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Theory of collective magnetic excltatlons in strong crystal fields I Dynamics of the angular
momentum tensor operators
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The collective motion of ionic spins in a crystal field of magnitude comparable with the exchange interaction
is examined. A systematic scheme based upon angular momentum spherical tensor operators is developed to
describe the dynamics of collective excitations in the system. The Green s-function equations of motion are
linearized by suitably modified forms of conventional decoupling approximations, in particular the random-
phase approximation. When the order parameters of the system are calculated, care is taken to eliminate
correlation functions prohibited by kinematic restraints. Consequently, the order parameters are obtained
uniquely by reducing a redundant set of Green's functions. Furthermore excitations out of different molecular-
field levels are distinguished and the excitation out of the ground state is identified as the spin wave. The
theory is applied to the spin-1 (S = 1}axial ferromagnet with some numerical results.

I. INTRODUCTION

The magnetic excitations in ferromagnets with
strong crystal fields are being studied extensively,
particularly for the rare-earth and actinide com-
pounds. 3 The fundamental difficulty in this prob-
lem is that the crystal-field Hamiltonian and the
interionic spin interaction Hamiltonian, typically
the isotroyic Heisenberg exchange Hamiltonian,
do not commute and do not have compatible eigen-
states. Attempts to devise a theory of collective
excitations in such a system have therefore started
from one of the two limiting cases: the strong-ex-
change-limit- spin-wave approximation, and the
strong- crystal- field-limit- crystal-field exciton
approximation. If the exchange interaction domi-
nates, the crystal field may be treated as a per-
turbation and expanded in spin-wave coordinates.
In this approximation the crystal field is the origin
of the anisotropy energy and contributes to the
spin-wave energy gap; the common origin of the
anisotropy energy and the spin-wave gap is a cru-
cial assumption in conventional macroscopic res-
onance theory. The energy gay displays a strong
temperature dependence that may be attributed to
spin-wave interactions due to the crystal field. ' ~

When the crystal field dominates the exchange in-
teraction a different unperturbed Hamiltonian is
used. The exchange Hamiltonian is replaced by a
molecular field so that collective behavior is ini-
tially omitted. The operators that generate inter-
state transitions for this simplified Hamiltonian
are adopted as the basis operators to describe the
spin dynamics of the system. The full Hamiltonian
is then recovered by adding the difference between
the exchange Hamiltonian and the molecular-field

Hamiltonian to the zeroth-order Hamiltonian, thus
introducing the propagation of the crystal-field ex-
citon and its dispersion. In most cases, however,
the basis operators are replaced by quasiboson
or pseudospin operators'4 ~ rather than expressed
in terms of physical spin operators. Qnly for
small spin systems an attempt has been made to
describe the spin dynamics by means of physical
spin operators. '9 When boson or pseudospin op-
erators are used in place of physical spin opera-
tors, interactions between the excitations (dynam-
ic and kinematic interactions) are not correctly
accounted for. Therefore, the temperature re-
normalization wi ll be inaccurate.

The purpose of this paper is to present a general
method to study the spin dynamics of a magnetic
system with a strong crystal field via the thermo-
dynamic Green's functions of a complete set of the
physical-spin (tensor) operators, leading to a uni-
fying view of all the cases, from strong-crystal-
field to strong-exchange limits. The use of physi-
cal- spin-tensor-operator Green's functions makes
it possible, in principle, to describe correctly the
renormalization of the excitation energy due to the
interactions among the excitations. In practice,
however, three operator Green's functions have to
be decoupled to make the calculation feasible.
Here we make use of and generalize existing de-
coupling techniques: the random-phase approxima-
tion (RPA), the Hartree-Fock approximation
(HFA), and the Callen decoupling method (CA),
which interpolates between RPA and HFA. The
origins of the present method are in the theories
of Murao and Matsubara and Haley and Erdos. '9

The difficulties associated (a) with redundant sets
of equations from which correlation functions are
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calculated, and (b) the imposition of kinematic re-
straints, are discussed in detail and an alternative
and unique choice is presented within a systematic
framework.

The organization of this paper is as follows; in
Sec. D the angular momentum tensor operators are
introduced and their commutation relations dis-
cussed. Important properties are that their com-
ponents are linearly independent and that they are
closed under commutation. In 3ec. III the dynami-
cal theory is outlined, The equations of motion
are linearized by the three decoupling schemes
mentioned above. The excitation energies and spin
correlation functions are calculated via double-
time thermal Green's functions. ' Section IV is
devoted to a study of the axial ferromagnet (8= 1)
with a degenerate ground state. A set of Green's
functions that avoids any redundancy in the calcula-
tion of self-correlation functions is chosen. Cor-
relation functions are computed in such R manner
that it is not necessary to impose external kine-
matic 1 estrlctloQs. The theory ls compared with
those of Murao and Matsubara and Haley and Erdos,
and the new results are interpreted physically and

expressed quantitatively.
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. where ( ~ ~ J is the Gj symbol and

(2 2)

nents of the tensor operator form a complete orthog-
onal set of base operators in terms of which the
dynamics of any spin system may be described,
and any operator of the system may be expanded.

The dynamics of the system is studied via the
equation of motion of the tensor operator. %6
note that the commutator between two components
of the tensor operator, hence the equation of mo-
tion, can be conveniently given bya' so

exp(-,'u [2S,—tS, + (1/t) 8 ]J
00 O%

~)0 ~= ) [(1+m)!(f—m)!]' (2 1)

by equating coefficients of sv't . Explicit expres-
sions for the t5", are not quoted here, but are tab-
ulated by several authors.

The components of the angular momentum (spin)
tensor operator defined above are orthogonal to
each other, Furthermore, for a system with spin
8 there are 28+ 1 molecular-field states for each
spin, therefore (28+ 1) linearly independent oper-
ators are required for each spin in order to span
the spin space of the system. The tensor operator
{O]{l=0,1, 2, .. . , 28;m= —f, —/+1, .. . , /)
meets this requirement, since it contains (28+ 1)
components as a whole. Thus, the entire compo-

II. COMMUTATION RELATIONS AMONG THE ANGULAR

MOMENTUM TENSOR OPERATORS

The study of crystal-field effect upon ions, via
the use of angular momentum operator equivalents,
was first developed by Stevens. The operators
are the components of irreducible tensor operators
in R spherical symmetry, and conveniently de-
scribe the interaction of the angular momentum
with a crystalline environment. Our normalization
of these operators is chosen to agree with Buck-
Dl aster,

The angular momentum (spin) operator equiva-
lent of spherical harmonics 0, may be obtained
from the generating function

{Sii0, ii 8)= (28~1) ~ g ( 1)s+)y+

&&~, ', (s, m ~o„'~s, m m)-s t, s

(28+ 1, + 1)!
(28 —f )! (2 4)

[Omg ~] Q If ))(g())s ON)s

fioat ~3

or in tensor notation

[o, x]=K o, (2 2)

where K is the dynamical tensor. The excitation
energies are obtained by the diagonalization of the
dynamical tensor. If the Hamiltonian contains any
interionic interaction (e. g. , Heisenberg exchange),

is the reduced matrix element.
Thus the commutator between the two components

of the tensor operator is itself a linear combina-
tion of the components of the tensor operators,
which are therefore closed under commutation.

III. SPIN DYNAMICS

A. Linearization of the equation of motion

The contraction and the commutation formulas
presented in Sec. D make it possible to obtain the
equation of motion of the entire tensor operator.
If the Hamlltonlan consists of only the single-loQ
tensor operators, the equation of motion is closed:
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the equation of motion becomes nonlinear:

[0(n1),X]= Z1 O(n1)

+Q Aa(n1 n2) o(f11) o(na), (3 3)

+112(n, , n, ) ~ O(n, ) ~ O(na)

-Zaa O(n, )+ Q K12(n, —n, ) ~ O(n, ) . (3.4)

In RPA one decouples (S. 3) symmetrically

O(n1) ~ O(na)- &O(n, ))O(na)+ &O(na)) O(n1) .
(3. 5)

If the inverse of the operator identity

Oma ON(2: ( 1)11+12+(((1+ma (2I 1 )1/2
~a

where nq and na label lattice points. For the first-
order tensor operator (spin-wave operators), how-

ever, it is well known that the linearization of
(3.3) by a systematic decoupling scheme produces
R satisfactory result. Guided by this knowledge,
we will proceed to decouple (3. 3) so that the sec-
ond term takes the form

8. Angular momentum tensor-operator Green's functions

We define the angular momentum spherical ten-
sor-operator Green's functions

o."',""'"(f)= «o1'(q1, f); o7'(qa, o) »
The properties of the double-time thermodynamic
Green's function «A(t);f3(0))) are discussed by
Zubarev. ~

The Fourier transform of (3. 11)

(3, 12)

G.",.'."2'('g'3' '= «o(,'(q1)' oTaa (qa) »s

e' ""
(&O,,1(q, f); O, a(q, 0))& dt

(3.13)
satisfies the equation of motion

10«0211(q1)' 0122(qa)&) = &[O»~(q1), 0122(qa)]&

+ «[o7,'(q1) Ic] os(qa) &) (S. 14)

If the linearization procedure discussed in Sec.
III A (3.1) is applied, the e(luation of motion of the
Green's tensor G„, (v) takes the form

[A.(q1)- 1]o„.,( )=-A. ..„ (3. 15)

where N, „ is the commutator tensor

&3

iiii iii I —(iiii + mi)) Q((1, (i, W oi i

(3.6)
ls used to express one spin tensor ln ~erms of t e
product of two —thus enabling one to rewrite the
second tensor of (3. 3) as the product of three ten-
sor operators —HFA will result from symmetrical
decoupling of the three operator terms. The in-
verse of (3.6), however, is not uni(lue, and a
scheme proposed later will be applied here to
select the appropriate expression.

The Callen approximation is constructed from
a linear combination of RPA and HFA:

N" ""1= &[o7'(q1) o1'(qa)]&.

The Green's tensor and the correlation functions
of the system are obtained from (3. 12). As has
been noted by other authors, it is possible to cal-
culate one correlation function from several dif-
ferent sets of Green's functions. We will develop
a unique expansion of the self-correlation functions
tilRt excludes terms contRlning klnemRtlcRlly for-
bidden transitions. This expansion, together with
a systematic theory based solely upon dipole tran-
sition operators removes the redundant equations
satisfactorily.

ff CA (1 (a)A RPA ~AiHFA (3. '7)
IV. APPLICATION TO SIMPLE FERROMAGNETS VfITH

S=1

(3.8)

(3.4) may now be diagonalized by Fourier trans-
formation to yield

A. Molecular-field approximation (MFA) and kinematic
considerations

W'e consider a Heisenberg ferromagnet with
two-fold crystal field, in an applied field H, de-
scribed by the Hamiltonian

[o(q), scl = If'(q) o(q), (3.9) ~=- p ~(n1- na) [O1(n1)O1(na)- »1(n1) Oi (na)]

O(q)=~ Q e"'O(n)
n

(S.10)
+ Ba Q 022(n)+ yH Q 01(n), (4 1)

Z(q)=A, +Aa, +g e"'L'2(n) . (3.11)
where Ba is negative, y=gip, ~I, andg is the
j.and@ g factor. The exchange interaction re-
moves the ground-state (doublet) degeneracy. In
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the ferromagnetic phase we take the 8 = —1 state
to be the ground state.

In the MFA the exchange interaction is replaced
by a molecular field p which formally adds to the
applied field II; the dynamical tensor is given ex-
actly by

—D 0
—D (j) 0

0 0 2$

with eigenvalues

~&,2= 0+»' ~a= 24 ~

3 0D= —qBg (4. 2)

(4. 3)

The generators of excitations are obtained from
(3. 12):

0 0 0
2 =P (Oq

—~ Og~)=2 1 0 0
000
0 0 0

23~ (Oj~ ~ 0 )=2 0 0 0
0 1 0

(4. 4)

3~=vs O2=
0 0 0
000
1 0 0

where, on the right-hand side, the generators are
written in a matrix representation, with O™„diag-
onal. It becomes clear that the S, are (apart from
multiplicative factors) the standard basis opera-
tors of Haley and Erdos. A diagram of the levels
and excitation energies is shown in Fig. 1,

We now consider the kinematics of the compo-
nents of tensor operators. For a system with N
molecular-field levels there are ,'N(N —1) ope—ra-

tors O„(m & 0), whereas there are (N —1) order
parameters (0„). The order parameters may al-
ways be expanded in terms of diagonal single-site
correlation functions composed of products of the

O„. For example, in the system under discussion
the relevant operator indentities are (deferring until

later discussion of the quadrupole or Oz operators)
-a 4 1 1 2 1 00101 = 3 0202 3 g Oa+ 3 02

(4. 5)
OgOq = 020' = —2 &3(Og+ 202),

However, the inverse relationships obtained by
solving (4. 5) for the O„are not unique, i. e. , the

O„may be expressed in terms of the different prod-
ucts (and linear combinations of them) shown on

the left-hand side.
We shall invoke kinematics to select the correct

combinations of products. We note, following

Haley and Erdos that it is possible to construct
unphysical self- correlation functions from the
standard basis operators S, . For example (S'S, )
is the expectation value of a process in which there

——'v3(0 0 +0 0 ),
0 x 3 -1 -1 a 1--1

O~ = 2+ 8 0101 + ~ 0203
—&v3 (0&0~ +OHIO&') .

(4. 6)

It may readily be deduced, by considering the in-
verse of the relationships (4. 4) substituted into
the right-hand side of (4, 6), that all unphysical
processes (S™S~)(no P) are excluded by cancella-
tion in the equal weight decomposition. This de-
composition, therefore, uniquely expresses the
order parameters in terms of self-correlation
functions in a manner that removes the necessity
to impose kinematic restraints externally. We
shall utilize Eqs. (4. 6) in both the calculation of
the order parameters (Sec. IV B) and the Har-
tree- Foch expansion [cf. remarks following Eq.
(3 5)j.

An additional problem arises if the quadrupole
operators Oz (rather than the dipole operators
0&, D~ ) are used to calculate the order param-
eters (0„). Although in MFA no inconsistency
arises, the quadrupole mode will be shown (Sec,
IV B) to display no dispersion in RPA, and a dif-

s = l

li

(u~ (q)

S =0

I

I

$ ~ 0 ' $&o
I

I

I

FIG. l. Schematic diagram of the molecular-field
states as a function of the molecular field Q and the exci-
tation among the states.

is a transition from S'= —1 level to S'= 0, simul-
taneously accompanied by a transition from $'= 1
to S'= 0 (Fig. 1). Such a process is physically
forbidden and Halley and Erdos invoke the "mono-
topic restriction" (or kinematic restraint) by set-
ting such self-correlation functions —occurring in
the evaluation of the order parameters from cou-
p].ed equations for the Green's functions —to zero.
However, if the diagonal operators are decomposed
such that all equivalent expressions on the left-hand
side of (4. 5) have equal weight, the inverse of

(4. 5) is

Oa = —1 —4 Oa Oa —030p
-0 3 -a --a
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ferent result is obtained when dynamics are de-
scribed in terms of it. However, the set of (N —1)
operators 0„ is sufficient to specify the spin dy-
namics in MFA and will describe satisfactorily
collective motion when only dipole transitions are
prompted by the exchange interaction. The quad-
rupole mode may be identified with the dispersion-
less two-magnon single-ion bound state, A con-
sistent collective excitation theory including all
three types of excitation must treat both single
and two-excitlon bands, in which case the O~
mode would show dispersion. Such a theory is of
greater importance when there are terms in the
Hamiltonian promoting quadrupole transitions
(such as biiluadratic exchange) rather than the
present case, which we will describe in terms of
dipole transitions.

8. Green's functions in RPA

The Fourier transforms of the equations of mo-
tion for 0,'(n), 03 (n), and Oai(n) are, in RPA,

[oi'(q), &1=&i(q) oi'(q)+ (2/~6)»(q) oa"{q),

«oP(q); o~(- q) &)
= ——'

(8 —M~(q )
(4. 9e)

1+ 3@g+ 3@i—4'3 —34'g

(4. 11)

~i.a(q) =-."[&i(q)+ &2(q)]+ I'(q),

I'(q) =$-.[&i(q) -&~(q)] +IIi(q)II2(q)j, (4 1o)

~s(q) =&g(q) ~

As predicted in Sec, III, the set of Green's func-
tions (4. 9) is redundant, since there are only two
order parameters, &Oio) and &Ooz). Our interpre-
tation of Murao and Matsubara'8 theory is that they
used (4. 9c) and (4. Qd) to calculate the order param-
eters. Again we interpret that Haley and Erdos'9
chose (4. 9a) and (4. 9b) as a consequence of the
mannex' in which the kinematic restraint was im-
posed externally. In the scheme described in Sec.
IV A all four Green's functions (4. 9) are used to
obtain the order parameters via the expansions
(4. 6). After some algebra, we find

(q) I6]=~ (q')O (q)+ ~~& (q)O (q)

[Oz"(q), &l =&s(q}oa"(q),

where

Ai(q) = —2&Oi) [Z(0)-g{q)],

ai(q) = —.'H'. = -D,
A,(q) = —2 &O,')Z(0),

II.(q) = 4 &o', &~(q) -~,
&3(q) = —4 &oi &~(0) .

Thus we obtain the set of Green's functions:

&«i'(q); oi(- q) »

&O,') [(o-X,(q )]+ 2 &O,'&II, {q)
[~ —~i(q)] [&—&.(q)]

& &«,'(q); oi(-q)))

2 &o~ & [~-&i(q)1+ &oi »2(q)
[~—~i(q)1 [~—~&(q)]

3 «~.'(q); O'.(-q)))

«i & [~-&i(q)l+ 2«') II2(q)
[~- ~i(q)] [~- ~2(q)]

«Oi (q)' Oa(- 1)))

2 &o2 & [~-~~(q)l+ &Oi )Ili(q)
[~- ~i(q)1 [~- »2(q)l

(4. 7)

(4 6)

(4. 9b)

(4. 9c)

(4. Bd)

2&O )= —&O )

1
ci= 2~ g[fi(q)+f2(q)],

[fi(q)-f2(q)1, (4»)

1fi,a(q ) e rai, p(q) Iilr

C. Small-D 1imit

When D is small compared to J(0), (4. 10) re-
duces to

~i(q)= —2«i&[&(0)-~(q)1- - -D+ ~ ~ ~
mo 2&o2&

io~(q) = —2 (Oi)Z(0)+ -, D+ ~ ~ .-0 2&Oa&

&Oi&

(4, 13)

td, (q) is clearly the spin-wave excitation energy,
with the anisotropy term correctly renormalized, e'~

obeying the Callen-Callen power law. On the
other hand, +2(q) appears to represent the molec-
ular-field excitation energy without dispersion,
at least in RPA; this is understandable since the
spin px'ecesslon ln the 9 = 0 state ls pex'pendlculax'
to the precession of the renormalized spin. In the
spin-wave approximation, &u, (q) is set equal to
io, (q). In the present theory ~,{q) and &02(q) are
distinguished. The dlffexeQce, however, may be
incorporated into the order parameters only through
the proper equal weight decomposition (4. 6). It
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is for this reason that the results of Murao and
Matsubara, ' and Haley and Erdos were reduced
to the MFA and the Tahir-Kheli and ter Haar re-
sults, respectively.

The Curie temperature for nearest-neighbor in-
teraction is obtained from (4. 11), in the isotropic
limit, as

kTc 4 z S(S+1)
3 1+x(-1)

where z is the coordination number and

1 J(0)
Z, J(0)-J(q) '

(4. 14)

(4. 15)

D. Ising limit

When D is large compared with J'(0), (4. 10)
yields

The Curie temperature given by (4. 14) is some-
what higher than the values obtained by the high-
temperature- series expansion, ' but is very
close to that evaluated by Callen, probably by
coincidence.

At low temperatures the expansion of the mag-
netization by T for isotropic case yields the spuri-
ous T term. The magnitude of the 7 term is
equal to the RPA spin-wave theory, but opposite
in sign.

Obviously these inaccuracies were introduced by
the RPA decoupling (3. 5), and could only be elim-
inated by improved decoupling schemes.

tot(q)= —D+ 2(Oa) J(q)
—«,') [2J(0)-J(q)] "

urz(q) =D+ 2 (Oz) J(q)
—(i-)t ) [2J(0)—J'(q)]+ ~ ' '

(4. 16)

0 2 1
(Oz) =

1 —64z 2+ 3 (C z, + C'zz)
' (4. 1V)

where

C'st = Q C(q) ft(q),
1

C'zz =
2&g [C(q) - 1],1

Bt(q)+Bz(q)
2I'(q )

(4. 18)

D —2 (Oz) J(q)
D[l —4 (0 )J(q)/D]

The crystal-field splitting D is not renormalized,
and the excitations are identified as the crystal-
field excitons. The thermal behavior of the sys-
tem, therefore, may be approximately described
by MFA.

In extending the present theory to the case when

D/J(0) is much greater than unity, we encounter
one minor difficulty. In paramagnetic state
(T ) Tc), (Oz) is given by

2.0

1.5

) 0
I-

0.5

MFA

Ca I cu I a t e d f rom ( 4- 9 a ) 8 ( 4 - 9b )

with Iz& = 0
PRESENT THEORY

vtith 42& 4 0 J

FIG. 2. Curie tempera-
ture Tz/J(0) calculated by
various methods as a func-
tion of D/J(0). For details
see text.

D/J(0)
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&(~(q))" [1 —~~(q)/~(0) ~

1"' (4.20)

was chosen so that the sum over q could be xe-
placed by the integral over Z(q)

d(&(q))&(&(q)) . (4.21)

The set of equations (4.10)-(4.12) was solved by
iteration to obtain a self-consistent answer. %ith
these assumptions, the transition temperature
Tc/Z(0) was calculated as a function of D/Z(0).
The results are compared with other results in
Fig. 2. In the Ising limit, Tc/Z(0) is equal to
1.88 in the present ca,se.

V. COWCLUSIOX

The angular momentum tensox-operator equiv-
alents of spherical harmonics conveniently de-

43& represents thermal spin excitations, but 433
does not. Our interpretation is that Cza is a spu-
rious "zero-point" spin excitation term which
arose due to the inaccurate decoupling. 4~& is
usually Very small, nevertheless, it leads to er-
ronous results when D/J(0) is large and 4» is
small. In particular, it yields lim~gz&0&. „
[Tc/Z(0)] = 0, where as in MFA lim~&+&0& „
[Tc/J(0)]= 2. It must be pointed out that such in-
accuracies are inherent in the decoupling theories,
and that the earlier theories ' 9 are not free from
them either. If we assume that 423=0, in the
limit of D/J(0) ~'(Ising limit) Tc/Z(0) yields

Zl2~(0) -~(q)]e""""
Ilm [T&/J'(0)] = J» )ppr

' (4 I& )
Q/g(0) ~ oo e J'(q &IArc

A numerical work was undertaken to illustrate
these results. No specific crystal structure wa, s
assumed since a cubic lattice is in contradiction
to an axial crystal field and one has a large variety
of choice for noncubic structures. Instead, a, den-
sity of exchange interaction

scribe the collective motion of spins in a strong
cxystal field. The tensor properties of the opera-
tor equivalents have been utilized to show that their
Green's functions are readily calculable when suit-
able decoupling techniques are employed. For the
8=1 fexromagnet the Green's tensor of the present
work is consistent with equivalent sets of Green s
functions obtained by Murao and Matsubara' and

Haley and Erdos. " Inspection of the spectroscopic
density of the Green's functions shows that in the
present method a different dispersion is assigned
to each molecular-field transition, whexeas in the
spin-wave theory they are set equal. This differ-
ence is further established in the theory by a unique
expansion of each order parameter —equal weight
combination of self-correlation functions being
chosen to exclude kinematically forbidden correla-
tions. Although the results described here are not

yet free of some minor inaccuracies produced
mainly due to the random-pha. se approximation em-
ployed to decouple the Green's functions, the theory
plesents a, unified and self-consistent view of the

1 Heisenberg magnet in the crystalline field, to-
gether with the results described in the following
paper.
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