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Renormalization-group techniques are applied to a model Hamiltonian recently proposed by Harris, Plischke,
and Zuckermann for the description of amorphous magnets. In this model, a single-ion uniaxial anisotropy,
with a random direction of the axis of anisotropy, is introduced. Averaging over this random variable yields an

(translationally invariant) e6'ective Hamiltonian, in which the m-component spin variable is replaced by an
nm-component vector, and n is finally set equal to zero. Contrary to the result for an isotropic random

perturbation, the fixed-point describing the nonrandorn m-component critical behavior is unstable with respect
to terms in the Hamiltonian generated by the randomness, the appropriate crossover exponent being given

exactly by (2$ —2 + a ), where $ is the Fisher-Pfeuty anisotropic spin crossover exponent and a is the specific-
heat exponent. Depending on the distribution function for the random anisotropy directions, there are seven

or thirteen other fixed points. Most of these are unstable, and the recursion relations probably yield a
"runaway" which is interpreted as a smeared transition. Experiments on amorphous TbFe, are discussed.

I. INTRODUCTION

The magnetic properties of quenched amorphous
metals have recently drawn more and more atten-
tion. Recent experiments by Rhyne et al. on the
magnetic critical behavior of amorphous TbFe~
and YFe2 showed some interesting phenomena; in
comparison with the corresponding crystalline al-
loy, the critical temperature T, and the spontaneous
magnetization are lowered, the neutron scattering
cross section shows a weak "rounded" anomaly at
T, and a further rise below T„and the correla-
tion length has a maximum just below T, .

To explain these phenomena, Harris, Plischke,
and Zuckermann ' recently proposed a model, based
on random packing of atomic spheres. In this
model, each magnetic ion is subjected to a local
anisotroPy field of random orientation. Indeed,
Mossbauer absorption measurements on Fe in
HoFe„oyFe„and ErFe, later turned out to agree
with the proposed model. '

Harris et al. used mean field theory to derive
the magnetization curve below T„and their re-
sults were qualitatively in agreement with the mea-
surements. However, such a theory is not ex-
pected to give a correct description of the asymp-
totic critical behavior, in the region in which
spin fluctuations become important. The recent
development of the theory of xenoxmalization
group ' gave some insight into the effects of these
fluctuations, and yielded a useful practical teal for
their study, i. e. , the e expansion, in which critical
exponents, scaling functions, etc. are expanded
in powers of e= 4 —d (d is the spatial dimensionality
of the system). In its standard form, ' the e expan-
sion assumes translational invaxiance of the Hamil-
tonian of the system; this is not obeyed in quenched
amorphous or disordered alloys. To overcome

this difficulty in the problem of the magnet with
random nonmagnetic impurities, Grinstein and

Luther recently derived an effective Hamiltonian,
which is translationally invariant and which leads
to the same free energy as thei: original random
Hamiltonian. A similar effective Hamiltonian was
also obtained by Emery, using a different tech-
nique. An alternative approach, in which the re-
normalization group was used to derive recursion
relations directly for the probability distribution
for the random potentials, was proposed by Harris
and Lubensky" and led to similar results.

In the present paper we use similar ideas to study
the critical behavior of systems described by the
model suggested by Harris, Plischke, and Zucker-
mann. It turns out that the translationally in-
variant effective Hamiltonian derived from this
model is a generalization of the ones considered
previously. It involves more parameters,
yields more fixed points, and may lead to a more
complicated critical behavior.

The general model and the generalization of
Emery's method for obtaining an effective transla-
tionally invariant Hamiltonian are described in
Sec. II. The case in which the random distribution
of the directions of uniaxial anisotropy is com-
pletely isotropic in space is studied in detail in
Sec. III, where the appropriate effective Hamil-
tonian is derived, Sec. Ip, where the renormaliza-
tion group recursion relations and the resulting
fixed points are studied, and in Sec. P, where the
possible Hamiltonian flows and the resulting types
of critical behavior are discussed. Section VI is
devoted to a similar analysis of a distribution
which allows only anisotropies along cubic axes
(appropriate for the case of nonmagnetic impurj, —

ties randomly occupying sites on these axes), and
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Sec. VII summarizes the conclusions.

II, MDDEL

The Hamiltonian suggested by Harris et al. 3 has
the form

A ~ 2X = —Q J')1 8) ~ S1 —Do {x)~ S1)

where 5& is an m-component spin vector, located
at the ((f-dimensional) lattice site i, (ij) denotes
a pair of spin sites, J&& is the exchange interac-
tion, and x& is a unit vector which points in the local
(random) direction of the uniaxial anisotropy at the
site s.

The last term in (1) represents a single-ion uni-
axial anisotropy in the random direction x& . For
the ordered cxystalline material, this anisotropy
has a well defined direction along one of the coordi-
nate axes. The model assumes that the ions in the
amorphous material still feel this anisotropic sin-
gle-ion field, and that the randomness of the anisot-
ropy field is the most important characteristic of
the amorphous state. '

As usual in renormalization-group calculations,
@re consider a classical continuous spin model,
with a weight function exp(--,'IS, I' —1)oIS, I —.~ .).
Also, it is convenient to replace the summation
over i by a d-dimensional integral. The exchange
term, assumed to be of a short range, then gives
rise to a gradient term. Finally, the partition
function for the Hamiltonian (1) is replaced by

finding a given configuration of directions {x(R)}.
The integral Jd x is over the I-dimensional unit
sphere. Vfe now follow Emery, and write

ins{x(R)j=, [Z{x(R)}]"
~

(5)

~ ~ yne. H ~3Cg{x (R)yr{R)}~ ~

with

Xq=- d"8 ~ ro OR + Vo

—Bg ()(R) ~ S„(B))+v p lS (R)l + ~ ) .
e & C

(S)
%'e simply replace each factor Z by the expression
(2) for one vector variable 5 ~ Here, I oI
=g"=, IS I~=/", $, ,83, . From (4), (5), ('l), and
(8) we liow fllldPF, , g [dtNI+(R)]ex())1(a(R))

8n ff=o '

(9)

From (2) and (3) it follows that if we define an n)n-
component vector

o-=(S„.. . , S„)-=(S„,. . . , S...S„,. . . , S ) (5)

we can then write

[~{.(R)}]"

2'{'(R)}- "i lI [dm)S(R)] "()((R)s8(R)l
co w

with
(2)

~(.rR), r)r)(»=- J«(-.("olsr»l'. I~1I')

-D(x(R) ~ S(R)) +v (S(R)
~

+ } .
The dots represent higher order terms, e. g. ,

(2)

I5), ]VVSI, etc. These are irrelevant, in the
sense of renormalization group, e and therefore are
ignored, The coefficients D and 5 are proportional
to Do and vo, and xo is linear in the temperature
T (we rescaled the spine so that the coefficient of
I VS I became unity).

To obtain the free energy I' of the quenched sys-
tem, we average over the free energies of all pos-
sible random configurations of the directions,
{x(R)}. We assume that in the thermodynamic
limit all of these configurations yield the same
critical behavior. ThQs

—PF= ~ ~ ~ d xR I' xR lnZxR

(4)
where P = 1/ks 7 and P{x(R)}is the probability of

0 OR + Va

~ u g lr). l

'+ " ) —G r e(B)),
a=&

e-"'= ~ ~ ~

J P[[d"x(R)]P{x(R)}

xexpa d"B xR ~ S. R ' . ll
~ef

In this paper we limit ourselves to a probability
distribution in which all the x(R)'s are completely
independent of each other. Thus we can factorize
P{x}into

P{x{R)}=II P [x{R)] (12)

where p(x) is the probability distribution of a sin-
gle-ion anisotropy direction. With this assump-
tion, the integral in (11) can be factorized, and we
find
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s)'s(s)) = J s'Rs ) s(%)1,

with

(13)

e-'&"= d xp x exp D x ~ S. '
01al

(14)

gee shall consider a few examples of this function
in the following sections.

To conclude this section, we now show that the
free energy per degree pf freedom of the system
described by X,« is equal, in the limit n- 0, to
that of the original system. Let

Z„,— ~

Jl Q [d (ft)]

d xR j'xR ZxR ". &5

In the limit u - 0, Z,«-- 1. Therefore Eq. (9) may
be written

1 1 8 . 1—E= — [lnZ,«] ~

= —lim lnZ„,
m I P ex « "=o n»p .ning

(16)
The left-hand side is the free energy per spin com-
ponent of the original model, whereas the right-
hand side is the limit of the free energy per spin
component of the model with X«.

III, ISOTROPIC CASE—EFFECTIVE HAMILTONIAN

%e are now ready to choose the probability dis-
tribution function P(x). For the crystalline sys-
tem,

P(x)=~& )(x-~), (17

where A; is a unit vector in the direction of anisot-
ropy (e. g, , the 1-axis). Equation (14) thus be-
comes

n

8'(o) = —DQS, i

-1
P(x)-=) d x = (2))') K„'=2m /I'(m/2) . (19)

and the Hamiltonian X,«separates into n uncoupled
m-vector Hamiltonians, each of which has a uni-
axial anisotropy. Thus the parameter v becomes
meaningless, and we return to the usual problem
of spin anisotropy. In this case, the asymptotic
critical behavior will be that of an Ising model [or
an (m-1)-component model], and typical crossover
effects from I-component Heisenberg-like behav-
ior to Ising behavior [or (m 1)-component b-ehav-

ior] will be observed.
The other extreme is to assume a completely

isotropic distribution, with

Harris et al. estimate p(x) on the basis of a ran-
dom packing of atomic spheres, and conclude that
the assumptions (19) and (12) are confirmed for
that model. With this distribution, Eq. (14) be-
comes

e"'= dx d x

m n

xexp D xi'& 9;5 &

n=&

Expanding the exponent in a Taylor series, and
using standard angular integrals, we find

g(;) =-m 'D [o ]'+ [m'(m+ 2)] 'D'[o['
n m

—[m(m+ 2)] D Q Q S„S„)S));S))g
egg""& i,)=1

'Y = 'Vp —2~ D ~
-1

(22)

The second term in (21) is similar to the usual

t o ) term, which would result from an isotropic
su~-component weight function. The last term is
new, and may lead to new effects in the critical
behavior. As in (3), we ignore here higher-order
terms which become irrelevant for small e. '~

Combining (10), (13), (21), and (22), our effective
Hamiltonian becomes

3Cf~= — d"A 2x o + Vo. +u o

P P s.,s»s„s»). )ss)
e=I a~8=& 4J"-&

Note that v & 0 (unless the crystalline system un-

dergoes a first-order transition), u & 0, and w & 0.
The effective Hamiltonian considered by Grinstein
and Luther and by Harris and Lubensky was of
the same form (23), but with w = 0 and u &0. In
their case, (- u) was proportional to the second
cumulant of the random (impurity) distribution, and

as such had to be always negative. Similarly, our
u and ze are related to appropriate cumulants of
the distribution function, and maintain their signs
and the ratio w/u= —m/2 for all isotropic dis-
tributions,

For w = 0, the Hamiltonian (23) was already ana-
lyzed using the renormalization group, ' ' In the
following section we summarize this previous
analysis, and generalize it to include the new so

term. As we shall see, this generalization leads
to quite a few new phenomena.

It is also interesting to consider the case in which
the system is not fully amorphous, and there still

(21)

The first term in (21) is simply a shift in ro of Eq.
(10) (or in T„ro is linear in the temperature), and
we can replace
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g(o)=-qDP s'.i-(I q)m -viol +o(lcl )

(25)
The first term here reflects, again, a spin anisot-
ropy of the Fisher- Pfeuty type. Irrespective
of the quartic terms, this term will cause a cross-
over to a critical behavior which involves only the
n components (S &] or the remaining n(m —I) com-
ponents, In the former case, the Hamiltonian re-
duces to that of n coupled Ising models, and the
final asymptotic critical behavior will be that of
the random Ising model. ' In the latter case we
shall remain with an effective Hamiltonian similar
to (23), but with the summations over i and j going
only from 2 to m. In any case, there is no further
need to discuss this case separately from the gen-
eral case.

IV. ISOTROPIC CASE-RECURSION RELATIONS
AND FIXED POINTS

We can now follow the standard procedures ' and

analyze the Hamiltonian (23) using renormalization
group. We first Fourier transform the spin vari-
ables, and we introduce a spherical Brillouin zone
of radius A. We then perform the functional in-
tegral over the spins c(f]) which have wave vectors
q in the range Ajb & ~q( &A, with b &1. Finally,
we rescale the space variables q and the remaining
spin variables a, so that the partition function can
be rewritten in the form (15), the new K „,being
given by (23) with new parameters r', u', v', and

The recursion relations for these parameters
are found to be (assuming r, u, v and w are all of
order e)

r'=b f+4K4I(r) [(mn+ 2)u+ (m+ 2)v

+2(m+n+1)w]+O(e )]

u'=b'(u —4K4lnb[(mn+ 8)u + 2(m+ 2)uv

(26)

+ 4(n+ m + 1)uu + 4 vw+ 12w']+ O(e')], (27)

v'=b'(v —4K4lnb[(m+ 8)v + 12uv

+ 4(m+ 5) vw]+ O(e )], (28)

w'= b'(w —4If'4lnb[2(n+m+4)w

+ 12uw+4vw]+O(e )) (29)

where A4 (= I/8 x ) was defined in (19), and

is a preferred axis k along which some of the
anisotropy fields tend to align. If the probability
for this is q, then we can combine (17) with (19),
and write

I

P(x)=q5' '(x —b)+ (1 —q) 2m '~jl'(m/2) . (24)

We can now substitute this into (14), and we find

q dq 1 2 2 r+A b
I(r)= z

-- —(1 b-)A +rln
~b 1 f'+q x+6

= ~A (1 —b ) —r ln b + O(r ) (30)

Linearizing the remaining three recursion rela-
tions, and diagonalizing the resulting Sx 3 matrix
of coefficients, we find three eigenvalues, which
can be written in the form b~&, i=1, 2, 3. The fixed
point is stable only if all X&'s are negative. Other-
wise, one or more combinations of u, v, and u
represents a relevant parameter, and causes a
crossover. This crossover may be towards anoth-
er fixed point, which is more stable, or away and
out of the linear region in which (26)-(29) represent
valid approximations. The latter case probably
represents a smeared transition. ' To order e,
the eigenvalues X&, X2, and Xs are also given in
Table I.

The Gaussian fixed point (I in Table I) is trivial,
and yields X'„= X'„= X' = E. Thus it is unstable for
e &0 or for d &4. The decoupled fixed point (II)
represents the isotopic crystallize state, when
D= 0 in Eq. (1), org(o)= 0. It represents the crit-
ical behavior of the usual m-component Heisen-
berg-like model, as studied previously. We now
"switch on" a small amount of random anisotropy.
This introduces two perturbations, represented
by the parameters u and w. Including all the o,'= P
terms in Eq, (23) in the v term, a typical term in
the u perturbation may be written

uls. l'lS, l', «P . (32)
2The operator lS l

represents an energy density
operator of one of the decoupled (unperturbed) m
vector models. In the vicinity of the m-vector
model critical point it therefore behaves as

' "~, where e~ and v~ are the
specific-heat and the correlation-length exponents
of the m-vector model ($ is the correlation length).
Since the two factors in (32) are totally independent
(in the unperturbed system), the full operator (32)
behaves as ( ~" ~""&. Remembering the addi-
tional d-dimensional integral in (23), the exponent

We can now solve Eqs. (26)-(29) for their fixed
points. We find eight fixed points, which are sum-
marized in Table I. The first four fixed points are
the same as those discussed previously, ' '"' ' and
there are four additional fixed points. Linearizing
(26)-(29) about any of these fixed points will now

yield the eigenvalues, which are related to critical
exponents. Linearizing (26), and writing it in the
form hx'=b "Ax, we find that the correlation
length exponent v is given by

I/2v = —,
' X„=1 —2Z4 [(mn+ 2)u*+ (m + 2) v *

+ 2(m+n+ 1)w*]~O(e ) (31)
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with which the parameter u rescales, X'„', is thus
readily found to be (using u = 2- dv )

x„"=d—2(1 —n )/v = n /v (33)

Since series expansions and experiments indi-
cate that n &0 for m &1, we conclude that the de-
coupled fixed point is stable against the param-
eter u. Note that for m = 1, the parameters u and
w represent the same operator, and (23) reduces
to the Hamiltonian discussed in Refs. 9-11. (In-
deed, V—= I, VI—= III, VII—= II, VIII—= IV for m =1.)

In this case, the present model loses its meaning,
as the last term in Eg. (1) reduces to a single-ion
nonrandom Ising-like interaction. %e shall there-
fore confine ourselves in the following discussion
to m &1.

A typical term in the u perturbation may be
written

Q

g
e R~8

m 0
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~xx 0 2 gn 0 52 (d=3 m=3)

—Q. 03, X~' 0. 5 (d=3, 1=2)
(36)

The appropriate crossover exponents are given by
v X ~. Note that the first order e-expansion re-
sult, given in Table I, yields positive values for
X„' if nz &4, ' Thus one should be careful with

drawing final conclusions from the low-order e ex-
pansion if it yields a small exponent. A similar
situation occurs in the cubic problem, where the

sign of an exponent (our X~~~, with m = 1, n = 3) os-
cillates with the order in &.

The results (36) clearly indicate that the de-
coupled, or nonrandom, fixed point is ungtgble with

respect to the perturbation M). This fixed point was
stable for the nonmagnetic impurity case, ac=0,
discussed previously. ' '" %e must therefore study
the other fixed points, and the possible Hamiltonian

The last term in the brackets can be included in

(32). The first term is a sum over products of two

single m-component model operators, $ &8 &- rn t S t 5;& . These operators represent spin
anisotropies, of the form discussed by Fisher and

pfeuty ' and by glegner, The dimension of each
of these is d —

Q /v„, where P is the spin-
anisotropy crossover exponent from the rn-com-
ponent isotropic fixed point to one with a lower
symmetry. Using similar arguments to the ones
used above, we thus find

x"=d —2(d —P /v )=2& /v —& . (35)

Atd=3, one has Qz —-1.175, PS=I.25, na=-0 02,
as= —0. 14, v~=0. 67, and vs —-0.V1. Thus
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flows. For all the other fixed points one cannot find
general expressions, analogous to (33) and (35).
We thus must rely on the & expansi. on. The results

I

are summarized in Table I, except for the last two
fixed points. For these, A. 1, X2, and Ae are the
eigenvalues of the matrix

6y, -4@+ m+n+4

2 tlat —( SPl + 2) g~ —tl —tel + 2 —(m+2) y, —2

n- m —6+2(m+ 6) z

—2 ( m+ m+ 1)y, + 4 z —12)
4(m+5) s

~8 19~ & ~v ~9~ ~

V 7 V 9 yVI 9~
v 3

xaV" =3.47&,

'"=0 379&

x V3" =2. va&,

'"=-0 473&

Therefore none of these is stable. The fixed points
V, VII, and VID turn out to be unstable, to order
z, for all values of m. However, both A. a' and
A.„' change signs at m —3.9. In fact, both approach
+~ as m-3. 9' and —~as m 3.9 . Probably, this
3.9 must be replaced by an c expansion. All we
can say at this stage is that for m larger than m, (e)
= 3, 9+ 0(&), the fixed point VI becomes stable.
Since 3.9 is not too far from 3, it is quite possible
that higher-order terms in & will show that this
fixed point is actually stable at m =3. In fact, such
situations have been previously found both in the
cubic case ' and in the case of the random im-
purity problem (the fixed point II, for go—= 0). ' Note
however an. important difference: In those cases,
two fixed points co1ncided Rt some critical VRlue
of m, and then interchanged their stability proper-
ties. Here, we have a fixed point which, as func-

(g~ Rnd 8 Rl'8 defined in TRble I), willCll Can be dlRg-
onalized numerically. As we noted already, the
order —c results may be misleading in some cases.
It is thus useful to appeal to higher order in a, and
to independent arguments. The analysis becomes
quite lengthy for the general case. We shall thus
limit ourselves from now on to the case of particular
interest here, namely g-0, The results in Table
I immediately show that the yg=0 isotropic fixed
point HI is stable. This is borne out by calculations
to order e near the isotropic pg-component fixed
point. ~ The fixed points D and IV are unstable, at
least with respect to gg. The magnitude of A. and
the relation (35) for the fixed point Ii lead us to be-
lieve that this instability will persist {at &=1) even
when higher orders in & are included. To order
e, X„"&0and Xz &0 for d=3, m&4. From (33)
and (36) we saw that the first inequality holds only
for m &2. It is reasonable to assume that the same
will hold for the second inequality. For the last
four fixed points, we rely on numerical results.
At n=0, m=3, x, =(1+7)/4, and thus

tion of m, "goes to infinity and returns. " Since
infinity is probably a legitimate fixed point of our
problem (although outside of the linear range),
some analogy may still be drawn. Note that the
"mixed" fixed point IV also goes to infinity as n-0,
m l. In that case, the borderline value m =1
persists to second order in c. Thus one cannot go
beyond speculation until second-order c expansion
is carried out.

In summary, we have at most two stable fixed
points, namely, the m=0 isotropic one, II, and
maybe VI.

V. ISOTROPIC CASE-HAMILTONIAN FLOVfS AND
CRITKAL BEHAVIOR

To conclude our analysis of the isotropic case we
must now start with our particular initial Hamil-
tonian, given by Eqs. (10) and (21) (including all
irrelevant operators), and follow its flow to (or
away from) some of the fixed points. The scaling
behavior in the vicinity of any fixed point will be
described by the critical exponents related to that
fixed point.

We start by considering the simpler case, in
which the irrelevant variables are ignored. Even
in this case, it is difficult to draw the three-di-
mensional u-v-ur space (we assume that ~ is at its
cl'iilcRl VRllle 'Yo~ q so tllR't T= T~). Ill F'lg. 1 we
show schematically the fixed points in the u-gg

plane, p=-O, based on the order —e results of Ta-
ble I. The arrows show the directions of the Hamil-
tonian flows, as governed by Eqs. (2'7)-(29). Typi-
cal values of the initial values of u and zo I see Eq.
(21)] are indicated by the point x. Ignoring irrele-
vant variables, one sees from Eqs. (26)-(29) that
the Hamiltonian flow can never lead from this ini-
tial point to the stable, n= 0, fixed point (II). A
recent study of the random isotropic impurity prob-
lem' shows that even if all the irrelevant operators
al e Rdded to the recursion relRtions in thRt problem
the new values of the parameters stiQ maintain
their meaning as cumulants of the random distribu-
tion function. As such, they never change their
signs under iterations. If the same holds here, and
the new distribution function (after an iteration) is
still related to an isotropic distribution like (19),
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W il

Estimating ur from (21) [ur-D'/2m(m+2) in the
appropriate rescaled units], we can thus conclude
that it is quite reasonable to expect $ to grow larger
only until it reaches a maximum of the order

~ -[2m(m+2)/D ] . A numerical compari-
son with measurements on TbFez will be quite in-
teresting.

If the flow starts closer to one of the fixed points
VI or VIII (V and IV are excluded by the signs of
w and of u), one may observe the exponents of these
fixed points prior to the runaway. Thus near VIII
one has [see (31)]

1/2 v '"= 1 —0. 155m, m = 3, n = 0, (41)

FIG. 1. Schematic flow diagram and fixed points in
I —w plane (v = 0) for & = 1, m = 3, based on order-& results.
The fixed points are identified in Table I. The && indicates
typical initial values of n and zv.

then we may expect that the flow from the point x
will not cross the line I-VI even if the irrelevant
variables are included. However, this remains to
be checked.

%e now "switch on" the parameter p. As noted
above, this parameter is assumed to be positive
(or else the "nonrandom" transition is of first or-
der). Both the fixed points I and VI are strongly
unstable with respect to v. Thus, if we start with
a small value of v, we expect the flow to go towards
larger positive values. This flow will cross three
planes which are parallel to the u-zg plane and which
include the fixed points VIII (4 K4u* =0. 0915m,
4K4 v*=0.0676&, 4K4 pa* = —0. 0263@ at m=3), II (u*
= u* = 0, 4 K4 v* =

&, &, and IV (4 K4 u* = —3'2 c, 4 K4 v*
co*=0). The remaining fixed point VII (4K4u*

=0.0237&, 4K v*= —0. 495&, 4K re*=0. 193&) is
below the u-zv plane, and will thus not be "seen. "
None of these fixed points is stable, and all of them
have values of u* and go* which are inconsistent
with the ratio indicated by Eq. (21). We thus con-
clude that the final flow is very probably away from
all these fixed points, and out of the linear region.
The meaning of this "runaway" is still open to dis-
cussion, but it is quite probable that it represents
a smeared transition. ' This may be the explana-
tion for the anomalous behavior of the critical scat-
tering function observed in TbFe2.

If the initial values of u and go are small (small
D), then the flow starts in the vicinity of the "de-
coupled" fixed point H, and one observes the usual
m-component critical exponents until, close enough
to T„ the crossover due to the parameter gg takes
over, and "smeared" effects prevail. The boundary
of this crossover region may be estimated from

2 III 1+ 1 ~~ 15 ~2 ~III 1 ~2
8 256 y 64 (43)

etc. The observed "smeared" transition may be an
indication against this possibility.

VI. CUBIC CASE

As another example of the application of the mod-
el, we now consider briefly a distribution function
p(x) which allows x to point only along one of the 2 m
axis-directions of a cubic lattice,

where 4», . . . , 0 are unit vectors along the axes.
Although probably not appropriate for a true amor-

or v "'=0.59 at &=1. Similarly, the order-c re-
sult near VI yields

I/2v~=1+-', ~, m=3, n=o,

or v ' =0. 31 at e =1. A value of v which is less
than —,

' is very unusual, and should be considered
with caution. This value is very probably an arti-
fact of the divergence of all exponents of the fixed
point VI at m =3.9.

To conclude, we mention two additional possibili-
ties. First, nl,,(I) may be less than 3. In this
case, both the fixed point values u ' and w ' will
have signs opposite to those indicated in Fig. 1.
This may change the flow diagrams, and yield some
flows which lead from the initial point to the m=0
stable fixed point III. (The stable fixed point VI
will not be reached. ) Second, even if this is not the
case, our conjectures as regards the cumulant na-
ture of the parameters may be special to the iso-
tropic impurity case, and may not apply here. Thus
irrelevant variables may yieM flows which will go to
the m=0 fixed point. If this is the case, then we
expect the transition to be sharp, with a divergent
correlation length and with critical exponents given
by the n-0 analytic continuation of the usual &-

component exponents. For example, to order &
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phous system, thi. s distribution function may de-
scribe the situation in which the magnetic ions are
located on the sites of a cubic lattice, and some
nonmagnetic impurities are randomly occupying'
sites along the cubic axes, thus causing a local
uniaxial single-ion interaction in the directions of
these axes. Substituting in (14), we find

(46)

and

v = b'(v-4Ii41nb[(m+8) v +6vy+12uv

+4 vm]+ ~ ~ ~ },
go =b'(m —4K41nb[(n+8) uP+12uzo

+4 vm+6~y]+ ~ ~ }

y = b'(y-4 K4lnb[9 y'+12uy+12 vy

+ 12 ivy + 8 vg] + ~ ~ }

(60)

(61)

Expanding in pomers of o, this yields

g(a) =- m 'D fc/'+ 2, /c/'

g s'. , s,', +o(I,o/') .
i =1 e, /=1

(46)

The first term leads to a, shift in ro, as in (22), and

the second term is similar to the u term considered
earlier. However, the third term now has cubic
symmetry in the m-dimensional subspace of each
vector S . Combining (46) with (10), we thus write

X,f~= — dR ~ ro' + ~o' +uo +p S
0.=1

(47)
The last term here, g;~, S, , was added because
it combines the symmetries of the v term and the
w term in the n-dimensional and m-dimensional
subspaces. (Note the symmetry v w, I—n. )
This term must be included, because it is generated
by the renormalization-group iterations. Note that
gg is not the same as in the previous sections.

Again, the Hamiltonian (47) reduces to that of
the random nonmagneticimpurity for go= y = 0. For
u = gg = 0 it reduces to n decoupled cubic Hami lto-
nians, as treated in Refs. 23 and 24. For go=0
it reduces to the effective Hamiltonian of random
nonmagnetic impurities (introducing an isotropic
random shift in T,) in a lattice of cubic symmetry:
In this case, the term v IS(R) I in Eq. (3) must be
replaced by v IS(R)1 +yg;, S;, and the rest of
the arguments remain as before. ' ' (This is an-
other reason why y should be introduced for cubic
symmetric cases). In our Hamiltonian v & 0, u & 0,
and u) &0. The cubic parameter y may be of either
sign

The recursion relations now become

For n= 0, there are fourteen fixed points, as sum-
marized in Table II. In the general case there will
be a few additional fixed points, e. g. , decoupled
u-component cubic and nm-component cubic (these
go to infinity for n- 0). The fixed points I, II, III,
and VI (all in the u-v plane) are the same a,s the
first four in Table I, and as those considered pre-
viously. '" The fixed points I, II, V, and VIII (all
in the v-y plane) are the same as those found for
the pure cubi. c case. By the symmetry v MI,

n m, the fixed points IV, VII, and X are the m-0
limits of the fixed points II, VI, and IX, respec-
tively.

Also included in Table II are the order-a expo-
nents x1 A. p x 3, and x4 resulting from the diag-
onalization of the linearized recursion relations
(49)-(52). Again, the Gaussian fixed point is un-
stable. The stability of the decoupled fixed point
II representing the nonrandom noncubic case can
be studied similarly as the previous case: one
ea,sily shows that

X„"-=n /v, X"-=2y„/v —d

The exponent X,"relates to the cubic instability,
and was calculated to order E by Ketley and Wal-
la,ce. It turns out, that X,"&0 and A. 2"'& 0 for
m&n, (a), with'

n, (e) =4 —2c+—[6&(3)—1]e +0(~ ) =5 g 3 4+3 176m
12 1+1.294&

(64)
or n, (1) =3.13. Thus, if so=0, then the fixed point
D is stable and the fixed point VIII is unstable for
m=2, 3, d=3. This will be the case for a random
cubic problem (with an isotropic random interac-
tion). However, A" &0 for m =2, 3, d= 3, and the
zo instability mill lead away from this fixed point.

Similar general arguments may be applied to a
few other fixed points:

X'„v = n, /v, ,

=24 o/vo —d = 2/vo —d = no/vo
x = b (r —4 K4 f(r)[(mn + 2) u + ( vi + 2) v

+(8+2) iv+3y]+ '' '}
u = b' (u —4 ft'4 lnb [(van + 8) u + 2 ( m + 2) uv

+2(n+2) uu + 6uy+2 viv]+ .},
(48)

~'"=~"(m=0)& 0

(go =1 to all orders in e ),

= ni/vi

and

(66)
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Fixed point

Gaussian

II. Decoupled
m-compone nt

TABI E II. Fixed points and exponents (to order e) for random cubic case, n = 0.

4K4N ~ 4K4e* 4K4Ni* 4K4y* Exponents

0 0

4-m m+4 m —4
A ———c, &= e, A =—e, A= ——-c"m+8 " m+8 ' ' m+8

III. Isotropic e = 0

IV. Decoupled n = 0

V, Decoupled Ising

VI. Mixed (0, m)

VII. Mixed (m, 0)

VIII. Decoupled
m-component
cubic

(m —4)~
&6(m —S) 4(m —~)

m-4
&8{m -2)

&„=A„=e/2, A = —e, A =- —e/2

m-4 m+4
4( )) s 'fo 4( )

-4- m+4
~ = —c

Sm ' ~ 3n: ' 4

m —4 m+4 4 —m
2 6{m-~) ' 6(m-2) ' ' 6(m-2)

XI. (a „P,)
XD. (O„P )
VIII. (~, P,)
XIV, (e„, P )

A&
——-c; for other exponents see text [Eq. (58)]

'e, = [m -4~ (m'+48)'&]/8, p, =- jm+1.2 ~ (m'+48)' 'l/6, &,+=«, +3~++m+6.

&vzn a
y

c &vnr 2~e y
c

where the superscript e denotes the cubic fixed
point. ' For the remaining fixed points we must

rely on the order-& results of Table II. As in the
previous case, the eigenvalues of the last four fixed
points were iound Qumerl. cally~ by dlRgonRllzlQg
the 4&4 ma. trix

4n+m —4 2(m+2) n+-,' (m+4)
12 m+8

l
3(m+4) m+4

l2 P l2 P+2(m+4)
2(m+4) 2 m+6
].2 P+ 8 ra+12+12 P,

One eigenvalue is X& = —&. The other eigenva, lues,
fox' ~ = 3~ 4p Rl 6 sumIDarized ln, TRble III. As be-
fore, we find interesting phenomena for m near

m, (e) =4+0(e). As m-m, (e), the fixed point XIV
diverges to infinity. It is unstable for m & m, (e),
and stable for m &m, (e).

SummlQg up all the inforIDRtion we have, we RgRin

conclude that at m=2, 3 only the n=G fixed point II
is stable, and that the fixed point XIV may be stable
at e = I if m, (l) ~ 3. Note that the fixed point IX also
diverges to inf inity as m - 2.

If the @=0fixed poj.nt may be reached, then a
sharp transition with the exponents (43) will be ob-
served. If not, then very probably the transition
will become smeared as T, is approached. The
initial signs of u, g, , and m suggest that for yn =3
the initial x'UQRwRy flow DlRy px'obRbly be de-
scribed by the exponents RssociRted with the fixed

points II (decoupled m-components), VII, VIII, or
X. Linearlzing (48) we find

I/2v =1 —2 ff, [(mn+2) u" + (m+2) v*

+(n+2) ~*+3@*j+O(e') .

Thus the exponents of VII are Gaussian, those of
VIII are cubic, and those of X are Ising-like.
Higher-order terms in the e expansion may change
signs of other fixed-point values, make m, (l)
smaller, etc.

VII. CONCLUSIONS

We have demonstrated that the introduction of a
uniaxial anisotropy with a random direction. de-
stabilize' the fixed point describing the nonrandorn
m-component critical behavior, This result is to
be contxasted with the case of an isotropic random
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TABLE III. Numerical results for cubic case.

Fixed
m point,

3 XI
XII
XIII
XIV

4 XI
XII
XIII
XIV

4K4u+

0.155'
0. 0402~
0, 0615~
0.470'

e/8
0. 0417~
e/16

0. 190m

0. 0491~
—0. 0576&
—0, 440&

g/8
0. 0417m

—e/16

0. 332'
0. 0859~

—0.101~
—0, 770&

g/4
0. 0833&-~/8

—0. 712~
—0. 0609~

0.216m

0. 546~

—c/2
—0. 0556&

q/4

As, A4

—1.33~, 1, 43m, 1.43m
—0. 37lc, 0. 371~, —0.344~
-0.435~, 0.435~, 0.403~

3.32m, 3.32', 3.08~

E~ —C

-e/3, -e/3, ~/3
-~/2, ~/2, ~/2

oo + oO goo

'The signs are for m -4'.

single-ion interaction, in which the nonrandom
fixed point is stable for m& 1. In that case, a
heuristic argument due to Harris shoms that one
expects a sharp transition only if the specific heat
exponent n is negative. One can probably con-
struct similar arguments for the present case, with
regards to the new crossover exponent v A„"=2{/„
—I)+ n [see {35)].

We thus expect a cxossove~ from the nonrandom
m-component behavior to some negg behavior. There
are two possibilities: either the Hamiltonian flow
leads to the @=0 fixed point, and the transition is
sharp; or it runs amay, out of the range in which
our approximations are valid. The experience with
the isotropic case" leads us to believe that the sec-
ond possibility is more probable. In that case, the
actual asymptotic nature of the transition still re-
mains to be investigated. However, the same ex-
perience' indicates that the effective Hamiltonian
probably never leads to a first-order transition,
and since one finds no stable fixed point to associate
with a sharp transition, one concludes that the tran-
sition is "smeared. " ' The exact meaning of this
i.s still not fully understood, and is left for future
interpretations. The x'ounded nature of the transi-
tion observed in TbFe~ supports this conclusion.

Another interesting difference from the random
isotropic case has to do with the sign of the quartic
parameter u, mhich is now positive. An interesting
generalization of the present work would involve a
combination of both types of randomness; it is quite
reasonable to assume that the pair distances {~R,
—R, I) are also random, so that 8,.&

in Eq. (I) should
also be considered as a random variable. If the
tmo types of randomness mere independent, we
mould end up with the same effective Hamiltonian,

except for the sign of u {which would now become
a sum of a negative and a positive term and thus
will possibly be of either sign). This would enlarge
the possible range of Hamiltonian flows. A more
realistic model will have to correlate the random-
ness in J,&

to that in D. This remains to be studied.
There are many othex possible generalizations:

the magnitude of D may be random, the sign of D
may be random (leading to competing ferromagnetic
and antiferromagnetic interactions and to multi-
critical points ), more "realistic" distribution
functions p(x) may be considered, long range ex-
change interactions can be added, ' amoxphous al-
loys of various metals, with different magnetic
properties, may be studied, etc. All these remain
for future investigations.

Note addedin proof: In the case m=1, n=0, the
Hamiltonian f lorn is not to infinity, but rather to a
fixed point with u and e of order Wa [D. E. Khmel-
nitzkii, (report of work prior to publication)].
Thus the transition in the random Ising model is
probably sharP {and not smeared) The s. ame may
happen for the fixed point VI (Table I) for m = 3.9.
However, this probably does not change our conclu-
sions as xegards the smeared nature of the tran-
sition in our case.
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