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The theory of collective magnetic excitations based upon the set of Green's functions of angular momentum

spherical tensor operators is applied to the exchange-coupled (S = 1) magnet with a singlet crystal-field

ground state. The spin Hamiltonian is brought to an approximately diagonal form via a unitary
transformation by a spin operator functional, the best single-site approximation being located variationally.
This enables the set of equations of motion for the Green's tensor to be linearized by conventional techniques.
The essential features of induced-moment systems are clarified and displayed in the theory and numerical

calculations, respectively. In particular, soft-mode behaviors at the second-order phase transition to
ferromagnetism, mode-mode interactions, and a lack of temperature dependence for the excitation energies

except at small wave vectors are evident. The nature of the phase transition is examined in detail and a
relationship between the divergence of the static susceptibility and the soft-mode behavior is derived from the
unitary transformation to pseudospace.

I. INTRODUCTION

When the ground state of the crystalline-elec-
tric-field (CEF) Hamiltonian is singlet, magnetic
long-range order cannot be established unless the
exchange constant is greater than a certain critical
value which is related to the CEF parameters. The
phenomenon of singlet-ground-state magnetism,
which is the most extreme example of induced-mo-
ment magnetism, has recently been the subject of
several theoretical and experimental studies. '
As was noted in the previous paper' (to be referred
to hereafter as I), there are two conventional ap-
proaches to the study of the dynamics of spin sys-
tems in a strong CEF. These are the spin-wave
and the molecular-field exciton theories, respec-
tively. The majority of existing theories of col-
lective excitations in singlet-ground-state systems
adopt the molecular-field exciton approach,
while attempts have been made to construct more
sophisticated theories via the psuedospin method. 9 '2

The molecular-field exciton theories have been
generally successful in explaining several con-
spicuous properties of spin excitations in singlet-
ground-state systems. The early effective boson
theories have schematized the collective excitation
spectra, which were later observed experimen-
tally. "'4 Holden and Buyers extended the effec-
tive-boson theory to include thermal effects, "
and were able to explain the remarkable lack of
temperature dependence of the excitation energies
of Pr, Tl in terms of mode-mode interactions be-
tween the excitations. '6'" The molecular-field

exciton theory thus far developed, however, is
deficient in that the population of the levels is
computed in the molecular-field approximation
(MFA). Therefore the excitation energy is re-
normalized correctly only at high temperatures
where dispersion in the excitation energy is not
significant. This implies that, since the effect of
the rapid growth of population of any softening
mode is not properly reflected in the temperature
renormalization, the molecular-field exciton
theory may not adequately describe the soft-mode
problem at the transition temperature. In order
to approach the soft-mode problem a self-con-
sistent theory must be formulated in which the
population of each state is computed from the ex-
citation energies. In our view it should be pos-
sible to proceed further with the Holden-Buyers
theory to make it self-consistent. However, the
simplicity of the theory would be lost, and it is
not possible to foresee the results without an in-
volved numerical calculation. The pseudospin
theory, ~ on the other hand, is a self-consistent
theory. But since only low-lying states are con-
sidered, CEF symmetry is not reflected in the
pseudospin Hamiltonian. Thus it may also provide
an inadequate description of the soft-mode prob-
lem.

The spin-tensor-operator Green' s-function tech-
nique, developed in the preceding paper (I), is a
self-consistent theory for the complete level
scheme. In principle, it correctly describes dy-
namical and kinematical interactions among the
excitations, since spin dynamics is described by
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physical spin operators rather than effective fer-
mion and boson operators. The central issue here,
however, is the decoupling (or linearization) pro-
cedure. In order to achieve optimum decoupling
of the Green's functions within the framework of
familar decoupling techniques, we have introduced
a unitary transformation of the Hamiltonian by a
spin operator functional that produces, essentially,
a generalized pseudospin formalism. "

The organization of this paper is as follows. In
Sec. II the theory of the unitary transformation is
outlined and applied, as an example, to the S =1
ferromagnet with a singlet CEF ground state. The
criterion to determine the transformation param-
eter and its physical meaning are discussed, fol-
lowed by the calculation of the static susceptibility
in the present formalism. Complete spin dynamics
of the system are developed in Sec. III, via the
spin-tensor-operator Green's functions. In Sec.
IV some numerical results are presented and the
occurrence of the mode softening at the transition
temperature is discussed in some detail. The con-
clusion is given in Sec. V.

of decoupling, e. g. , Eq. (3.4) of I, is in doubt;
the spin precession is highly elliptical, and S' does
not approximate to a constant of the motion.

The difficulty will be avoided if one introduces a
transformation that diagona, lizes (2. 1) by eliminat-
ing 02. In general, the class of Hamiltonians of
interest have the form

X =X,„+Q[B', 0', (n) +B',0', (n)], (2. 3)

X(p) =e sIXesI, (2 4)

where

B', = fPQO, '(n) (2. 5)

where X,„ is the exchange Hamiltonian. The true
ground state of (2. 3) is a many-body state, a.nd

rigorous diagonalization is obviously intractable.
Instead, we propose a unitary transformation that
leads to the best single-site representation of (2.3).
Such a transformation is

II. UNITARY TRANSFORMATION

A. General remarks

In I we have studied the S =1 ferromagnet with
twofold crystal field, for the case where B~ is
negative so that the easy direction is along the
symmetry axis and the crystal-field ground state
is a doublet. When B~ is positive, an easy plane
develops perpendicular to the symmetry axis and
the ground state is a singlet. If the z axis is ro-
tated by 90' it becomes directed parallel to the
magnetization (as in I we take S*= —1 to be the
saturated state, then —1 ~ (0,') —0) which lies in
the easy plane. The Hamiltonian (4. 1) of I may
be written in a representation with S, (0,) diagonal:

3C= —g J(n~ —nz)[0, (n~)0~(n2) —20'(n~)0~ (nz)]
K/82

(2. 6)

The transformation (2. 4) may be evaluated by
means of expansion

e-s.'XesI = X+[X,ftI]+(I/2!)[PC, B,'], RI]+ ~ ~ ~

(2. 7)
and the commutation formula (2. 2) of I. Genera. lly
it is possible to find a way to sum the infinite se-
ries (2. 7) and to obtain a compact expression. The

transformations of each of the tensor operators by

R„ for the case S=1, are tabulated in Table I.
If (2. 5) is applied to a, crystal-field Hamiltonian,

the transformed Hamiltonian contains the spin-
tensor operators with m =O, l, 2l. If 2S+1 is less
than 2l, the term with rn = 2l has no matrix ele-
ment, then the diagonalization is completed by ad-
justing P such that the term with m =l vanishes.

~B,' g [ —,'O,'(n, )+-,'+6O,'(n, )],
Kg

where the Zeeman term was neglected and

Om i (om 0-m )

(2. 1)

(2. 2)

B. Apphcation to S = 1 magnet

To illustrate this procedure, we reduce (2. 1),
in the molecular-field approximation, to

XM'" =g [2oZ(0)00(n) ——,'B,'O,'(n)

When B02is small compared with Z(0), the conven-
tional spin-wave approximation appears to be valid,
provided that the theory is extended to take the
nonzero off-diagonal correlation function (Oz) into
account. ' ' If B~ is large, however, the concept

+ 2&6B20q(n)], (2. 8)

where o = —(00). After the transformation, (2. 8)
becomes

kMv"(6) =Q([2oJ'(0) 6cos'B+2sin&]O,'(n) ——,'B, o,'(n)+ —,'+6 [B,cose--,'oJ(0) sine]02(~)f, (2. 8)
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S ~ I
TABLE I. Table of transformed operators by Eq.

(2. 4) with l =2. 8 is equal to -&2P.

cu {q)

cu2(q)

o) {q)

S NO

Om
1

00

0+f

00,

2- 2
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cos8 Of —Gv 6 sin8 02
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FIG. 1. Schematic diagram of the molecular-field
states as functions of the molecular field P and the exci-
tation energies for the transition among the states.

0+1
2

022

02

cos-02 +2~3 sin28 0&

cos8 02 + 4 v 6 sin8 Of

02
2

cr= mcos6)

Therefore the condition (2. 11) becomes

(2. iS)

0 is related to the relative magnetization of the
transformed system, m, by

8=-v:,' p . (2. 1O) sine = D/4m J(0) . (2. 14)

(2. 9) is diagonal if 8 satisfies the condition

3 BB D
8 ct(0) 4o J(0) ' (2. 1i)

where D= —,
' B,' is the crystal-field splitting between

the singlet and doublet when 0 is zero. Since 0,
is transformed as

Note that 6 is renormalized by temperature through
the temperature dependence of rn. A diagram of
the molecular-field energy levels, as a function of
molecular field, is shown in Fig. 1.

Under the transformation (2. 4) the full Hamil-
tonian (2. 1) takes the form

k(8) =x„(e)+k, (e) +x„(e), (2. 15)

e sO, e" =cos800 ——', v'6sin80', . (2. 12) where X„ is the diagonal part of the Hamiltonian

X~(8) = g J(n, —nz) cos'80, (n, )0, (na) —
2 Bz g[O', (n, ) —-', sine 0, (n, )] .

~Q

nag na nf

(2. 16)

X, is the transverse exchange Hamiltonian

$C, (8) =g J(n~ —nz)(2cos2 —,
' 80', (n, ) 0,'(n2)+ —,

' sina —,
' 80', (n, )02'(n2)),

~t
nfl np

(2. 17)

and X„ is the nondiagonal part

X„(8)= —,'g cos8 Oz2(n, ) B02+ —P J(n, —n2) sin800(n, ) ——g J(n, —nz) sin~80~~(n, ) 022(n2)
1 I2 Kf y 52t

+ g J'(n, —n ) sine[0', (n, )0'(n )+0,'(n, )0,'(n )] . (2. 18)

Thus the transformation will not completely diag-
onalize the Hamiltonian by completely removing
X„(8). It is possible, however, to minimize the
effect of X„(8) and to obtain the best single-site
representation.

C. Variational determination of the transformation angle 8

The criterion upon which the optimum value of
8 rests, is derived from the minimum principle
for the free energy. ' The functional
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E= TrpK+ (1/P) Trp lnp, (2. 19)

with an arbitrary p is an absolute upper bound to
the free energy of the system and takes its mini-
mum value when p is the true density matrix. In
the spirit of the Green's-function equations-of-
motion (Sec. III), we utilize an approximate density
matrix p„, that is diagonal in the representation in
which 0'„, of the transformed system (2.4), is
diagonal. No further specification of p, is neces-
sary for present purposes. The functional (2. 19)
is minimized with respect to 8, hence

eE 8 - e—= —Tr p, K=—(K)„=0, (2.20)

(6,') =0. (2.22)

However (2. 22) is strongly dependent upon the de-
coupling approximation. When the equation of
motion was decoupled in the random-phase approx-
imation (HPA), (2. 22) was not fulfilled; but with 8

chosen from (2.20), (2.22) must follow in prin-
ciple.

where ( ), denotes the thermodynamic average
over the diagonal density matrix p„. An interpre-
tation of (2. 20) is that the abstract torque in the 8

plane is zero, Alternatively (2.20) implies that

([K, O']&, =0 (2.21)

in that K should include no term containing 023.

If (2. 20) is applied to (2. 16) and the difference
between (O,'(n, )o,'(n, )) and, (O~(n, )O~'(n, )) is
neglected —this is a good approximation according
to (4. 5) of I—(2. 14) is recovered. We note that 8

could have been chosen from the condition

where U(8o) is the contribution arising from the
change in the density matrix during the athermal
rotation through 58, If (2.24) and (2.26) are com-
bined, one obtains

88 y sin8(o q)
ea (s'/s8')(K(8, )),i. ..+ ~(8O)

(2.2 "I)

The static susceptibility is therefore

y(T) = = sin8 —(0,) —cos 8
so(r) . 88, s(O'&

X sin'8 (O&)' 8(O')
(8'/88')(K(8))„I, , + U(8, )

(2.28)
The second term in (2. 28) is similar in nature to
the ff(8o) contribution. Thus the static susceptibil-
ity is composed of both the perturbation terms
arising from a change in the density matrix and
the second derivative of (K(8)),. The latter con-
tribution will be related to the excitation energy in
in Sec. gf.

III. SPIN DYNAMICS OF THE S = 1 MAGNET WITH A

SINGLET CRYSTAL-FIELD GROUND STATE

The spin-tensor-operator Green's-function ap-
proach described in the previous paper (I) is now

applied to the singlet-ground-state system char-
acterized by the Hamiltonian (2. 15). The equations
of motion will be linearized by RPA for simplicity.
For 0,'(q) and O2'(q) these equations are of the
form

[~i'(q), Kl =A&(q)~&'(q)+ &(q) o'(q)

+ (2/~~)[Ci(q) &3'(q) +D(q) &2(q)],

D. Static susceptibility

The static susceptibility may be studied by add-
ing to the Hamiltonian (2, 1) the Zeeman term

[o.'(q), Kl =A2(q)O2'(q)+ &(q)f)2(q)

+ 2&3[Ca(q)O, '(q)+ D(q)O', (q)],
where

(3.1)

K' = —yahoo', (n), (2.23)

—(K(8))„+yHsin8(O, ) = 0. (2, 24)

where y = p~g, g is the Lande g factor. The con-
dition determining 8 (2. 20) becomes

Cq(q) = ——,'D+ 4(o, )Z(q) sin' —,
'

8,

Cz(q) = —,D+4(020) Z(—q)cos a8,

(3.2)

A, (q) = ,'Dsin8-2(6, )[Z-(0) cos 8- J(q) cos —,'8],

A2(q) = ,'D sin 8- 2(o, )[Z(0) co—s 8- Z(q) sin'-,' 8],

B(q) = —2(62O)Z(q) sin8,

—, (K(8))„i...=o (2. aS)

D(q) = —(6,)Z(q) sin8,

and the equation of motion of 0~ (q) is

[Oa" (q), K] =AS(q)&3 (q)+ &3(q) O2(q), (3.3)

where I ~ ~ denotes the value of the derivative at
8= 8„ then for 68= 8- 8& «1,

—, (K (8))„=, ,— g(8))„I,., 8+ ~ ~

where

A, (q) = —2(oo) [2Z(0) —Z(q) sin38],

B,(q) = 2(o, ) Z(q) sin'8.
(3.4)

+ 0'(8O) 58+ ~ ~ ~ (2.26) The Green's functions, the correlation functions,
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and the order parameters (0,) and (Oz) are calcu-
lated from these equations in the manner described
in I, using the equal weight decomposition, Eq.

(4. 6) of I. The magnetic excitation energies of the
dipolar modes &u, (q) and ~z(q) are given by the pos-
itive roots of the equation

l

~ —2~ (2[A, (q)'+As(q) ]+ C, (q)C, (q)- B(q)' —D(q) ]+([A,(q)+ B(q)][A,(q)+B(q)] —[C,(q)+D(q)][C, (q)+D(q)]]

x ([A,(q) —B(q)][As (q) —B(q)]—[C,(q) —D(q)][Cz (q) —D(q)]] = 0. (3. 5)

This can be combined with (2. 14) to show that

(u, (0)(u, (0) = 0,
(

satisfying the Goldstone theorem, or physically,
indicating that no torque is required to rotate the
spin in the easy plane of the Hamiltonian (2. 1).
This supports the belief that the condition (2. 14)
is sound. Because of the RPA decoupling, (2. 22)
was not fulfilled except for above Tc(8 =-,'m), al-
though (Oz) is very small when computed from the
correct combination of the Green's functions. The
excitation energy of the quadrupole mode is

~&(q) = [A3 (q)' —Bs(q)']"'. (3. t)

(0,+2') =0. (3.8)

This assumption reduces the present theory to the
unrenormalized effective boson theory. In return
the expression for the excitation energies becomes
much more simplified. Below the phase transition
temperature, the excitation energies are

a+s w- a' t" '~'
~i(q) =

2
II - ~(q)] I - ~(q) &,D I8+a )

The reader is cautioned that the algebra and termi-
nology at present refers to pseudospin space.
The quadrupole pseudospin mode (3.7) therefore
corresponds to the longitudinal mode in the real
space.

In order to obtain qualitative understandings
about the excitation energies, we now assume

I

tinuous transition to the spin wave, and the (()z(q)

mode to the molecular-field excitation, in agree-
ment with the result obtained in I. The dispersions
of the two dipolar modes, &u, (q) and &uz(q), are sche-
matically shown in Fig. 2; the two modes cross
each other without interaction.

In general, however, (3.12) does not, hold below

Tc. As a consequence, the two modes interact
strongly in the crossover region, acquiring a
mixed character (Fig. 2). The mode interaction
occurs even at T = 0, as will be displayed in Sec.
IV. The origin of the mode interaction at 7 =0
is the fact (2. 15) is not completely diagonal. In

particular, the last term in (2. 18) represents the
off-diagonal exchange interaction, which is mainly
responsible for levitating the ground state of the
system above the MFA ground state through the
zero-point fluctuation, just as in the case of anti-
ferromagnets. " Even at T = 0, therefore, the ex-
cited states in MFA are slightly populated and the
order parameters, (- 0, ) and 2(Oz), are not fully
saturated. This forthright indicates that the unre-
norrnalized effective boson theory is inaccurate
even at T= 0, since it fails to descnbe some subtle
features of the excitation spectrum such as the
mode-mode interaction.

Because of the mode mixing, we now label the

5'- D
~z(q) =

2

D3 1/8
"(e)=))'((—~~&(v)

(3 9)

where we have used a notation similar to that by
Rainf ord~~:

D= ,' Bz (CEF splitting), —

W=(D +4h ) t,
h =28(0)o(T) yH+(total internal field),

~(q) = ~(q)l~(0).

(3.10)

An inspection of the spectroscopic densities of the
Green's functions show that ~,(q) and (oz(q) corre-
spond to excitation energies for the transition from

I
—1) to 10), and from IO) to I1), respectively. As

D is reduced to zero, the &u, (q) mode makes a con-

FIG. 2. Schematic dispersion relation for the cases
when {3.12) is assumed {solid line), and when {3.12) is
not assumed so that the two modes interact (dashed line).
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upper branch ~,(q) and the lower branch ~2(q). The
spin-wave character is now retained by ~,(q) mode
at high q, and by A&2(q) mode at low q. Equation
(3. 20) is satisfied by A&2(q =0) being constantly zero.

Finally we note, following the discussion of I,
Sec. IV, that we have discussed the thermodynam-
ics properties in terms of the dipolar modes for
which RPA is appropriate. The quadrupolar mode
is degenerate with the v, (q) mode in the paramag-
netic regime. Therefore the detailed calculations
of the softening behavior of &u, (q) in Sec. IV apply
equally to ~,(q).

IV. NUMERICAL CALCULATIONS AND SOFT-MODE
BEHAVIOR

X
I- i.o-
Lal

ft 0.8—

ft:
LJJ

0.6—
IX
O

90—

4l
dl
I

60—Ol

c

-&0( )
0

It is possible to gain information about soft-mode
behavior of the system from a further inspection
of Eci. (3. 5). Above the phase transition tempera-
ture T,

g= —
m,

1

50—
I

0.5
T/J&0)

I.O

FIG. 4. Temperature dependence of the order param-
eters (-0&), 2(O~), 0(T), for D/J(0) =3.

(0, +20~) =0,
(r& T, ) (4 1)

D = —4(Oi) J(0). (4.4)

(4. 2)

(4.3)(u, (q) = 0.

The ~, (q) and ~, (q) become soft at q= 0, when

and [0), ~ 1) are degenerate. The excitation ener-
gies are

&u, (q) = ~,(q) = D[1+ (4(6, )/D) J(q)]'~,

This soft-mode criterion is consistent with the or-
dering condition deduced from (2. 14). It is par-
ticularly worthy to note that the phase transition
temperature calculated from this soft-mode con-
dition agrees, in the isotropic limit of D-O, with
the result obtained in I for the isotropic ferromag-
net,

0/J&o) ~ 8

kTc 4 2

J(0) 3 1+E(- I) '

where

1 J(0)
) iv~ J(0)-J(q) '

(4. 5)

(4.6)

O

CF

This result is obtained from any equivalent com-
binations of dipolar correlation functions to calcu-
late the order parameter when B~ &0, but only from
the equal-weight decomposition when B~ &0. Thus
only the equal-weight decomposition gives the in-
ternally consistent results in the whole range of
values for B&,

Below Tc, the excitation energies of the zero-
wave vector modes are

~, (0) =2J(0)r(OO)'(1+ sin'8)

+4 (Oo) (0,') sine]'~',

~,(0) =0,

~, (0) =-4(O,')J(O) cosa

(4. 7)

(4. 8)

0
0

I I I I I

O.S I.O

q/q
FIG. 3. Excitation energy dispersion relation at T =0,

for D/J(0) =3.

(4. 9)

Equation (4. 1) may be combined with (2. 13) and

(4. 4) to show that v, (0) and v, (0) alsofalltozeroat
the Curie temperature. Thus it is evident that
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2.0

l.5

O

3

0.5

0
0 0.5

f
io

T /JIO)

T/ J(o)

1.5

FIG. 5. Temperature dependence of (d&(0) and cu3(0).
The two modes become soft at Tz and are degenerated
above Tc.

v, (0) and &us(0) become soft at Tc.
Numerical calculations were undertaken to solve

Eqs. (3.1)-(3.16) self-consistently subject to the
approximations outlined in I. The excitation energy
dispersion relations at T =0 and the temperature
dependence of the order parameters are shown in
Figs. 3 and 4, respectively, for D/J(0) =3. In Fig.
5 the temperature dependence of the zero wave vec-
tor dispersion relations is shown and the results
confirm the above analysis, ~, (q) and ~, (q) be-
coming soft at T~. The renormalization of the ex-
citation energies at small and large wave vectors
differs markedly, which is typical behavior for
singlet-ground-state systems. Figure 6 shows the
temperature dependence of the real magnetization
in both RPA and MFA. Our results differ from the
results of pseudoboson theory in that we find no
abrupt change in the magnetization and that the phase

0
0 I 2 3 4 5 6

0/ JIO)

FIG. 7. Curie temperature Tz/J(0) as a function of
D/J(0), calculated by the MFA and by the present theory,
and compared to the case when 8& & 0 (Paper I).

transition is second order.
The phase transition temperature T~ was com-

puted as a function of D/J(0) (Fig. I). The critical
value of D/J(0) is 3'. 62 and is 10% smaller than the
value computed in MFA.

Finally, the renormalized dispersion relation
~, (q)/J(0) and ~, (q)/Z(0) are shown in Fig. 8 for
three ratios of T/J( )0near T =Tc. The essential
feature is that the temperature dependence of the

I
I I I I

D/ J IO) ~ 5
T/ J (O) ~ O.T4

0,5

9/ JIo) ~ 3
MFA

PRESENT THEORY- O
3

CJ'

3

I-

b

0
0

I

0,5

T/ J(0)

I

1.0

I

I
I
I

I
I

I
I

I

I.5

FIG. 6. Real magnetization 0.(T) as a function of tem-
perature, calculated by the MFA and by the present theory.

0
0 0.5 I.O

8

FIG. 8. Renormalized dispersion relation ~&(q)/J(0)
at, above, and below, the Curie temperature, for D/J(0)
—3
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& [[~(8),I~], ~]&.("/2 |)(«)"~ ~ ~,

(4. io)
where c = p/8 describes physically both static and
dynamic processes. The first-order term in 58
represents the abstract torque that is set equal to
zero by (2. 20). The second-order term describes
the curvature of the potential at equilibrium and is
directly related to the static susceptibility by
(2. 28). The divergence of the longitudinal suscep-
tibility at T~ implies

([[Z(8),ft], a]) =0 (r =r, ) (4. it)
and, in general, when the Hamiltonian is diagonal

[X, O,'] =- o O', ; [X, O,-'] = ~O, (4. 12)

therefore,

[X, 0', ] = —ni0', ; [K, iO,'] = o;0', , (4. 13)

where G is some coupling constant. Since 8 =iPO~3,

(4. 11) implies that o.'=0 if the Both'4 prescription
for decoupling many-body equations of motion is
utilized. Therefore

excitation energy is insignificant even in the neigh-
borhood of T~, except for the region of q space
near the origin. This behavior contrasts with that
of systems with a saturated moment in the CEF
ground level and is a characteristic of induced-mo-
ment systems. "' The small temperature de-
pendence of the excitation energies, particularly
of ~, (q) mode, for all but small q values, makes
the detection of mode softening by neutrons in elas-
tic scattering experiments difficult.

The soft-mode problem may now be subject to
more fundamental considerations. In Sec. II D the
static susceptibility was related to the second de-
rivative of (X(8))~. An inspection of (2. 12) and

(2. 23) indicates that the Zeeman Hamiltonian has
no diagonal matrix element when 8 = v/2, therefore
the change in the density matrix due to the appli-
cation of a small field at 7 =Tc is of second order;
critical spin fluctuations could not otherwise occur.
The expansion

(Z(8+ 58))„=(K(8))„+( [Z(8), P]),c68

[3C, 0 ] = [X' 0, ] = 0 (T = T ). (4. i4)

It follows that the zero wave vector 0, (q) and Of(q)
modes have zero frequency at the Curie tempera-
ture. We note from Eq. (2. 12) that Oz(q) in
pseudospace corresponds to 00(q) in real space
when 8=v/2. Consequently Eq, (4. 14) implies a
softening of the longitudinal mode, in real space,
at the transition temperature.

V. CONCLUSION

The theory of the spin-tensor-operator Green's
functions developed in I was applied to a system
with a singlet CEF ground state. The optimum de-
coupling approximation is obtained via a unitary
transformation which enables a change of rep-
resentation within the framework of single-site
theory. The parameter (8) of the transformation
was determined by a macroscopic thermodynamic
criterion. Thus it was possible to extend the rep-
resentation theory to finite temperatures. The
theory was applied to the S =1 induced-moment
magnet. The phase transition to the paramagnetic
phase occurs when the ground state becomes a
singlet with off-diagonal order. The transition
was found to be second order and accompanied by
soft-mode behavior.

Although the theory is thus far restricted to the

magnet with spin 1, it is self-consistent and the
essential characteristics of induced-moment sys-
tems are evident.
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