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A reference lattice, away from which elastic distortions induced by the spin texturing of two-dimensional (2D)
magnets take hold, is motivated from a picture of pairwise Biot-Savart interactions among identical solenoids that
either elongate or compress a (“zero-current”) spring lattice. Applied to a paradigmatic CrSiTe3 monolayer, the
reference is given by the average between the atomic positions of ferromagnetic (FM) and Néel antiferromagnetic
(AFM) lattices; such an atomic disposition permits understanding structural distortions and elastic energies due
to magnetism readily. Furthermore, the anisotropic speed of sound in the magnetic ground state explains an
observed anisotropy of vibrational frequencies on similar magnets. Elastic stiffness constants are reported, too.
Magnetic energies in four Ising structural configurations were calculated and the strain needed for those 2D
magnets to undergo an AFM to FM quantum phase transition was determined as well.
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Magnetism is relevant in condensed matter physics [1],
statistical mechanics [2], and quantum field theory [3]. De-
pending on whether spins align perpendicular to a plane,
parallel to it, or take an arbitrary orientation in three dimen-
sions, magnetic materials are studied with Ising [4], Potts (also
called XY) [5], and Heisenberg [6] models, respectively [7].

Most layered magnets [8,9] are binary transition metal
halides (e.g., CrI3, CrI2, CrCl3, Nb3Cl8, and ScCl), binary
transition metal chalcogenides (e.g., VSe2, and Cr3Se4), bi-
nary transition metal compounds (Co2P, CrB2, MnO2, and
FeSi2), binary materials with spin-unpaired p or f electrons
(GdI2 or K2N), or ternary transition metal compounds (MPS3,
MPSe3, CrSiTe3, CrGeTe3, Fe5GeTe2, MnBi2Te4, CrSBr, and
CrSiRe3) [10]. The Curie temperature (TC) at which those
phases turn paramagnetic (of the order of tens of meV per for-
mula unit) is tunable by thickness [11], doping [12], electric
field [13], and strain [14,15].

Experimental evidence for magnetoelastic couplings was
first reported in bulk CrGeTe3 [16] and confirmed in FePS3,
FeSe2 [17], FePS3, CoPS3, and NiPS3 [18]: lattice parame-
ters change across the ferromagnetic (FM) to paramagnetic
phase transition [19]. From a theoretical perspective, Ref. [20]
reported four Ising magnetic structures for CrSiTe3 and
CrGeTe3 monolayers (MLs), all having a honeycomb lattice.
Recently, the structural anisotropy of this family of layered
magnets was experimentally established [18] through the
anisotropy of the fundamental vibration frequency of bulk
MPS3 (M = Fe, Co, or Ni).

The magnetic ground state of CrSiTe3 is strongly depen-
dent on electronic correlations and on the number of MLs.
At the ML limit, DFT calculations based on LDA exchange
correlation yield a FM ground state [21], while those utilizing
a PBE exchange correlation yield a zigzag AFM magnetic
ground state [20]. Experimentally, a FM ground state has
been determined at the monolayer limit [22,23]. Presenting
a collection of methodologies to couple structural distortions

to magnetism, and exemplified on CrSiTe3 MLs, this Letter (i)
introduces a suitable nonmagnetic (NM) reference configura-
tion for 2D magnets, (ii) it establishes the crystal symmetries
(layer and point groups) of the four ML structures, (iii)
presents their anisotropic sound velocities and out-of-plane
vibrational modes, and (iv) contributes stiffness parameters
(which require knowledge of the point group to be determined
appropriately). (v) Knowledge of the proper reference lattice
permits calculating elastic energies, which are all smaller
than the energy barriers among magnetic phases. (vi) The
free energy invites a discussion of magnetic quantum phase
transitions.

The original motivation for this work was to demon-
strate that two of the four magnetic phases reported by
Sivadas et al. [20] lacked hexagonal symmetry. For this rea-
son, we used calculation parameters that closely matched
theirs. Our calculations were performed with the SIESTA den-
sity functional theory (DFT) code [24,25] using the PBE
exchange-correlation functional [26] and a Hubbard cor-
rection [27] Ueff = 4.0 eV for d electrons. Energy, force,
and stress tolerances were set to 10−6 eV, 10−6 eV/Å,
and 10−3 GPa, respectively. A k-point mesh of 30 × 30 × 1
(30 × 18 × 1) was utilized for FM and Néel AFM (zigzag
AFM and stripy AFM) unit cells (u.c.s); phonon disper-
sions were generated using a 5 × 5 × 1 (5 × 3 × 1) supercell
and a 6 × 6 × 1 k-point mesh. The out-of-plane lattice vec-
tor was set to c = (0, 0, 20) Å. Lattice stiffness (“force
constant”) tensors Ki j and elastic energies were computed
within the frozen-phonon approximation [28–31] (we used
±2.5 × 10−2 Å atomic displacements along the Cartesian
directions to calculate forces). Structural optimizations and
phonon calculations were performed with spin polarization.
Stiffness tensors were diagonalized for the FM and Néel AFM
structures [32]. Our energetics and structures match those ob-
tained using other DFT codes; see Supplemental Material for
details [33].
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FIG. 1. Magnetic forces on a 2D “solenoid lattice” under Ising
magnetism. (a) Parallel moments repel isotropically. (b) Antiparallel
moments attract isotropically. Other Ising textures create (c) elonga-
tion (compression) along x (y) or (d) compression (elongation) along
the x (y) direction.

Our code GROGU [34]—that maps Kohn-Sham Hamiltoni-
ans with noncollinear spin to classical Heisenberg models—
was used to find exchange and anisotropy tensors from the
magnetic force theorem [35]. There, energy changes induced
by small twists in the relative spin magnetization are related
to exchange tensors via perturbation theory [34,36,37]. The
Heisenberg model

HM =
∑

i< j

{eiJi je j + Di j · (ei × e j )} +
∑

i

eiAiei (1)

contains symmetric (Ji j) and Dzyaloshinskii-Moriya (Di j)
[38,39] exchange interactions between sites i and j, as well as
single-ion magnetic anisotropy (Ai). Spin momentum vectors
(Si) were normalized to 1 (ei).

To a first approximation, collinear pairwise magnetic in-
teractions between atoms i and j on an Ising 2D lattice are
described by this Hamiltonian: J (ri j ) Si,zS j,z, where J (ri j ) is
the exchange interaction between atoms i and j, separated by
vector ri j with ri j = |ri j |. The dependence of J (ri j ) with the
distance ri j between atoms i and j creates a magnetic force:

Fri j = −∇ri j J (ri j ) Si,z S j,z (2)

of alternating sign for parallel and antiparallel spin orienta-
tions, leading to opposite magnetostrictive effects. Assuming
spins are independent of the distance between magnetic
atoms, and for spins oriented ferromagnetically, a decrease
of J (ri j ) as the separation among two atoms increases leads
to an isotropic repulsive force of the parallel magnetic ions
[Fig. 1(a)]. Likewise, when spins are antiparallel, a decrease
of J (ri j ) as the separation ri j increases induces an isotropic
attraction [Fig. 1(b)].

Arrangements of Ising magnetic moments with lower sym-
metry distort the lattice anisotropically [18]: the magnetic
texture shown in Fig. 1(c) has opposite Ising orientations
along vertically separated zigzag lines, for a “zigzag AFM”
configuration. Since parallel magnetic moments repel and an-
tiparallel ones attract [Eq. (2)], a horizontal elongation and
a vertical compression must take hold on this magnetic con-
figuration. The configuration depicted on Fig. 1(d) (“stripy
AFM”) has alternating magnetic stripes with opposite Ising
orientation [20]; there, a horizontal compression and a vertical
elongation must take hold. The information in Fig. 1 holds
regardless of which structure is the magnetic ground state.

Table I contains the total energies per formula unit (f.u.),
layer groups [40], structural, and charge transfer information
of four CrSiTe3 ML magnetic Ising configurations; their total
energy increases in the following progression: Ezigzag AFM <

EFM < ENéel AFM < Estripy AFM in consistency with Sivadas
et al. [20]; Wyckoff positions are reported in Ref. [33]. The
NM structure was created by turning spin polarization off [18]
and it does not lead to a suitable reference. Indeed, similar to
Ref. [18], the NM ML is compressed by 1.376% with respect
to the FM one and still compressed 0.759% with respect to the
Néel AFM one: in other words, the NM structure is inconsis-
tent with the effect of magnetic forces on a reference lattice
depicted on Figs. 1(a) and 1(b), whereby the Néel AFM ML
ought to compress. Furthermore, there is a 3209 meV energy
difference between the NM lattice and the zigzag AFM one
and the charge transfers between for Cr and Te atoms on the
NM phase change on the leading decimal, as opposed to the
second or third decimal listed for all the other four magnetic
structures.

Houmes et al. [18] contributed anisotropic changes in
lattice parameters as a function of magnetic texturing for
MPS3 MLs, but neglected to explain the mechanics. As per
the discussion in the previous paragraph, their NM structure
does not lead to the proper elastic behavior of FM and Néel
Ising textures. A better reference structure is the average lat-
tice between FM and Néel configurations [away from which
isotropic distortions are drawn in Figs. 1(a) and 1(b)], for
which the difference in a is a meager ±0.312% (written
within parentheses in Table I). Consistent with Figs. 1(c) and
1(d), Table I indicates that the zigzag AFM lattice expands
horizontally by 0.404% and compresses by 0.394% vertically.
The stripy AFM lattice compresses by 0.448% horizontally
while expanding by 0.302% in the vertical direction.

Figure 2(a) shows the CrSiTe3 ML on its ground state
orthorhombic zigzag AFM configuration [primitive lattice
vectors are a = a(1, 0, 0) and b = b(0, 1, 0)]. Figure 2(b)
depicts the ML on its FM configuration [a = a(− 1

2 ,−
√

3
2 , 0)

and b = a(1, 0, 0)]. Additional details of atomic positions are
provided in Ref. [33]. In agreement with a Biot-Savart picture,
a bona fide lattice to calculate magnetoelastic distortions is
established now.

To explain the anisotropy in fundamental frequencies ex-
perimentally observed on similar (finite-size) magnets [18],
the vibrational spectrum of the four magnetic phases is dis-
played on Figs. 3(ai)–3(di). A lack of imaginary vibrational
frequencies implies that the four structures are stable. Fig-
ures 3(aii)–3(dii) display the speed of sound: the twofold
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TABLE I. Crystalline layer group [40], total energy difference (�E ) with respect to zigzag AFM configuration, changes on diagonal (ud )
and vertical (uv) distances between Cr atoms, and Voronoi charge transfers (�n)—a positive value implies the atom gains electrons—for
CrSiTe3 MLs in four Ising configurations. The last two columns display the NM and our reference structure.

Zigzag Néel Stripy NM Reference
Structure AFM FM AFM AFM (spin-unpolarized) (FM+Néel AFM)/2
Layer group c2/m p3̄1m p3̄1m c2/m c2/m p3̄1m

�E (meV/f.u.) 0.000 8.521 37.958 39.237 3.209×103

a (Å) 6.991 6.984 6.941 6.931 6.888 6.962
(+0.404%) (+0.312%) (−0.312%) (−0.448%) (−1.069%) (0.000%)

b (Å) 12.011 12.095 a
√

3
(−0.394%) (+0.302%)

ud (Å) +0.024 +0.013 −0.013 −0.021 −0.043 0.000
uv (Å) −0.049 +0.013 −0.013 +0.038 −0.043 0.000

�nCr (e−) −0.242 −0.247 −0.238 −0.242 −0.305
�nSi (e−) −0.305 −0.301 −0.306 −0.302 −0.308
�nTe (e−) +0.182 +0.183 +0.181 +0.181 +0.204

symmetric shape observed on the zigzag AFM and stripy
AFM MLs underpins anisotropic fundamental frequencies
[18]. The quadratic fitting parameter on Figs. 3(aiii)–3(diii)
is anisotropic for the zigzag AFM and stripy AFM configura-
tions as well.

The diagonalized stiffness between nearest Cr ions on the
FM (Néel AFM) ML are 0.341 (0.215) eV/Å2 for the longi-
tudinal (KL) mode, −0.053 (−0.045) eV/Å2 for the in-plane
transverse (KT,i) mode, and −0.167 (−0.186) eV/Å2 for the
out-of-plane transverse (KT,o) mode. Changes from an “aver-
age stiffness” are ±22.7%, ±8.5%, and ∓5.3% for KL, KT,i,
and KT,o, respectively. More details are available in Ref. [33].
The changes in stiffness between the FM and Néel MLs are
reliable indicators of the magnetization-dependent hardening
or softening of the lattice.
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FIG. 2. (a) Anisotropically distorted and (b) isotropically dis-
torted CrSiTe3 MLs. The distortions in (a) were magnified to better
understand reduced symmetries. See Ref. [33].

Having a valid reference lattice permits calculating the
elastic energy required to turn into the four magnetic struc-
tures away from the reference structure. Rectangular cells
with 20 atoms were used for the four magnetic phases for
direct comparison. Atomic displacements ui for each atom i
within a unit cell on a given magnetic phase onto the non-
magnetic average structure were calculated as row vectors and
u = (u1, u2, . . . , u20)T . In this calculation, the origin coin-
cides with the center of mass of both (reference and a given
magnetic) structures, making u and the lattice vectors of a
given magnetic phase interrelated. The elastic energy is a
quadratic form:

Eel = 1
2 uTKu, (3)
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TABLE II. Elastic deformation energies away from the reference
structure. Also listed are deformation energies using the NM struc-
ture and the Ising magnetic energies (meV/f.u.).

Zigzag AFM FM Néel AFM Stripy AFM

Eel 3.690 3.446 3.447 1.807
Em −25.260 4.590 0.810 14.910
Em + Eel −21.570 8.036 4.257 16.717
Eel,NM 109.572 120.007 124.990 138.050

where K is the Hessian used to obtain each of the phonon
dispersions in Fig. 3. Since the motion from the reference to
a magnetic structure is nondispersive (no sound is involved
in such distortion), the elastic energy was evaluated at �,
even though elastic interactions up to multiple neighbors were
considered and “folded” onto the unit cell using Bloch’s the-
orem. As seen in Table II, the elastic energy is no larger than
3.690 meV/f.u. In contrast, the elastic energy is overestimated
to be over 109 meV/f.u. when using the NM structure as
reference (last row on Table II). Magnetic parameters Ji j ,
Di j , and Ai j [Eq. (1)] were computed for the four magnetic
phases; J(r) remained significant even at distances of 12 Å
and the magnetic energy Em was estimated using Ising spins
and the magnetic exchange provided in Ref. [33]. The sum of
elastic and magnetic energies for the stripy AFM ML happens
to be 38.290 meV larger than that of the zigzag AFM ML,
consistent with Table I.

Elastic moduli were calculated for each magnetic phase
using rectangular cells. Tensile strain εi = +0.5% (i = x, y)
was applied along a and b to calculate C11, C22, and C12; a
shear strain of 0.9% was used to calculate C66. For p3̄1m and
c2/m structures, C16 = C26 = 0. Additionally, C11 = C22 and
C66 = (C11 − C12)/2 for FM and Néel AFM MLs, requiring
only a single strained-cell calculation to decouple the elastic
moduli. The results are placed in Table III. As expected, the
FM lattice is shown to be more rigid than AFM lattices. More
details, as well as comparable values calculated from group
velocities (as shown in Fig. 3) can be found in Ref. [33]. The
elastic energy can be similarly estimated by modifying the
elastic energy density formula:

uel = 1
2C11ε

2
x + 1

2C22ε
2
y + C12εxεy, (4)

by multiplying by the unperturbed cells’ area A = ab, such
that the elastic energy is equal to Uel = uel A. The results,
listed in Table III, are similar to those obtained using Eq. (3).

TABLE III. Elastic parameters (eV/Å) and elastic energies
(meV/f.u.).

Zigzag AFM FM Néel AFM Stripy AFM

C11 (eV/Å2) 3.153 3.211 2.928 3.063
C22 (eV/Å2) 2.753 C11 C11 3.084
C12 (eV/Å2) 0.647 0.689 0.584 0.569
C66 (eV/Å2) 1.191 1.261 1.172 1.207
Uel (meV) 3.162 3.188 2.871 3.073
Em + Uel (meV) −22.098 7.778 3.681 17.983
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FIG. 4. (a) Lattice constants a and b joining the zigzag AFM
and the FM phases. (b) Total energy and free energy paths: the free
energies cross under stress and indicate a magnetic quantum phase
transition at 0.96% vertical strain.

To end this work, we predict the amount of uniaxial strain
needed to switch the zigzag AFM ML onto the FM one
[41]. The strain needed to link the local minima of those two
magnetic phases is shown on Fig. 4(a) and the free energy is
defined as

F = E (i) − V (i)
∑

j=x,y

σ
(i)
j j ε j, (5)

where E (i) is the total energy for the zigzag AFM or for
the FM phase [(i): zzAFM or FM], V is the volume of the
computational cell, and σ j j is the remanent normal stresses on
the lattice. The total and free energies, relative to zigzag AFM
ground state, are plotted in Fig. 4(b). An 8.1 meV/f.u. barrier
is crossed with a strain of 0.96% and an AFM to FM quantum
phase transition is thus achieved under tensile strain.

In conclusion, we motivated and established a meaningful
reference lattice structure from which to calculate magnetoe-
lastic energies. We contributed space groups for four magnetic
phases, provided sound speeds to be tested experimentally
and phonon dispersion relations for four magnetic phases,
calculated changes in stiffness due to magnetism, estimated
stiffness parameters and elastic moduli, reported elastic and
magnetic energies, all to be found of the order of a few meV,
and discarded a NM (spin-unpolarized) lattice as a meaningful
reference for magnetoelasticity. Furthermore, we estimate an
AFM to FM quantum phase transition under 0.96% tensile
strain along the long lattice vector. The original insight of
a lattice of solenoids leads onto a transparent description of
magnetoelasticity as a perturbation from a sensible reference
lattice. This comprehensive study thus provides insightful vis-
tas into magnetoelastic couplings in 2D Ising magnets.
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