dependent Green' s func-
tions are generally employed in the equation-of-
motion technique. The higher-order Green's func-
tions axe decoupled often with the random-phase
approximation (RPA) because it is simple to apply
and conforms to the intuitive effective-field picture.
For ferromagnets with a single-ion anisotropy some
complications arise. Initially, the decoupling of
the Green's functions generated from the anisotropy
terms presented some difficulties because it would
require breaking up a product of operators of the
same site in the Green's functions. I.ines~ has de-
vised a rather complicated scheme to cope with the
situation. The scheme is nevertheless valid only
in the weak-anisotropy limit. Actually, there is
no need to decouple the Green's functions generated
from the anisotropy term. Unlike the exchange in-
teraction, being a single-ion potential, the anisot-

ropy potential does not transfer excitations from
one site to another. Consequently, the Green's
functions generated from the anisotropy would all
have the same site indices and under commutation
they eventually close the chain. Indeed, for spin 1,
as shown first by Murao and Matsubara, ~ it is suf-
ficient to decouple the Green's functions genex'ated
by the exchange potential in the RPA. The Qreen's
functions ((8'; 8)) and ((S'8' +8'8'; B)) would then
couple to each other, and only to each other, in the
equations of motion. In this way the anisotropy can
be accounted for exactly, and the results are ex-
pected to be valid for the whole range of anisotropy
strength.

However, a new question was raised. It was
noted by Murao and Matsubara' that for spin 1, there
are three dipolar and five quadrupolar operators,
which form a complete set along with the unity op-
erator. From these operators various Green's
functions can be constructed. A physical quantity,
such as magnetization, can usually be obtained
from more than one of these Green's functions.
The fact that generally they do not yield consistent
results makes the selection of Green's function, or
a set of Qreen's functions when they are coupled
together, for the calculation of magnetization, e.g.,
an essential problem. While the source of incon-
sistency lies clearly in the decoupling approxima-
tion, there is no simple remedy available. This
lack of consistency in the determination of a cor-
relation function from the Green's functions was
called "redundancy" by Murao and Matsubara.
These authors, however, went on and chose a set
of Green's functions, mostly based on their intui-
tion, to carry out the calculations. In later works,
Devlin, Tanaka and Kondo, ~ and Potapkov' have
avoided the redundancy ostensibly. Their treat-
ment consists of using the set of Green's functions
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which would, in the zero-anisotropy limit, yield
the familiar RPA results of the isotropic Heisen-
berg ferromagnet. Haley and Erdos used a differ-
ent formalism. They constructed the Green's func-
tions from the "standard-basis operators" as was
also proposed by Hubbard7 as the atomic represen-
tation formulation in a tight-band-model calcula-
tion. The idea is to use the eigenstates of the
single-ion effective Hamiltonian as the basis for
the calculation. The standard-basis operators
which annihilate an ion in one basis state and, si-
multaneously, create the ion in another (or the
same) state are defined and the original Hamilto-
nian is then projected onto this manifold. In this
formalism the source of the inconsistency becomes
even more explicit. As a way to recover the exist-
ing RPA results of the isotropic Heisenberg ferro-
magnet, Haley and Erdos suggested to "enforce"
externally the kinematic restriction, which forbids
more than one energy level of a single ion be oc-
cupied, by setting to zero the corresponding auto-
correlation functions in the calculation. Their pro-
cedure can be shown to be equivalent to the selec-
tion of a particular set of Green's functions, and in
fact, the same set as used in Refs. 3—5. The meth-
od of Haley and Erdos has been applied to an anii-
ferromagnetic system with single-ion anisotropy by
Vettier. ' Recently, to cope with the problem of
redundancy, Egami and Brooks have proposed a
scheme for the evaluation of the magnetization with
part of the kinematic restriction included in the
calculations. Their results would agree with the
results of Haley and Erdos had the latter authors
not enforced the kinematic restriction by setting
the corresponding autocorrelation functions to zero
in their calculations. As in the other RPA theories,
the theory of Egami and Brooks also fails to repro-
duce the correct low-temperature behavior. Fur-
thermore, an unphysical term appears in their
theory, and, if not set to zero, would lead to erro-
neous results when D/J(0) is large. As discussed
by Egami and Brooks, these difficulties are in-
herent in the decoupling theories.

While the inconsistency persists as a result of
the decoupling approximation in the equation-of-
motion method, it can be eliminated entirely in the
calculation using the diagrammatic expansion tech-
nique which has been applied to some simple sys-
tems' '" successfully. The problem of the easy-
axis ferromagnet with a single-ion anisotropy has
also been attacked by several authors. In the work
of Matlaksa and of Matlak 2nd Westw3nski the
anisotropy potential was treated as a part of the in-
teraction Hamiltoni3n. The diagrams become rath-
er complicated. Apparently unaware of the incon-
sistency in the RPA theory, they strived to get the
same results. Kaschenko et al. ,

' on the other
hand, included the anisotropy potential in the un-

perturbed Hamiltonian. But, the "time" (tempera-
ture) behavior of the spin operators in the interac-
tion picture becomes too complicated to allow for
a tractable Wick-like theorem for the spin opera-
tors and they were forced to calculate the ordered
products directly.

Very recently we have developed a Green's-func-
tion diagrammatic technique using the standard-
basis operators" (hereafter referred to as I). The
method makes possible a Green's-function calcula-
tion of systems with complicated energy-level
structures. In this paper we apply the technique
developed in I to the spin-1 uniaxial ferromagnetic
system with single-ion anisotropy. The easy-axis
case is considered here; the hard-axis case will
be given in a later publication. Although the single-
ion anisotropy potential is included in the unper-
turbed Hamiltonian, the time behaviors of the stan-
dard-basis operators still assume simple forms.
The calculation is self-consistent in all respects;
the sum rules and the kinematic conditions are pre-
served. The diagrams are classified formally in
the orders of powers of l/z, z being the effective
number of spin interacting with a given spin. Also
known as the high-density expansion, ' the series
gives the molecular-field-theory result in the
zeroth order. The first-order correction is ob-
tained by summing all single-loop diagrams in which
one free-momentum variable is summed over. The
higher-order corrections are similarly defined, and

self-consistency is preserved in each order.
In Sec. II the diagrammatic expansion technique

applied to the present system, as a special case of
the general theory developed in I, is briefly re-
viewed. Calculations of Green's functions and cor-
relation functions to the zeroth order in 1/z are
given in Sec. III. The inconsistency involved in the
RPA equation-of-motion calculation is also dis-
cussed. First-order corrections are given in Sec.
IV. The spin-wave energy shift is obtained. Con-
sidering a correlation function as an example, we

show the preservation of kinematics of the spin
operators in the diagrammatic calculation. In Sec.
V we consider the thermodynamics of the system.
We first calculate the populations of the three basis
molecular-field levels to the first-order approxi-
mation by summing all single-loop diagrams. All

single-ion quantities are then obtainable as linear
combinations of the three populations. The Curie
temperature is calculated. In the calculation of the

Curie temperature we have made a simple but im-
portant generalization to include the case of 'aniso-

tropic exchange interaction. Results are compared
with the values obtained in the high-temperature-
expansion calculation. At low temperatures the
first-order approximation reduces to the usual
spin-wave approximation which ignores spin-wave
interactions. We thus carry out the calculation to
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the second order, summing diagrams with two

loops. We show in the isotropic case, as also ob-
tained by beaks, Larkin, and Pikin, the Dyson's
T correction to the magnetization in the first Born
approximation and the absence of the T' term erro-
neously predicted by the RPA theory. For the an-
isotropic ferromagnet, a series of terms with the
leading-order term proportional to T e ~ are ob-
tained along with the Dyson's correction.

dropped in the energies as only the difference in
energies is essential in our calculation. Following

I, we define the standard-basis operators L,„
(n, q = 1, 0, 1) taking the effective-field eigenstates
as basis. We have

(2. 6)

The multiplication rule and the commutation rela-
tion for operators on the same site are

II. DIAGRAMMATIC EXPANSION

The Hamiltonian of the system can be written as

L ~n J-y~ = ~ay J-n~ ~

[L.o Lril = &orL.i —«.L~

(2. '7a)

(2.7b)

K = —g J,, (s,'.S',. +S',.S,.) —Dg (S,'. ) giiaH-QS', ,

(2. 1)
where S =1, D&0, and H is the external magnetic
field applied along the anisotropy axis. We sepa-
rate the Hamiltonian into two parts:

o; =g&&
I oi I»L'...

e, y

(2. 3)

and operators of different sites commute. Any
single-ion operator can be written as a linear com-
bination of the standard-basis operators:

0++int &
(2. 2)

where the suffix i indicates the site of an ion. The
spin operators, for example, can be written as

where X0 is the single-ion effective-field Hamilto-
nian which may be written as

Ko = —2Z(0)&s') Ps; gpaHP-S;.

(2. 3)

The interaction Hamiltonian is

+int + +0

z i
~i ~11 ~11 )

(S i) = I.11 + L-';1,

Si=v2( 1o+Lof»

S —v 2 (Lo1 +I fo)

The Hamiltonians written in terms
basis operators are then

X, =gE„L*„„,
4 ~ fM

(2. 9a)

(2. 9b)

(2. 9c)

(2. 9d)

of the standard-

(2. 1o)

= —gz, ,[(s',. - (s'))(s',. - &s'))+s',.s;.],
5 ~ g

(2. 4)

where the thermal average (S') will be determined
self-consistently. The effective-field Hamiltonian
has been in the diagonal form. For spin 1, the
three molecular-field eigenstates can be designated
by their corresponding quantum number of S' as
11), IO), l 1). The eigenenergies are, respectively,

+tnt 2~i j[(L11 L11 &S ))
f f J

( 11 —Lff —&s'&)+ ( lo+ of)( o1+ fo)l .
(2. iS)

In the interaction rePresentation L„o(r) = e o'L, oe
we obtain the simple T dependence of the excitation
operators,

E1 = —2&(0)&S') gp, e H D, — —

E, =u(0)&s') +gi1, H D, -
zo =o

(2. 5a)

(2. 5b)

Loi(r) =e Loi

Lfo(r) = e'"Lio

L11(7)=e 1 1L11 .

(2. 12a)

(2. in)
(2. 12c)

A common constant term —J(0)&s')o has been We define three noninteracting Green's functions,

n(- E,),
Go1 (» —&) —= G1(» —r) = e ' ""

1+n(- E,,),
n(E-, ),

Gf~o(» —r) -=Go(» —r) = e ""'"
1+n(Ef),

n(E1 —E1),
1+n(Ef —E,),

T~T1
p

T& T1,

T& T1,

(2.13a)

(2. 13b)

(2. 13c)
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(o)
II

(b)

(c)

Loi

Lio

[ohio]

Loo

0 [DJ

L—
II

I

0

Lio

LoT

[DOT]

can facilitate the drawing of a consistent set of dia-
grams. In this calculation we shall assign match-
ing priority to the "active operators" in the order
Lpj L] y and Ly, . That is, in applying the reduc-
tion theorem, Lo& is to match with all other opera-
tors first, then L» would start to match with other
operators, etc. The vertices are summarized in
Figs. 1(a)-1(c) with the weight factors shown in the
parentheses. The diagonal vertices L, are repre-
sented by small circles and are labeled by &. The
Green's functions are not labeled as in I; they are
shown in solid line, dashed line, and double line
for G„G3, and G3.

The diagrams are made of vertices, Green's-
function lines, interaction lines, and ovals which
are used to embrace the vertices of a common site.
Vertices are joined together through Green's-func-
tion lines and ovals to form a single-site block.
The diagrams are then formed by linking together
the blocks with interaction lines.

The contributions of diagrams are calculated in
the Fourier space as usual. We define the Fourier
transform of a Green's function:

G(r) =pe '"~"G(&u„), (2. 15)

FIG. 1. Vertices corresponding to the standard-basis
operators (8=1). Vertices corresponding to 1.

&&
and I &&,

which do not occur in this work, are not shown, The
weight factor associated with each vertex is shown in the
parentheses,

~„=2~n/P, P = I/k, T,

and we obtain the noninteracting Green's functions
in the Fourier space

where n(x) = (e~" —1) '. The Wick-like reduction
theorem, as shown in I, can now be written as

(0 (7 ) ~ ~ ~ I, (v =r) ~ ~ ~ 0„(r„)),

Gi(~n) = 1 1

1 1
G hl)=-

P -i&„+EI

(2. 17a)

(2. 17b)

= Gs (7's —7')([0s ~oi], ' ' ' 0 (r ))o

+ ' ' ' + G~ (»rr)&0~ ( ~) ' ' ' [0~~ ~»]~/&o ~

A second (third) equation can be obtained with I,o,
replaced by I.IO (L») and G, by G3 (G,). In these
equations the brackets with the suffix 0 denote the
ensemble averages with respect to X~. Using the
reduction theorem, the ensemble average of a T
product of n operators can be written as a sum of
products of a Green's function and a T product of
n —1 operators. Repetition of this process (which
we shall call matching) gives us finally a summa-
tion of products of Qreen's functions and an ensem-
ble average of products of diagonal operators (I. )
over the unperturbed Hamiltonian. Each of such
terms can then be represented by a diagram or a
set of diagrams with appropriate weight factors
(the details have been given in I).

As discussed in I, the lack of uniqueness pre-
vails in the representation of a thermal average of
a T product. A priority rule, though arbitrary,

(2. 17c)

The rules for evaluation of a diagram can now be
given.

(i) Assign a, frequency to each Green's-function
line and a momentum to each interaction line such
that the frequencies are conserved at each vertex
and the momenta are conserved on each block.

(ii) Associate the solid-line„dashed-line, and
double-line Green's functions with G, (~„) for n =1,
2, 3, respectively. Associate with each interac-
tion line a factor 2P J'(q).

(iii) Associate with each block consisting of n

vertices carrying minus signs, n, vertices carry-
ing factors 2 or —2, no vertices carrying weight
factors B~, and n~„vertices carrying weight fac-
tors D„a weight factor (see I for notations)

( I)r, 2ntsn„Res an. , s r (lnZO)

(iv) Multiply all the factors and divide it by the
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0
IO, OI

0
I0, 10

0
Goi, oi OI, I 0

(a)

2P J(q)=

(c)

FIG. 2. Diagrams for
the zeroth-order Green's
functions and the chain-
re normalized transverse
interaction (in heavy wavy
line). The light wavy line
depicts a single trans-
verse interaction.

(e)

symmetry factor of the diagram. Sum over all in-
ternal frequencies and integrate over all internal
momenta.

p
-,

( )
2P J'(q)

1 —2P J(q)[D»G, (~„)+DpfG, (~„)]

2P J(q)(i&a„+E,)(i(u„—E,)
(i(d„—(d+) (i(d„—M )

(3. 1)

(3.2)

D]) =D] —D),
D& = &L«&o

&,' = 2J(0)(s'& —DgI J'(q) +g Ps II

+ {[DaJ(q)]'+ D'-2D J(q)(Dio —DoI))'" .
(3.3)

Thus, to this order of approximation we have

Go)'(q~ +o) = D»Gg (+o) + D gPGy (&o)2PJq (+o)

III. ZEROTH-ORDER CALCULATION OF GREEN'S
FUNCTIONS AND CORRELATION FUNCTIONS

We first consider the Green's function Gpo(q, to„),
the q —(u„comPonent of &r,L', o(r)L~p, (0)&. To the
zeroth order in 1/z, the only diagrams aside from
the single unperturbed Qreen's-function line are the
chainlike diagrams. These diagrams are shown in
Fig. 2(a). The chainlike diagrams can be summed
with the help of the renormalized interaction de-
fined in Fig. 2(e). The chain-renormalized trans-
verse interaction, represented by a heavy wavy line,
carries a factor 2PJ", (&„) given by

pI( )
Dpf i& +Eq+2J(q)D~p
p (i&@„—&u,') (j&@„—e,)

' (3.7)

The sum of the four Qreen's functions gives the
q —&d„component of the Qreen's function

&r,[LI,(r) + L,'I(~)][L'„(0)+ L-,', (0)]&,

which is simply

—,
' &r„s', (r)s;.(o))„„„.

Thus, we have

(r, s', (r)s;(0)&„„„

»iI[i .—2J(o)(s'&-ri. II.]+D(D„-D„)
p (i~„—~,")(i~„—~,)

(3.3)
Another combination of the four Qreen's functions
gives

(r, s', (7)[s;(o)s',(o) +s', (o)B;(0)]&,„
=2(r [Lip(v') —IpI(r)][Lpi(0) +IIp(0)]&

&,"=g p, II, &+S'& [2J(0) - J(q)]

+ID —2DJ(q)[3&(s )o&o —2]+[(S&oJ(q)lotto .
(3. 5)

The Green's functions GIp(q, ~„), Gpy(q (0 ) and

Gpf~(q, ~„) can be calculated in the similar way. The
diagrams to the zeroth order in 1/z are shown in
Figs. 2(b)-2(c). We obtain

lo oj 2J(q) DioDoI

)
(3.6)

Dso i&„—EI+2J(q)D Io
p (i&„—& )(i&„—& )

(3.4) (,.— .-)[ -2J(0)&'&-~i.II,] DDr
p (i~„—& )(i&„—& )

The analytic continuation to the whole complex &u

plane by i(d„- ++i5 gives two poles of the Qreen's
function at , ' which are identified as the elementary
excitation energies of the system. Notice that (S')
should be calculated to the zeroth order in I/z, and
that D;, = (S')„D„—Dpf = 3&(S') ), —2, the spectra
can be rewritten as

(3.9)
These Qreen's functions are related to the corre-
sponding double-time temperature-dependent re-
tarded Qreen's functions used in Refs. 3-6. If we
replace D;, by (S') and D, p

—Do7 by 3&(s') &
—2

reproduce exactly the results of .Refs. 3-6. It is
important, however, to note that from these Green's
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functions &S') and &(S')2) can only be calculated to the
zeroth order in 1/z. If one determines these quan-
tities "self-consistently" from the Green's func-
tions, as is generally done in the equation-of-mo-
tion technique, inconsistency may arise. We shall
dwell more upon this subject in the following.

In the Green's-function theory using the equa-
tion-of-motion technique, the equal-time autocor-
relation functions are calculated from the corre-
sponding approximate Green's functions. For ex-
ample, from the Green's functions given in Eqs.

(3.8) and (3.9), or the corresponding double-time
temperature-dependent Green' s functions, (S'S )
and (S'(S S'+S'S )) are calculated. Then with the
identities

&S'S &=&S'&-&(S')'& 2,

&S'(S S'+S'S )) = &S'& + 3&(S') ) —2,

(s. lo)

(3.11)

the two quantities (S'& and ((S') ) are determined.
There does not seem to be any inconsistency until
one considers the Green's function

(s. is)

&T,f[S;(r)Sf(r) +S;(r)S', (r)][8j(0)S;(0)+S;.(0)Sj(0)]])= 2&T,j[L[o(7') —I
(),(&)][ -I ()((0) —&-', ,(0)]j&, (3 12)

and calculates the corresponding autocorrelation function at r =0; ((S'S'+S'S')(S S'+S'S )). With the help
of the commutation relations of spin operators, one can show that (S'S'+S'S')(S S'+S'S ) =S'S . On the
other hand,

&T,([S,'. (7)S', (r) +S;.(r)S', (r)][S;.(O)S;.(O) +S',.(O)S;(0)]]&—&T,[S',(r)S;.(O)]& = 4(Gg+ G-,",) .
If one uses the results obtained in Eq. (3.6) with the replacements D,f- &S'&, D« —Dof-3((S')') —2 (i.e. ,
the RPA results in the equation-of-motion calculations), one obtains

((s s ss*')('s-s +s s.))'(s'"s ) -(s('s-)= (-((ss')') - P)sP, (, , —, ), (3.14)

which is evidently not zero. This points to the fact
that a correlation function may take different values
when it is calculated from different Green's func-
tions; the values of (S') and ((S')2) depend on the
set of Green's functions used in the calculation and
are not uniquely determined. This redundancy in
the Green's-function calculation was first pointed
out explicitly by Murao and Matsubara. Unfortu-
nately, in the equation-of-motion technique (S'& and

&(S') ) can only be calculated from the Green's func-
tions in the way described above. While Murao and
Matsubara' chose Eqs. (3.11) and (3. 12) to deter-
mine (S') and ((S')2), the others' ' used Eqs. (3.10)
and (3.11). To remove or to reduce the inconsis-
tency requires an improvement of the decoupling
scheme, which is usually rather difficult. On the
other hand, in the diagrammatic approach, such in-
consistency will not occur provided that one sums
all the diagrams to a given order. The discrepancy
we have shown is, in the terms of diagrammatic
expansion, simply owing to the inconsistent inclu-
sion of only some of the higher-order terms. To
be more explicit, we note that in the calculation of
the autocorrelation functions from the Green's func-
tions a summation over the external momentum is
performed. The first diagram in the Green's func-
tion (the noninteracting Green's function) is inde-

pendent of momentum and gives a term of the zeroth
order in 1/e for the autocorrelation function; but,
the other chainlike diagrams contribute terms of

l

the first order in 1/z to the autocorrelation func-
tion because of the summation over the momentum
variable. Not all first-order terms in 1/z have
been collected however. All diagrams classified
as first order in 1/e in the expansion of the Green's
function have been dropped. Some of these dia-
grams would contribute to the autocorrelation func-
tion to the first order in 1/e and have to be included
along with the chainlike diagrams in the calculation.
Ignoring the contribution of the chainlike diagrams
(in the zeroth-order calculation) both &S'S ) and
&(S'S'+S'S') (S S'+S'S )) are equal to (S') —&(S') ) y 2,
as expected. In the higher-order calculations all
diagrams contributing to that order should be in-
cluded and the two autocorrelation functions will
then be equal to each other. Vi1e recall that the dif-
ference of the two Green's functions giving rise to
a difference fol the two col I'elation functions ls
4(GP, +G-„). To the zeroth order the equal-time
autocorrelation function &I.BIO,& and &I.,OI-, O& are
identically zero because of the lack of noninteract-
ing Green's functions for G~~ and G~o. It will be
shown in Sec. D? that after collecting all the dia-
grarzs which contribute to the first order in 1/e
(one momentum summation), the two correlation
functions are identically zero again. The eonsis-
teRCJ M 8QCA Og'Q8g l8ÃdS' 8 SA Ofg 80ppoÃt tQ N8
classification of the diagrams according to the num

bee of momentum variables summed over in the dia
g'YQI .
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IV. FIRST-ORDER CALCULATION OF GREEN'S
FUNCTIONS AND CORRELATION FUNCTIONS

As discussed in I, the summation of diagxams
can be done using a modified Dyson's equation. If
we define Rn ll l educible pRlt Rs R diRglam ol pRrt
of the diagram which would not break apart by re-
moving one of the interaction lines, a diagram can
then be viewed as a set of irreducible parts joined
together by single interaction lines. Diagrams can
then be summed in terms of the irreducible parts
formally, with the modified Dyson's equation

(4. I)

where Z represents the collection of the irreducible
parts, and V the interaction potential.

We now turn to the Green's function

G'.,'(q, .) -={T,l.*„(r)f-.', (0)&„.„. (4. 2)

Since G0, couples with G0'„G~0, and G-,0, we con-
sider the matrix Green's function G with the four
Green's functions as the matrix elements. Summa-
tloD of the dlRgl ams ln tel ms of the 1rl'educible
parts gives

G = Z +Z[2PZ(q) jo, (4.3)

where Z is now a matrix consisting of elements
Z0~, Z0,', Z-, 0, and Z~0, where Z,'~ is the collection
of irreducible parts with starting vertex L„and
terminating vertex I.,~. Solving the matrix equa-
tion, we obtain

I Go, GO1) (I —2p 8'(q){Z-0+ZIO) 2p J(q){ZO, +ZO1) ) (Zo, Zo, )
(G10 G10 f Q ( 2pJ'(q)(ZIO+ZIO) I —2pJ(q)(Zp1+Z01)p (ZI0 ZION

(4.4)

IW

0 = I —2P~(q)(Zo1+Zo1+Zfo+ZI~o) (4. 5)

~0

@= I —2p 8'(q)(Z01+Z01+ZIO+ZIO) =0 . (4. 7)

To the zeroth order in I/s Zol =D10G1 Zg~() DOIGB
and Zoo', =ZIO=O; the results given in Eq. (3. 5) of
Sec. III are recovered.

To the first order in I/s, we collect all the sin-
gle-loop irreducible parts as Z. The spin-wave
energy and the Green's function will then be cor-
rect to the first order in I/z. Using the vertices
shown in Fig. 1, diagrams for the irreducible parts
Zoo to the first order in I/z are constructed. These
diagrams are shown in Fig. 3. Diagrams which
contain blocks connected by a zero-momentum-
transfer interaction line are deleted. They sum
to zero. This is because the self-consistent-field
term 2J'(0)(S') g; S; has been separated from the ex-
change-interaction Hamiltonian and included in the
unperturbed Hamiltonian. (The longitudinal-inter-

The a,rguments q and &„of the Green's functions
and the irreducible parts have been deleted in the
equations for simplicity. The transverse-spin
Green's function (T,S;.(v)S,.(0)), „can now be writ-
ten as the sum of the four Green's functions and we
have

&0 07. &o 0&
+ 7, S O

Z01+Z01+Zi0+Z10
I —2PZ( )(Z"+Z«+Z'-'+Z~') '

(4. 6)
The poles of the QreeD 8 fuDctloD RDa, lytlcRlly con-
tinued to the whole (d plane give the spin-wave en-
ergies, which can be found by solving

action vertices then becomes S' —(S') with (S') de-
termined self-consistently. ) The heavy wavy lines
represent the renormalized transverse interactions
which have been discussed in Sec. III. The renor-
malization of the longitudinal exchange interaction
is similarly achieved. This is shown diagrammat-
ically in Fig, 4, where the renormalized longitudi-
nal interaction is represented by a heavy wavy line
connecting the diagonal vertices I,1, —I,II —(S') de-
noted by small circles. We obtain

2p- 2p J(q)
l —2P 2()q(D +D- —'D -) ' (4. 6)

Diagrams for Z;0 can be found similarly. They
are, in fact, the same diagrams as those shown in
Fig. 3 with all solid lines in the diagrams replaced
by dashed lines and vice versa except for diagrams
(I) (m), (n). The three corresponding diagrams of
Z,-o which conform to the priority rule are shown in
Fig. 5(a). They are quite different from the three
diagrams obtained from Fig. 3 (I), (m), (n) by in-
terchanging the solid lines and the dashed lines as
shown in Fig. 5(b). The latter three diagrams are,
however, obtainable by reversing the priority rule.
Since the priority rule is a,rbitrary and the sum of
these two sets of diagrams are equal, we are free
to replace the diagrams in set 5(a) by those in set
5(b). Diagrams of Z0011are shown in Fig. 6. Again,
interchanging the solid lines and dashed lines in
each of the diagrams of Fig. 6 we obtain all dia-
grams of Z&~~.

To find the first-order correction to the spin-
w'ave energies we first write Z's in the following
form defining A&& and 4&&.
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w '3
(c)

FIG. 3. First-order-
correction diagra. ms for
the Green's function
Goi(&n &)~

(~01 01 (D10 + 11)G1+ 11G1 A12G1 + A12G1G2
10 01 2

10 OT 2(Z- Z- f ( A21G2 A21G1G2 (D()1 + A22)G2 + A22G2 j (4. 9)

~; =2@(0){S')—g, +a,)+ [i/l, +a,)'

+D'-2D(A, -S,)+C,]" ,
2

where

A& =J'(q)(D10 + A11 + A12) + (1/2p)(A„/D10)

&, =~(q) (D01+A21+A22) + (1/2@(&22/D01)

(4. 1o)

(4. 11a)

(4. 11b)

where the A's and 4's are functions of &„and q.
Solution of Eq. (4. 6) to the first order in 1/z can
be found as

u(q) D;, D„„
q p

12 + 21 D 11 D 22
10 01

(4. 11c)

and the A's and 4's are evaluated at & = (d,', the
z eroth-order frequencies.

Since the explicit results for general tempera-
ture are rather lengthy, we only present the re-
sults in the low-temperature limit. For 2J(0)P
» 1, we can set D, =1, D0 =D; =0. E(luation (4. 10)
then reduces to

1 411 1 1
(0 =(d —cT(q)(A11+A22+A12) —

2 p
+

2 ~ ( )

X 2J2q Aii+A22+A12 -2DJ q Ail-A22+A12+ 11 J q -D+uq 21

P p

After evaluations of the A's and the 4's using the Poisson's sum rule, '~ we find

=(d —— g (d&
f D[Z(q) +Z(n)] z(0) +z(k —q) -z(q) J(k)), —

(4. 12)

(4. 13)

(4. 14)

which agree completely with those given by Kash-

chenko et al. '4 The spin-wave damping has been
calculated by these authors also. To the zeroth
ol'del' ill 1/8, tllel'e ls 110 damping; to tile fll's't ol—
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tribute to the autocorrelation function to the same
order. The four diagrams are those in Figs. 6(e)-
6(h). Their contributions are, respectively,

FIG. 4. Diagram for the chain-renormalized longi-
tudinal interaction (in heavy wavy line). The light wavy
line depicts a single longitudinal interaction.

der in 1/z the damping of spin waves is due to the
scattering by the 8' fluctuations which is small at
low temperatures but significant near T,. The re-
sults have been given near 7.', for both the weak-
field and the strong-field cases. We shall not elab-
orate on this.

Correlation functions can be obtained from the
corresponding Green's functions. However, in the
calculation of autocorrelation functions some cau-
tion is necessary to avoid any incomplete inclusion
of terms of higher order. Self-consistency and
preservation of kinematic conditions can be main-
tained in each and every order of approximation
only if diagrams are summed consistently. We il-
lustrate this with the calculation of the autocorre-
lation function (Lp-, (r)Lp, (0)) as r-O'. From physi-
cal considerations, the function should be identical-
ly zero since it calls for excitation to the level !0)
of the same ion twice at the same time. The RPA
calculation, however, shows a finite value and
therefore creates the inconsistency that the values
of (S') and ((S') ) would depend on the set of Green's
functions chosen in the calculation. To calculate
this autocorrelation function in the diagrammatic
method, we consider the diagrams of the corre-
sponding Green's function (T,LpI(T)Lpg(0)) and
sum over &„and q. In this procedure, first of all,
the zeroth-order chainlike diagrams of the Green's
function give a term of first order in I/z to the cor-
relation function because of the momentum sum.
This is, however, not the only term of order I/z
in the correlation function. There are four first-
order diagrams in the Green's function, which con-

2PJ,'(~„)G,(~„)G,(~.)G&(~.),
&n& tom& a

—Du) Q 2p J,'((u„)Gi((u„)Gp(&u„+(u )Gi((u ),
tdn& ~mp &

——Dpl Q 2 p J ((u„)Gp (v„+w )Gq ((u )Gp (v ),
tdnp

pampa

(Do+—D oDo-) P 2PJ,'(~.)G (~.)G, (~.) .

Using the Poisson's sum rule' we carry out the
frequency sums. The sum of these four diagrams
cancels out the contribution of the chainlike dia-
grams exactly. We obtain therefore, according to
present classification of the diagrams, the kine-
matical condition (L,'pL-,'g =0 to the zeroth and first
orders. No inconsistency can arise and all physical
quantities are uniquely determined. While the
preservation of kinematics is expected in each or-
der and to all orders of calculation, a general
proof is however lacking at present.

V. THERMODYNAMICS OF THE UNIAXIAL
FERROMAGNET WITH SINGLE-ION ANISOTROPY

Any single-ion physical quantity can be calculated
in terms of the thermal averages of the three diag-
onal operators (L„) (o.'= 1, 0, 1 ), which describe
the populations of the three molecular-field states
used as the basis states. We denote (L, ) by P,
(o.'=1, 0, 1). To the zeroth order in 1/z, they are
D„ the molecular-field-theory (MFT) results.
The first-order correction to I', is given by the
four diagrams shown in Fig, 7 where the circle in
each diagram represents an 1.» vertex. The heavy
wavy lines are known to represent the chain-re-
normalized interactions. The circles which attach
to the ends of the logitudinal-interaction lines de-
pict the diagonal vertices L» —L;-, —(S') as before.
We obtain after summing over the frequency in each
diagram

1 2P J(q)Pi ——Dq+ p Di(l —Dl —Df —2D&I+2DlI)N~ 1 —2pJ( )(D +D—Dp)--
1 1 1+ —Q [I —2PJ(q)D( (1 —Dtp)If(q) +'—Z 2P J(q)DgDpIA (q) D1DpI(I 2D] p) Q PE(q)N N, N

where

(6. 1)

=2J D07, + a +E1 - a +E1 2DDgg(q) =2J(q), n(~;); —n(&, )
' —(, )( .

)
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a{q) = . [n(~;)-n(~, )] .2J q)'
(5. 2c)

Similarly we calculate P; to the first order in I/z, the diagrams are the same as those given in Fig. V ex-
cept that the solid lines in diagram V(d) are replaced by dashed lines and that the circle in each diagram
(which are not attached to the wavy line) now represents the vertex I,». We find

Pf ——Df+ 2 Df(1 - Dq —Df+2Dg+2Dg) —
2 + — 2p J(q)DID(of(q)

1 ~ 1——Z [1 —2J'(q)D;(1+DQ ,)]g(q-)+D;D, Q(1 —2DOI) —gh(q) .
N N

(5. 2)

Pp can also be calculated with the same diagrams
given in Fig. V plus the diagram V(d) used in the
calculation of P; (diagram V(d) with solid lines re-
placed by dashed lines). Clearly, the circles (not
attached to the wavy lines) on each diagram now

represent the vertices Lapp The result is simply

Pp =1 - P~ -P(,
and the sum rule g„f.„=1is satisfied.

{5.4)

(S') =Pg —Pf,
we find the Curie temperature:

(5. 5)

2~.J(0) r r ' N ~1—(4/~)&. J()q

2 ~ e~~' 2PJ(q) '
N M (1 8 B~b)2 -y

[»(~-2) —2J(q)1
2 P,J(q) C

N, y~ b 1 —e-'&'

-gcD
—2 (e-~en 1)2 ' (5.6)

A. Curie temperature of an anisotropic ferromagnet

The magnetization (S') and the quadrupole moment
((S') ) a,re given by P, —P; and P, +P; =1 —Po, re-
spectively. Setting the external magnetic field
equal to zero and considering the small (S') limit
in the equation

1 1 ~ 2P,Z(q) 1 ~P,J~(q)
2P,J(0) N, 1 —2P,Z(q) N ~ D

0(D-3 -8,n)+ ye (5.9)

With Z(0)/D-0, the S' = 0 state is suppressed and
we recover the result obtained by VLP' for an
Ising system of spin —,

' (with an exchange param-
eter 4J,&).

1 2 10~ P,J(q) 4 1~
2P,J(0) 3 9N ~ 1 —

~
4|3,J(q) 2V N ~

+ P,D ———
1

—Q [P,J(q)]

1 ~ '-~.J(q) 1 ~ I[~.J(q)]'
& -lP&(s) & . I&-l8&(s)]') '

(5.6)
Putting D = 0, and substituting for P, in the correc-
tion terms by its zero-order value (MFT), this
equation gives the result obtained by Vaks, Larkin,
and Pikin (VLP)' for the isotropic Heisenberg fer-
romagnet. Equation (5.6) then represents the ef-
fect of the anisotropy to the first order of P,D.

In the other extreme limit, for D» J(0), we ex-
pand the terms in Eq. (5. 6) in powers of D ' and
we obtain

(5. Va)
(a) --~-

and

y-2+e c

b'=D'+4DJ(q)(1 —&/~) .

(5. Vb)

(5.Vc)

The result in the MFT is obtained by keeping only

the first term on the right-hand side of the equa-
tion the other terms represent the first-order cor-
rection.

For weak anistropy [D«J(0)], to the first order
in D, Eq. (5. 6) reduces to

FIG. 5, Three of the first-order-correction dia-
grams for the Green's function G&0(cu„, q). Set {b)
gives the diagrams obtained by interchanging the
solid lines and the dashed lines in the diagrams of
I'ig. 3 (l, m, n). These diagrams do not conform to
the priority rule. Set (a) shows the corresponding
diagrams constructed according to the priority rule.
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FIG. 6. First-order-
correction diagrams for
the Creen's function.

Goy (Q3~q g), Replacing
each sol.id line with a
dashed line and vice
versa, we obtain dia-
gx'Rms fox' G(0(G)~~ Q)

(e)

The spin-1 Ising system with a single-ion anisot-
ropy has been studied recently by the high-temper-
ature-expansion (HTE) technique. To compare
with the HTE results we can make a straightfor-
ward modification to our calculation allowing an

anisotropic exchange interaction. If we multiply
the transverse exchange interaction by g and fol-
low the same diagrammatic calculation as above
we obtain the equation determining the Curie tern-
perature as

1. 2 2 1 P g(q) 2e c

2P,J(0) y y N + 1 —(4/y) PJ( )q(e-~ n —1)'

2 ~ 2'qP~cT(q) 8 1 p 2 qpgcT(q) 'yD( 2) 2 ~( ))
1 + 8

y (1 e-Bgd)2 N y2 d ] e-Bgd (5.10)

Here)

d' = D'+4DqZ(q)(1 —3/y) . (5. 11)

This is the most general result for a uniaxial fer-
romagnet of spin l. It is valid for q&1+D/J(0) (in
MFT) because a magnetic ordering along the z axis
has been assumed.

Setting q =0 we obtain an Ising-1 system with a
single-ion anisotropy and the equatioa. for the Curie
temperature is now

1 2 2 1 ~ P,J'(q)
2P.J(0) y y N ~1 (4/y)O, ~—(q)

'

(5. 12)
Taking D=O (y=3) we obtain

1 2 2 1~ P, J(q)
2P,Z(0) 3 3 N~ 1 IP,~( )q-'

(5. 13)

which determines T, for a spin-1 Ising ferromag-
net. In the other limit D/J(0) -~ we recover'again
Eq. (5.9) as the system now becomes an Ising fer-
romagnet of spin ~.

To compare the critical temperatures obtained in
the present calculation with the HTE and MFT val-
ues, we summarize the values of k~T, /J(0) of the
three calculations in Table I. [It should be noted
that for Ising —,', the exchange parameter is taken
as 4J'(0) instead of Z(0). This introduces a factor
of 4 to the Ising —,

' values in the table. ] The per-
centage values in the parentheses are the percent-

age deviation of the values from the HTE values.
The agreement with the HTE is within a few percent
in all cases.

For a general value of single-ion anisotropy, we
have plotted the values of @AT,/J(0) obtaine'd from
Eqs. (5. 6) and (5.12), for the Heisenberg and the
Ising-1 cases, respectively, in Figs. 8 and 9. The
HTE values are shown for the fcc lattice. ~ The
values from the MFT are also plotted for compar-
ison,

B. Low-temperature behavior

At low temperatures, when PJ'(0)» 1, many di-
agrams can be dropped from the calculation. In-
deed only diagrams (d) in Fig. V would contribute
in the first-order calculation of P& if terms of or-
der of e " ' ' are discarded. We find, to this or-
der

FIG. 7. First-order-correction. diagrams in the cal-
culRtlon of the populRtlon of molecular-field stRte ) 1 },
Small circles that are not connected to the interaction
lines are the L~~ vertices; those which attach to inter-
action lines are the L~~-I.TT- (8 }vertices.
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TABLE I. Values of the critical temperatures from various calculations.

Isotropic
Heisenberg

Pres. cal.
HTF (Ref. 18)
MFT

0, 96 (5%)
0. 9116
l. 333

1.004 (5/, )
0.9571
l.333

fcc

1, 050 (4%)
1.0026
l. 333

Ising 2 Pres. cd.
HTK (Ref. 19)
MFT

l. 519 (1%)
l. 5036
2.

1.585 (0. 2%) 1.628 (0, 3/)
1.5884 1.6326
2. 2.

Ising 1 Pres. cd. 1.055
HTE (H,ef. 20) =-1.07
MFT 1,333

1.097
—1.12

1,333

1, 122 (1/o)

1, 135
l. 333

(5. 14)

{5.15)

(5.15)

~; =. 2J(0)(1 - y, )+D+g y.,H .
If we define the reduced temperature T as

~ =I,r/a~J{0) ~,

(5. 1V)

(5. 18)

(5. 20)

and the constants &, C„and C, are the coefficients
in the expansion of y, for the cubic lattices~a:

y =1 —o[q'+ C,q'+ C, (q'+q'+q') + ]

the low-temperature expansion of (S') for a cubic
lattice is

{8')=1 —Zz/2(D+g////H)r

+37/(5C~ + SCz) Z~/2(D+ gl/s H) 7/ —~ ~ ~, (5'. 19)

where the incomplete Hiemann g function Z~(x) is
defined Rs

This is, in fact, identical to the result of the spin-
wave theory since the present theory reduces to the
simple spin-wave theory in the extreme low-tem-
perature limit where the spin-wave-spin-wave in-
teraction can be ignored. We may also note that
the quadrupole moment ((S')'), which is equal to P,
+ P;, is equal to (8') in this limit.

When temperature is elevated, the effect of the
interactions of spin waves manifests itself in the
temperature behavior of the magnetization. As
Dyson concluded for an isotropic ferromagnetic sys-
tem, the lowest-order term in the temperature ex-
pRnslon of magnetlzatlon due to spin-wave-spln-
wave interactions is proportional to T'. We have
investigated the Rnisotropic case and obtain the
leRdlng-order tel ms due to the spin-wRve —spln-
wave interactions by carrying out the calculation
of (8') to the second order in the 1/z expansion.
The second-order diagrams used to calculate P,
and Pl are given in Fig. 10. We have shown only
the free-energy diagrams. As in the first-order
calculation of I', the vertex I.~ is added. to one of
the Green's functions in the free-energy diagrams
in all possible ways. After summing over the two
frequencies we find the second-order correction of
(S') =P, —P„as-

5'2'(9') = ——g J'(0)+J(k-q) —J(k) —J(q') ——— n(&, )n(&,)[2+n(&~)+n(&, )] .(~) p D(J{I) +J(q))
+P D J(I -J{q- (5. 22)

5+{5C1 + 3C2)ZS/2 (0)Z5/2 {0)+

which agrees with Dyson's result to the first Born approximation. ~3 In the presence of a single-ion anisot-

ropy we find

(5.aa)

It should be noted that the first term here arises from the first-order-correction diagram, due to the self-

consistent determination of (8').
For an isotropic ferromagnet D=0 and II=0, the leading-order term in the temperature is

5' '(8') =6 (5C, 3C )Z, / (D+g//, H)Z, / (D+g// H) —
{ )

Z / (D+g//, H)Z / (D— +g//, H)

[Z g/3(D+g PBH) +Z5/8(D+g B //) Hl Z{D/2+g//BH)1~ + ' ' '
2J0 —D
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2,0

1 I I

Molecular Field Theory

1.6
kTc

J(o)

IA

cc

SC

1.2

I.O

I

6 D 8
J(o)

10 12

FIG. 10. Free-energy diagrams for the calculation of
second-order corrections to (S ) at low temperatures.

FIG. 8. Plot of Curie temperature kT,/4(0) vs anisot-
ropy strength D/J(0) for the spin. -1 Heisenberg ferro-
magnet with easy-axis single-ion anisotropy in fcc and
sc lattices. High-temperature-expansion values at the
limit of D=O (isotropic Heisenberg) and D=~ (Ising 2)
are given in circular (fcc) and square' (sc) dots, respec-
tively.

2.0- Molecular Field Theory

Along with Dyson's correction, the single-ion an-
isotropy gives a series of terms. The leading-or-
der term of the series is proportional to T'e ~ with
a factor depending on the anisotropy strength. Com-
paring this anisotropy term with the Dyson's cor-
rection in the weak-anisotropy limit, we note that,
for temperatures less than» of the Curie tempera-
ture, the anisotropy term dominates even for D as

small as —
(22 of Z(0).

Similarly, the second-order correction to the
thermal average of (S')2 =L»+L;;, can be obtained.
We have

5(2) ((ga)2) 5(2) {ga)

[~(&)+~(e)]'
N2~[D-Z(u) -Z(q)]2 ("")"("')'

The low-temperature expansion gives

5(2) {(gg)2) 5(2){ge)

[u(0)]'
+

[D 2~(0)]2
~ 212(D+RPa@~ + ''' '

~

In the isotropic case, the leading-order correction
due to the spin-wave-spin-wave interactions is pro-
portional to 7', while for an anisotropic ferromag-
net, a v term as that given in E(I. (5.24) emerges.

1.8

1.6
kTc
J(o)

14

fcc
bcc
sc

1.2

I.O-
I I I I I I

4 6 D 8
J(o)

I t I

IO 12

FIG. 9. Plot of Curie temperature vs anisotropy
strength for spin-1 Ising ferromagnet with easy-axis
single-ion anisotropy, in sc, bcc, and fcc lattices. Hi.gh-
temperature-expansion values for the fcc lattice are
shown in dots.

VI. SUMMARY

We have applied the Green's-function diagram-
matic technique developed in I to a spin-1 Heisen-
berg ferromagnet with an easy-axis single-ion an-
isotropy. Diagrams are classified according to the
number of free-momentum variables in the dia-
grams; i.e. , an mth-order diagram has n free-mo-
mentum variables summed over in the calculation
of its contribution, We have shown that the incon-
sistency {or redundancy) occurring in the Green's-
function theories using the RPA decoupling tech-
nique does not arise in our calculation, in which
diagrams a,re summed consistently according to the
above classification. As a further support of our
theory, we have shown that the Curie temperatures
of our calculation agree, within a few percent (1%
for the Ising limit), to the values obtained by the
high-temperature-expansion technique, and that
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the low-temperature behavior of the magnetization
reduces to Dyson's results to the first Born ap-
proximation, in the isotropic limit. We conclude
that we have obtained a self-consistent theory which
describes the anisotropic ferromagnet for the whole
range of temperature.
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