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Renormalization-group techniques are used to study a model of n-coupled m-component spin systems, in the
limit of large dipole-dipole interactions. As recently shown by Emery, this model describes the critical
behavior of a constrained dipolar system in the limit n ~ oo and that of a dipolar system with a quenched
random perturbation in the limit n ~0. In both cases, the unperturbed dipolar fixed point is unstable, and
there is a crossover to a new behavior. For the constrained system, this leads to another dipolar fixed point (if
a & 0, a being the dipolar specific-heat exponent) with the same thermodynamic critical exponents, or to one
with renormalized dipolar exponents (if a & 0). These results are different from those of previous "spherical"
dipolar models. For the random case, the crossover is either to a new fixed point, with very different
exponents, e.g., 2 v 1 + 1.183& for m = d = 4 —e, or away from all the fixed points found to order &. One
of the new fixed points in this case has complex eigenvalues of the linearized recursion relations. This is

related to the fact that the recursion-relation flow is not of a gradient type for random systems.

I. INTRODUCTION

Systems which undergo phase transitions are
never ideal. There are always some impurities or
some other random perturbations. There are also
external constraints (e.g. , on the number of the
spins, the volume, etc. ). These may lead to
drastic changes in the critical behavior. Such
changes have recently been studied, using the re-
normalization group technique, for systems which
are described by m-component order parameters,
with short-range rotationally invariant interactions.

The problem of a quenched random system was
studied by Grinstein and Luther' and by Harris and
Lubensky. Both find four fixed points. Qne point,
which describes the critical behavior of the non-
random system, is stable against the random per-
turbation for m & 4+ O(e) (s = 4 —d, where d is the
dimensionality of the system). In fact, one can
show'- that this stability holds when n &0, where
e is the specific-heat exponent of the nonrandom
system. This seems to be the case for d = 3,
m & 1.' Thus, one does not have to worry about
small random perturbations for XF or Heisenberg
short-range systems in three dimensions.

The problem of one type of constraint (constant
volume) was recently studied by Sak. ' Again, there
are four fixed points, and the stability of the non-
constrained one is determined by the sign of n. If
n &0 then the stable fixed point has critical expo-
nents which are derived from those of the noncon-
strained system by a Fisher renormalization. '
The other, unstable, fixed points, are the Gaussian
one and the one describing the spherical model.

The same four fixed points are found if one con-
siders n coupled rn-vector models, Si, . .. , S„, with
a coupling which effectively constrains lattice sums

of local combinations like (g", , I S I'), in the lim-
it ~- ~." ' Such a constraint is closely related
to the one which relates the ~- ~ limit of the usual
n-vector model to the spherical model. "'"

The Hamiltonians leading to the four fixed points
in both cases were recently combined by Emery, '~

who showed that the random problem is the n-0
limit and the constrained problem is the z- ~ lim-
it of the same nm-component spin Hamiltonian.
Thus, considering the general case of n coupled
m-component spin systems will lead to an under-
standing of both the random and the constrained
systems.

Another direction in which the study of critical
phenomena evolved recently involves dipole-dipole
interactions. ' " It turns out, that whenever di-
pole-dipole interactions exist they cause an insta-
bility of the fixed point describing the short-range
ferromagnetic critical behavior, and lead to a di-
polar fixed point, with a different critical behavior.
Since all magnetic systems have dipole-dipole in-
teractions, together with all the above-mentioned
perturbations, we devote this paper to the study
of random and constrained dipolar magnets. In
addition to the practical interest (dipolar critical
behavior is dominant for ferromagnets with a low
transition temperature '), there are a few theoret-
ical reasons which make such a study interesting.
The spherical model limit of dipolar magnets was
considered long ago by Lax, ' who concluded that
it yields the same critical behavior as the usual,
short-range, spherical model. A study of v cou-
pled d-component dipolar spin systems' indeed
yielded a "spherical" fixed point, in apparent
agreement with Lax's conclusion. However, it
turns out that this fixed point is unstable, and a
more general treatment is necessary. Another
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theoretical interesting feature of the present study
has to do with the eigenvalues of the linearized re-
cursion relations. We find, for the first time, a
fixed point which yields eornpjtex eigenvalues, which
thus represent an oscillating flow of the Hamilto-
nian ln parameter space under renormalization-
group iterations. Such a behavior is forbidden for
the usual, finite-~, case, where the recursion. re-
lations yield a gradient flow, but this is no longer
true in the limit n-0.

The outline of the paper is as follows: The mod-
el of n coupled m-component dipolar spin systems
and the resulting recursion relations are described
in Sec. II. Sections III and IV are devoted to the
constrained (n- ~) and random (n-0) cases. In

each case, the fixed points, the Hamiltonian flows
and the resulting critical behavior are discussed.
Section V summarizes the results.

where P = I/ks T, and

Z 11[d))m (R)] ex~ )g(Pr( a))

R

with the new nm component spin variable

1~ ~ ~ ) n) (S1).~ ) S1m) S21) ~ ) S))))))

G(o(R)[= d~R ]n(p-"'&») ~2& (s)

where (~ ~ ~ ) denotes the average over the random
distribution of the variable tl) and

Assuming that the random distribution of each $(R)
is independent of that of all the others, one has '

II. THE MODEL AND THE RECURSION RELATIONS

The partition function for a nonrandom (noncon-
strained) isotropic m-component spin dipolar sys-
tem may be written'4

l
o '=P

l s. l'=+Ps.', .

Expanding (8) in powers of I ol we find

S R e+i~~~R~~

with
where

(10)
+{S(R))= — d R —Q V'~(R)S, (R)S~(R)2 ~, j=l

(2)

—pF= lim [(1/n) InZ„fj, (4)

where the dots indicate higher-order (irrelevant)
terms, and where V'~(R) is the Fourier transform
of

(3)

In writing Eqs. (1)-(3) we used a continuous spin
model, and we replaced the lattice sum by a con-
tinuous d-dimensional integral. For an isotropic
dipolar interaction, we must take m =d= 4 —g. ' '"'"
However, if the (short-range) exchange interaction
between m spin components (m «d) is much strong-
er than that between the other components, then

we can use the same expressions, (2) and (3), but

include only the terms with i, j =1, . . . , m. ' In

the dipolar limit g- ~, this means that the spatial
radial integrals are d dimensional, but the angular
integrals reduce to become rn dimensional. We
shall consider here this more general case.

To obtain the random case, we can now replace
each V"(R) by V "(R)+ll (R), where )) (R) is a ran-
dom variable, representing, e. g. , a random short-
range exchange. Averaging over the random dis-
tribution of this variable leads to a new expression
for the free energy per spin, "

The symbol ( ~ .&, denotes the cumulant of the ran-
dom distribution. ' Finally we thus have

n fft

K,~, = — d"R — V'~ R S~) R S~~ 8
e=1 f, /=1

where now r, in (3) is shifted to

r =ra+(g& ~ (12)

Taking the large n limit in (11) one can show"'2
that it becomes equivalent to the Hamiltonian of a
constrained system. We shall thus start by apply-
ing the renormalization-group transformation to
the case with general n.

For g=h =0, Eq. (3) reduces to that appropriate
for the nondipolar case. This was treated pre-
viously. ' '4 For any finite g, the recursion rela-
tion for g is'

(13)

so that under iteration g- ~ (b & 1 is the spatial
rescaling factor). This limit yields the dipolar
fixed point in the nonrandom (nonconstrained) case.
From now on we shall assume that we are already
close to this (g- ~) limit. Ignoring terms of or-
der I/g, the propagator for the diagrammatic ex-
pansion of the partition function (5) becomes"
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where

where b is the space rescaling factor, and

q'dq A2
f(r) =

p
=—(1 —b ) —r lnb+ O(ra) (23)

gy 1J'+q 2

Clearly, this propagator is meaningful only if
d ~m & 1. The case m =1 deserves special atten-
tion.

It is very important to note that in the dipolar
case there no longer exists a separate rotational
invariance in the rn-dimensional spin space. This
is due to the coupling between spin and space vec-
tors, arising from the dipolar interaction. Thus,
one should not be surprised that new terms may
be generated in the Hamiltonian after a renormal-
ization group iteration, which reflect this lower
symmetry. Indeed, a, direct iteration with (11)
immediately generates an additional term, i.e. ,

(A is the momentum cutoff), The coefficients A ~
~

B„and C, are given in Table I. Note that the co-
efficient C4 is absent in the isotropic short range
case, and therefore se is not generated by u in that
case. (An ea,sy way to rederive the isotropic
short-range case is to put A = 1, B= 0. ')

For u =so=0, the Ha, miltonian reduces to a sum
of n decouPted nz-component dipolar Hamiltonians.
Each of these yieMs the Gaussian dipolar fixed
poj.nt, which is highly unstable, and the original
d.polor fixed point with u+ = w" = 0 and 4E4v* = Vs

+ 0(e'), where"

m(m+ 2)
(m —1)(m + 10m + 12)

X~gf = —2N d 8 S~ Sg
e,8=1

where

(S„~ 88) =Q S„(SB;.

(16) (m —l)/m+ 8 —[4/(m+ 2)]]

One can now linearize Eqs. (20)-(22) about this
fixed poj.nt, and find the eigenvalues b and 5 ",
These are found to be

This is a very important term, as all the previous-
ly studied fixed points are unstable with respect to
it. A similar term arises in the problem of amor-
phous magnets, when one introduces a uniaxial
anisotropy with a random direction, ' and in the
problem of competing ferromagnetic and antifer-
romagnetic interactions.

We are now ready to study the recursion rela-
tions for the sum of (ll) and (16), Using the stan-
dard integral' '

m —2m —42
2

'+10 '12" (')'
m'+ sm'+ 2m —4 (,

(m —l)(m~+ 10m+ 12)

(26)

(26)

In a previous paper, ' we studied the scaling dimen-
sions of the operators which multiply u and $0 in
the vicinity of the decoupled fixed point. We found
that quite generally

(27)

(2 )a a8 v5
Cui Bj( )ark, 51( ) 6 6 ff ~d ldq

X„=2P/v —d, (28)
x [A5,~5„+B(6,~6q, + b, g5J, )],

where fc„-' = 2'-'m"'r(d/2)(= 8~' for d = 4) and

m'-3 1
m(m+2)' m(m+2) '

the recursion relations for x, u, v, and gp be-
come ' (to order e)

r'= b'(r+4E, f(r)[(mu+2)u+(m+2)v

(18)

where e, v, and cb are the specific heat, correla-
tion length, and quadratic spin. anisotropy cross-
over ' exponents, respectively, for the decoupled
m-component system, The proof is general, and
does not depend on the details of the decoupled be-
havj. or. Indeed, usj. ng the dipolar values16, 17,24

(m+ 2)'
1/2v= 1 —

2(
-~

12)
s+0(e')

and

+ 2(m + n+ l)w][(m —I)/m]], (19)
u' = b'fu —4K4 lnb[A, u +A~uv + Azuu

+ A4vlU + ASW ]]~ (20)

v' = b'(v —4If4 lnb[B, v + B~uv + B,vu $, (21)

zg' = b'lee —4K& lnb[C~ze + Cauw + Csvm+ C4u ]],
(22)

ma(m + 1)~-"2( 1)( .10,12)""'' (30)

we find that (25) and (26) are consistent, to order
e, with (27) and (28).

The sign of X~ may be sensitive to the order in
In any case, XD is quite small, For real

Heisenberg dipolar systems, z is very probably
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TABI E I. Coefficients for the @, y, gg recursjon relations [Egs. (20}-(22}];A. = (m —3)B,
~ = 1/m(m+ 2).

General expression n=o

A., = (me+8)x+ (ms+4) (m+1)a 4(2m +m-5}B
A.2 =2(m+2)L4+ (m+1)B]=2(m+2)(m —1)jm

AS=4[(m+m+1)A+[(m+m+1)(m+1)+4)B) 4(m3+Sm2-m+2)B
A.,=4[8+ (m+ 3)a] =4(m+1)/(m+ 2)

a, =4[3A+ (2m+&+ 4)a] 4(m -1)(3m+ 5)a
8&„= (m+ 8)A+ (m'+5m +12)B= (m -1)(m'+10m+12)B
8,=4I,3A+ (m+5)B] =4(m -1)(3m+4)B
g, =4j(m+5)A+ (m'+4m+7)B] =4(m -1)(m'+7m+ 8)B

C~ =2I.(n+ m+4)A+ (m'+3m+ m+6)B] 2(m —1)(m'+6m+ 6)a
C, =4I.SA+ (m+ 3)a] =4(3m'+m -6)a
C3 =4(A+ 8) =4(m2 —2}B
C4= 48

negative, '~'as so that X~ & O. However, X~ is defi-
nitely positive, and is of the order of 3 at g = 1.
Thus, the decoupled dipolar fixed point is unstable,
independent of the value of n. We therefore must
study the other possible fixed points, and deter-
mine the ultimate asymptotic critical behavior.
At this stage we divide the discussion into two

parts, and discuss separately the limits n- ~ (con-
strained) and n-0 (random). In both cases we
find six additional nontrivial fixed points, Three
of these have v~ =0, while the other three have
gg g o

III. CONSTRAINED MPOLAR SYSTEM

We now consider Eqs. (20-(22) in the limit of

large n. The last column of Table I exhibits the

large-n limit of the n-dependent coefficients A»
A3, As, and C, . All other coefficients axe n-inde-
pendent and of order unity. Since A, and C, are of
order n, it is clear that the fixed point values of @

and of w are at most of order 1/n. Assuming this,
ere can, in the limit n ~, ignore the uv and nm

terms in Eq. (21), which then reduces to its form
in the absence, of @ and +, We thus find two pos-
sible fixet( point, values for v, namely, t *= 0 or
4E4v~ =fig+ 0(e~), with v given by Eq. (24). Lin-
earizing Eq. (21) we find that )t.„=& in the former
case and X„=-4+0(e~) in the latter case, '~

Turning now to Eq. (22), we can ignore, to lead-

ing order in I/n, the terms involving sw and w'.
The remaining t~~m~ yield w'= O(1/n~) or

Pl(PÃ + 2) SEgfl s 4 (31)4K~w* —
2( q 2}

s - +O

In the limit n- ~, it seems as if the first fixed
point value is equivalent to setting go~ = O. How-

ever, this is very dangerous: the term involving

u does appear in Eq. (22) for any finite n, and

vriB thus generate a nansei value of u, which vali
then evolve to the fixed point value given by Eq.

(31). It must be emphasized here, that the proper
procedure is to carry the whole calculation out at
a finite (although large) value of n, and let n go to
infimty only at the final stage. Indeed, linearizing
Eq, (22) about w*= O(l/n') yields & = e if v* = 0
and 1„=XD [see Eqs. (I), (28)] if 4K,v*~ Pre In.
both cases, this fixed point wiB not be stable,

Table 11 summarizes, to orders 4 and I/n, the
eight fixed points that w'e find for large n. The
first four have w* = O(l/n ) (represented by zero in
this table), and the last four correspond to &e& given
by (31). The values of v~ are equal to zero or to
the original dipolar fixed point value, and the val-
ues of u~ then, follow readily,

The first four fixed points. in Table II are very
similar to the ones found'in the case of the isotxopic
Short-range case, ' In addition to the Gaussian
(I) and the original dipolar (II) fixed points, we
find a spherical fixed point (III), which has the
exponents of the spherical model, and a fixed point
which has Fisher renormalized' dipolar exponents,
e0 gD

(32}

(»nd o' »e the»igi»1 dipoiar exponents of the
fixed point Ii). It is thus probably not surprising
that Eq,. (2V) becomes renormalized to yield

(33)

and similarly &„ is unchanged [both P and p are re-
normalized by factors of 1/(1 —n}].

The "spherical" fixed point ID is the one found in
Ref. 19. Note that the recursion relations in this
reference are correct only in the limit of large n;
the terms of order unity in the coefficients have to
be modified when the distinction between the pa-
rameters u and m is introduced.

As was already noted, none of these four fixed
points is stable with respect to se. We thus must
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T&BLE II. Fixed points and eigenvaiues for n ~{O[e, (I/n)]j.

1053

Fixed Point

I. Gaussian A

II. Dipolar A

III. Spherical A

IV. Renormal-
ized Di-
polar A

V. Spherical B

VI. Gaussian B

VII. Dipolar B

VIII. Renormal-
ized Di-
polar B

0

~(m-i)

x, PUf&

dx 'f8~6

Xi~2~

4K4v +

vc

VC

ZUgC

Ã 6i

AP26

Eigenvalues

8 tI W

Q t4& V & W W

Q 0 W

——XD p
—-c A =AD

Q Q, ~ 0

g W 7 V

g V & W

D D
Q Q& 5 & W

~Equation (24) .
Equations (25)-(28)

'N~ = ~/t~~(m —a)]
x~ =

r.
-m —2m + 2 + (m —2) ]/(m —1)m (m + 2)

e~( = m(m+2)/2n(m' -2)
y&= —2/m, y2=- [2/(m+2)][(2m +5m +6m+4)/(m +5m +2m —4)]

a- D
'bV2& = $0(XW

consider the remaining four fixed points, obtained
using Eq. (31) with the two possible values of v~.
It turns out, that the thermodynamic exponents
[e.g. , v, following Eq. (19)] of each of these fixed
points are, in the limit n- ~, the same as those of
one of the first four fixed points (V has spherical
model exponents, VI has Gaussian model exponents;
VG has dipolar exponents, and VIII has renormal-
ized dipolar exponents). The only difference has
to do with the sign of the exponent X, which (to
orders e and 1/n) is opposite to its counterpart at
each of these fixed points. Vfe are thus finding a
new type of "exponent renormalization, " similar
to the change of sign of X„ from II to IV or from I
to III.

%ith all this information, we can now conclude
that the new dipolar fixed point VII is stable if
o. & 0 and that the new renorntalized diPolar fixed
point VIII is stable if 0. &0. For the usual Heisen-
berg dipolar system we thus conclude that the con-
strained system has the same critical behavior as
the unconstrained one.

The nm-component model thus never yields a
stable fixed point with spherical model exponents.
This raises some questions with regards to its re-
lation to Lax's spherical dipolar model. " Indeed,
even in the nondipolar short-range case one finds
that the "spherical" fixed point of our model is un-
stable. In that case, one recovers the spherical
model critical behavior only in the limit m - ~.
Indeed, it was this limit that Stanley' used in his
discussion of the relation between the spherical
model and the m-component spin model. Similar-

where x is one of the three real roots of

C4x'+(Cs-A, )x +(C, —As)x-A, =O.

The other three fixed points have

4K4w~ = (Bi —CB)s/[(B&C4x + (BiCs —BsCS)x

+ B,C, —BSCs],

4K4v* = w[C4x + (Cs —Bs)x+ C~ —Bs]/(Bt —Cs),

u* = xylo*

where x is one of the roots of

(35)

(36)

ly, it is interesting to note that Eq. (29) and sim-
ilar equations do yield spherical model exponents
in the limit rn-~. Of course, this limit is quite
artificial here, since m is meaningful only for m —d.
An alternative case in which the spherical model
behavior (fixed point V) is recovered is when v -=0,
i.e. , when the original dipolar case is described
by a Gaussian model. Again, this is not realistic
for real physical dipolar systems.

IV. RANDOM DIPOLAR SYSTEM

The n-0 limit of the n-dependent coefficients
in the recursion relations (20)-(22) are shown in
the second column of Table I. Again, the Gaussian
and the nonrandom (decoupled) fixed points are
found for u =re=0. Both are unstable with respect
to zv, as discussed in Sec. II. In addition, we again
find six fixed points, which may be divided into
two groups of three. The first three all have v*=0.
The fixed point values of u and w are then given (to
order e) by

4Ã4w* = e/(C4x + Csx+ C&), u*=xw", (34)
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(A -B )C&'+[(A -B )(B —C )+(A —Bg)(C —B )+A,C,Q'+[(A, -B,)(B,—C,)+(A, —B,)(C, —B,)
+A4(Cg —B~)]x+ As(B, —C,) +A4(C, —B~) = 0,

The eigenvalues of the linearized Eqs. (20)-(22), X„X„and X„are then found by diagonalizing the
matrix

e —
4K4 (2A,u" +A2v* +A,w*)

—4K4Bae+

—4K4(C2zv* + 2 C~u*)

—
4K4 (Azu*+ A,w" )

& —4K4(2B&v* + Bau*+ B,ur)
—4E4C3sv*

-4K, (A, ~ A., "+2A,w )

—4E4Bst) +

e —4K4(2 CyK+ + Cpu+ + C35+)

(36)

The results, for m=2, 3, 4, are given numerically in Table III. The eigenvalue X, is always -e+O(ga),
and was omitted from the table.

The most striking result in Table III is that two of the eigenvalues of the fixed point E are complex. This
is the first physical case in which complex eigenvalues have been found. It must be noted, that the matrix

(38) is not symmetric, and as such does not have to have real eigenvalues. It has been shown by Wallace

and Zia, ao that real eigenvalues will result if the recursion relations may be presented as gradient flows,
l, e, ~

gs dus 8V(u~)
dE kgn (39)

where we replaced 5 by e' and transformed the equations to differential form, the symbol u~ denotes g, n,
or zo, the function V is a scalar potential, and g is a Reimannian metric. Indeed, for general ~ and m

Eqs. (20)-(22) can be written in the form (39), V being a linear combination of eu~, eu„us, u~us, u'„and

ueu, and g"~ being given by

2(n+ m+1)

2(m+2)

2(N+m+ 1) 2(m+ 2) n2(m I+) 2+( 1+3)

[the factors of 2 in the last row and column result
from the definition of w, Eq. (16)]. When n -0,
q»-0. Thus, q"~ cannot be a Reimannian metric
in this limit. Note that this mill be the case even
in the nondipolar random case, when w = 0 and (40)
reduces to a 2x2 matrix [for nz =1, this matrix is
given in Eq. (20) of Ref. 20, of which our Eq. (40)
is a generalization]. We thus conclude that the re
CQ%8$06 7'e10ffOÃ8 d88CTSb6lg F'CMOBS Sp Ster 8 cOS-

not be described as gradient flows. This opens up

a few interesting possibilities, as discussed in
Ref. 20, Qne of these is the possibility of finding

complex eigenvalues.
Qf the eight fixed points, two are found to be

stable: A and C in Table III. The transition will
be sharp, with mell-defined critical exponents, if
the starting Hamiltonian is in the region of attrac-
tion of one of these fixed points. Otherwise, we

shall find a "runaway" which probably xepresents
a smeared transition (as found by Lubensky for
the random nondipolar Ising case).

For the nonrandom phase tx'ansition to be of
second order, v in Eq. (2) must be positive. From
Eq. (10) it follows that the initial value of u is neg-

ative. The parameter u does not appear in the
original Hamiltonian. However, the first iteration
will lead, through the last term in Eq. (22), to a
small negative value of M. If no higher-order
terms are included, then Eq. (22) does not allow
a change in the sign of sv: as se appxoaches zero,
the last term in (22) will always push it back to
negative values. However, it is not at all clear
that higher-order terms (e.g. , the coefficient of
I o I, which may be positive) will not allow xv to
change sign. In the nondipolar case, when se is
absent, it has been recently shown that even if
all the irrelevant variables are included, then u is
stiD forced to remain negative after iterations,
maintaining its cumulantlike interpretation as given
by Eq. (10), The variable go has no such interpre-
tation here (although it may possibly be related to
cumulants of a xandom distribution of anisotropic
single-ion interactions with random directions, see
Ref. 6). Thus, it is a priori possible that higher-
order irrelevant variables mill push u to become
positive, while u will remain negative. If this
happens, then the stable fixed point A will probably
be reached, and the transition will be shaxp. The
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TABLE III. New fixed points and eigenvalues for n=0.

2 A

C
D

F
3 A

C
D

4 A
B
C
D

—2.608 a
0.1298 &

1.478 ~

—0. 08158 &

1.3137'
—0.083196

—3.214 e
0.09191e
0.3289 e
0.00075 e
0.2749 z

—0.008 405 E'

—0.5091c
0.07944&
0.2359 e
0.008 686 e

0. 1944 e

0.017986

Fixed points
4R4v*

0
0
0

—0.7988 6

0.2640 e
0.3048 e

0
0
0

—0.5187 e

0.1012e

0.1556 &

0
0
0

-0.36586
0.07656 6

0.1005 e

1.719~
0. 06325 e

—0.4182 c

0, 3848 e
—0.5197~

0.003 429 e

2.316 e

0.04047 c
-0.03702 e

0.2231 m

—0.07866 e
2.47x10 '~

0.4174 e
0.03105 e

-0.01444m
0.1554 &

—0.04640 e
8.6&10

Exponents
Z, , X,(=Z„if v*=0)

—6.184m, —8.303&
0.6304 e, —0.4711e

—2.355', —0.9529&
(2. 006+0.5065 j) e

0.7740 e, —2.231 e
0.9345m, —0.1461'

—16.93m, —23.65&
0.4404', —0.4574m

—0.8255 6, —0.5300 c
(2. 190+0.2608 j) 6

0.4287 e. , —0.7783 g

0.7602m, —0. 02061m

-3.974m, —5.778m

0.3695 e, —0.4428 e
—0.6874 e, —0.5116e

(2. 045 + 0.1484 z) E'

0.4177', —0.6421m
0.6296 c, 0. 05100 e

exponent v, derived from linearizing Eq. (19), is
then found to be

so( -1, (42)

2v„= 1+1.275m+0(s ), m =2,
2v„= 1+4.034 +eO(e ), m =3,
2v„~1+1.183m+0(e ), m=4.

(41)

From these numbers, and from the eigenvalues
given in Table III, it seems that some divergence
probably occurs in the vicinity of m =3.~8 There-
fore, it is very difficult to deduce a reliable num-
ber from the order-s result (41). It is, however,
clear that the fixed point A has quite a large value
of the exponent v, and it would be very interesting
to try to verify this,

The second stable fixed point C has a positive
value of u and a relatively small negative value of
se. By previous experience, ~ it seems unlikely
that this fixed point will ever be reached.

Similarly, the fixed point D, which has complex
eigenvalues, has a negative value of v and there-
fore will probably never be reached. It is also
quite unstable, since the real part of these eigen-
values is positive and of the order 2&. Similar
arguments exclude a flow to the vicinity of 8 and
E. The last fixed point I' turns out to be very close
to the dipolar nonrandom fixed point.

If our conjecture as regards the Hamiltonian flow
towards the fixed point A is wrong, then the flow
will have to be away from all the fixed points. For
a small concentration of impurities, this flow will
be described by the original nonrandom exponents,
e.g. , Eg. (29). A crossover to a new, random,
behavior will be felt when the temperature will be
close enough to T, so that

$
- (T —T,)

" being the correlation length. Since m

starts as u'-p', where p is the concentration of
impurities, ' one may have to go quite close to T,
to see these effects. The same criterion (42) ap-
plies to the crossover to the behavior described by
the fixed point A.

It should be emphasized, that our discussion is
based on results to lowest order in &. It is quite
possible that higher-order terms will change the
signs of some of the exponents, and change the
conclusions. In the nondipolar random case one
also finds two stable fixed points, and one of them
seems to be reachable by iterations if 1 &m &4
+ O(g). ' However, higher-order terms and gen-
eral arguments show that at d = 3 this happens only for
1 &m & 2, namely, for no real physical case. ~ In
contrast to that situation, our order-q calculations
show that the fixed point A remains stable and
reachable for a large range of values of m (in
practice, we calculated up to m =11). It thus
seems more safe to hope that this may remain true
at higher orders in g. This remains to be checked.

V. SUMMARY

Contrary to the case of short-range isotropic
interactions, we find that the dipolar fixed point
for XY and Heisenberg systems is unstable with
respect to either an external constraint or a ran-
dom perturbation. These perturbations generate
a new term in the Hamiltonian, and this term
causes the Hamiltonian to flow away from the un-
perturbed dipolar fixed point, with a crossover
exponent
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= van = 2(P —I) y o. (43)

In the constrained case, the flow is towards a
new nonzero value of se. However, the asymptotic
critical behavior still has the original unconstrained:
dipolar exponents if n &0 and Fisher renormalized
dipolar exponents if n &0, just as one might expect
on general grounds. This model does not yield a
stable fixed point with spherical model exponents,
as was suggested by Lax. "

In the random case, we find (again in contrast
to the nondipolar case) that the nonrandom fixed
point is ~ever stable. There is a flow away from
this fixed point, with the crossover exponent (43).
This flow may lead to a new, stable, fixed point,
with probably a very large value of the exponent

v, or away from all fixed points„probably yielding
a smeared transition, ' '

Dipolar critical behavior is observable in ferro-
magnets with a low transition temperature, e. g. ,
EuO. ' ' ' It would be very interesting to perform
measurements on EuO with many nonmagnetic im-
purities and to determine which of the above pos-
sibilities actually occurs. It is interesting to note,
in this context, the different values of the exponents
measured on single crystals of EuO, e, g. ,
y = 1.29, and on powder slab samples, e. g. ,
y=1.40. Could the difference be accounted for

by the random nature of the powder?
As a theoretical byproduct, we demonstrated

that random systems cannot be described by a
gradient flow in Hamiltonian space. It would be
very interesting to exploit the results of this state-
ment. For example, can there be limit cycles?

Our analysis does not apply to the dipolar Ising
system. To study the behavior of this system at
d =3 it is sufficient to study the behavior of the
short-range Ising system at d = 4.~' This will be
done separately.

Note added in proof. It has recently been shown

by Khmelnitzkii (report of work prior to publica-
tion) that the "runaway" in the random short-range
Ising case actually flows to a fixed point of order
v &, yielding a sharp transition. There does not
seem to be a similar fixed point in our case, and
thus our conclusions are probably unchanged,
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