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Free electrons hopping on hyperbolic lattices embedded on a negatively curved space can foster (a) Dirac
liquids, (b) Fermi liquids, and (c) flat bands, respectively characterized by a vanishing, constant, and divergent
density of states near the half filling. From numerical self-consistent mean-field Hartree analyses, we show
that nearest-neighbor Coulomb and on-site Hubbard repulsions respectively give rise to charge-density-wave
and antiferromagnetic orders featuring staggered patterns of average electronic density and magnetization in
all these systems, when the hyperbolic tessellation is accomplished by periodic arrangements of even p-gons.
Both quantum orders dynamically open mass gaps near the charge neutrality point via spontaneous symmetry
breaking. Only on hyperbolic Dirac materials these orderings take place via quantum phase transitions (QPTs)
beyond critical interactions, which however decrease with increasing curvature, showcasing curvature-induced
weak-coupling QPTs. We present scaling of these masses with the corresponding interaction strengths.
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Introduction. From table salts to quantum materials,
crystals are ubiquitous in nature. They feature discrete trans-
lational, rotational, and reflection symmetries, manifesting
periodic arrangements of regular polygons with p arms (p-
gon). Yet another integer plays a pivotal role for the geometric
classification of crystals, the number of nearest-neighbor
(NN) sites q, connected to each vertex of a p-gon also known
as the coordination number. On a Euclidean plane, these
symmetry constraints lead to (p − 2)(q − 2) = 4, permitting
triangular (2p = q = 6), square (p = q = 4), and honeycomb
(p = 2q = 6) lattices. By contrast, hyperbolic tessellation on
a negatively curved space is accomplished when an inequality
(p − 2)(q − 2) > 4 is satisfied. Therefore, hyperbolic space
accommodates infinitely many periodic lattices, characterized
by the Schläfli symbol (p, q) [1–15].

Naturally, hyperbolic quantum materials harbor a variety
of electronic band structures [6–14]. They can be classified
in terms of the density of states (DOS) near half filling or
zero energy. A family of hyperbolic lattices (HLs) with even
integer p, constituting bipartite lattices with the NN sites be-
longing to A and B sublattices (Figs. 1 and 2), fosters (a) Dirac
liquids, (b) Fermi liquids, and (c) flat bands depending on p
and q, captured from a free-electron tight-binding model with
only the NN hopping between sites from A and B sublattices.
Respectively, they feature vanishing, constant, and divergent
DOS at zero energy [ρ(0)]. See Table I.

On such electronic HLs with an open boundary condition
(OBC), we numerically investigate the role of NN Coulomb
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(V ) and on-site Hubbard (U ) repulsions at half filling within
the mean-field or Hartree approximation. Respectively, they
support staggered patterns of electronic density and spin, two
quantum phases named the charge density wave (CDW) and
antiferromagnet (AFM). While infinitesimal V and U are suf-
ficient to nucleate them on HLs hosting Fermi liquids and
flat bands, due to the linearly vanishing DOS such orderings
take place at finite interactions via quantum phase transitions
(QPTs) in Dirac liquids. See Figs. 1 and 2. More intriguingly,
as the curvature is strengthened in Dirac materials (realized
for larger p with q = 3), the critical couplings for these two or-
derings decrease monotonically, indicating curvature-induced
weak-coupling QPTs therein. See Fig. 3.

Free fermions. A tight-binding model of free fermions,
hopping only between the NN sites of HLs, is given by

H0 = −
∑
〈i, j〉

ti jc
†
i c j, (1)

where c†
i (ci) is the fermionic creation (annihilation) operator

on the ith site and 〈· · · 〉 restricts the summation within the NN

TABLE I. Classification of electronic bipartite (even p) HLs in
terms of the DOS at zero energy ρ(0). The Dirac liquid, Fermi liquid,
and flat band are identified from vanishing, constant, and divergent
ρ(0), respectively.

p-gon Dirac liquid Fermi liquid Flat band

p/2 = odd q = 3 q = 4, 5 ×
p/2 = even × q = 3 q = 4, 5
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FIG. 1. CDW on HLs (shown on a Poincaré disk) resulting from the NN Coulomb repulsion (V ). Spatial variation of the average electronic
density measured from the half filling on (a) (10,3), (b) (12,3), and (c) (12,4) HLs for V = 0.8. Scaling of the CDW order parameter at the
center, constituted by the sites belonging to the zeroth generation or center p-gon of the system [16] (red) and averaged over the entire system
(blue) with V are shown in (d)–(f), respectively. DOS for free fermions (black) and with the CDW order for V = 1.0 (red) are shown in
(g)–(i), respectively, displaying the formation of a mass gap. Here, the results are presented for third generation (10,3), (12,3), and (12,4) HLs,
respectively containing 2880, 7680, and 13 080 sites [16]. Critical coupling for the CDW ordering in a (10,3) Dirac system is estimated to be
Vc ≈ 0.69 [inset of (d)], while in (12,3) Fermi liquids it follows the BCS scaling [inset of (e)].

sites [16]. The spin-independent NN hopping amplitude ti j is
assumed to be constant t , which we set to be unity. For sim-
plicity, we suppress the fermionic spin index. Inclusion of spin
only causes a mere doubling of H0. The Hamiltonian operator
(ĥ0) associated to H0 preserves (a) time-reversal symmetry
(T ), T ĥ0T −1 = +ĥ0 with T 2 = +1, (b) antiunitary particle-
hole symmetry (P), P ĥ0P−1 = −ĥ0 with P2 = +1, and (c)
unitary chiral or sublattice symmetry (C), Cĥ0C−1 = −ĥ0 with
C2 = 1. Hence, the system belongs to the class BDI [17,18].
A half-filled system keeps all the negative (positive) energy
states occupied (empty), and the average fermionic density
at each site is 1/2, manifesting the sublattice exchange sym-
metry. Then ρ(0) serves as a smoking gun probe to group
quantum hyperbolic materials into three broad classes, char-
acterized by vanishing (Dirac liquid), constant (Fermi liquid),
and divergent (flat band) ρ(0). See Table I. A slight deviation
from a perfect |E |-linear DOS in hyperbolic Dirac materi-
als very close to E = 0 results from finite-size effects. DOS
computed from hyperbolic band theory [8] shows a perfect
|E |-linear behavior near E = 0 [18].

NN repulsion. We now investigate the role of electronic
interactions in these three families of quantum fluids, first
considering spinless fermions and NN Coulomb repulsion (V )
among them, captured by the Hamiltonian

HV = H0 + V

2

∑
〈i, j〉

nin j − μN. (2)

Here, ni = c†
i ci is the fermionic density on site i, N is the total

number of spinless fermions in the half-filled system, and μ is
the chemical potential. Performing a Hartree decomposition
of the quartic term, we arrive at the effective single-particle
Hamiltonian [19–21]

HHar
V = H0 + V

∑
〈i, j〉

(〈nB,i〉nA, j + 〈nA,i〉nB, j ) − μN. (3)

Here, 〈nA〉 (〈nB〉) corresponds to the site-dependent self-
consistent average fermionic density on the sublattice A (B).
We measure them relative to the uniform density at half fill-
ing: 〈nA,i〉 = 1/2 + δA,i and 〈nB,i〉 = 1/2 − δB,i. Half filling is
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FIG. 2. On-site Hubbard repulsion (U ) mediated AFM ordering [Eq. (9)] on HLs (shown on a Poincaré disk). Top row: Self-consistent
solutions of magnetization at each site measured from its value at half -filling (zero), showing AFM order for U = 6.0. The results are presented
for third generation (10,3), and second generation (12,3) and (12,4) HLs, respectively containing 2880, 972, and 1320 sites. All the other details
are the same as in Fig. 1. The “center” is constituted by the sites from the zeroth generation or center p-gon of the system [16].

maintained by choosing μ = V/2 and ensuring that
∑

i(δA,i −
δB,i ) = 0. Positive definite quantities δA and δB yield the local
CDW order parameter

δCDW = 1
2 (δA + δB), (4)

where for a given A site, the B site is one of the two NN
sites belonging to the same generation of the hyperbolic
lattice [16]. We numerically compute δA and δB, and subse-
quently δCDW in the entire system with OBC for a wide range
of V . See Fig. 1.

When δA and δB, thus δCDW are finite in the entire system
(not necessarily uniform), it becomes an insulator at half
filling by spontaneously breaking the sublattice symmetry.
To appreciate this outcome, we define a two-component su-
perspinor �� = (cA, cB), where cA (cB) is an N-dimensional
spinor constituted by the annihilation operator on the sites
from A (B) sublattice. In this basis, the tight-binding Hamilto-
nian and the CDW order-parameter are respectively

ĥ0 =
(

0 t
t� 0

)
and ĥCDW =

(
� 0
0 −�

)
≡ ĥ�, (5)

where 0 is an N-dimensional null matrix, t is the in-
tersublattice hopping matrix, and ±� are N-dimensional

diagonal matrices, whose entries are the self-consistent solu-
tions of δA and δB at various sites of the system, respectively,
and � denotes transposition. As ĥ0 and ĥCDW anticommute
{ĥ0, ĥCDW} = 0, the CDW order acts as a mass for gapless
fermions. Its spontaneous nucleation causes insulation near
the charge neutrality point by opening a mass gap in the elec-
tronic spectra with vanishing [Fig. 1(g)], constant [Fig. 1(h)],
and divergent [Fig. 1(i)] DOS at zero energy.

As ρ(E ) ∼ |E | near the zero energy, condensation of the
CDW on hyperbolic Dirac systems occurs beyond a criti-
cal NN repulsion (Vc), slightly away from which δCDW ∼√

V − Vc for V > Vc, allowing us to estimate Vc by minimiz-
ing the finite-size effects [inset of Fig. 1(d)]. By contrast,
when ρ(0) is finite or divergent, the CDW order sets in
for infinitesimal V . In the former system, CDW follows the
BCS scaling δCDW ∼ exp(−κ/V ) due to a constant ρ(0),
further substantiated from the exponential fit between δCDW

and 1/V [inset of Fig. 1(e)]. On a (12,3) HL, the fitting
parameter κ = 2.36. In the Supplemental Material (SM) we
justify these scaling behaviors from the solutions of a gap
equation [18,21,22]. When ρ(0) is divergent, δCDW grows
considerably faster for weak V . Similar scaling holds on
HLs with different [p(even), q] [18]. With OBCs, δCDW is
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FIG. 3. Critical NN (Vc) and on-site (Uc) interactions for the
CDW and AFM orderings, respectively, on graphene or Euclidean
(p = 6) and hyperbolic (p = 10, 14, 18, 22) Dirac materials (q = 3),
displaying their reduction with increasing p or curvature, indicating
QPTs at weaker coupling on curved space. Inset: Uc/Vc in Dirac
materials, expected to be locked at 3 (dashed line) in the mean-field
limit.

not uniform, rather displaying spatial modulations in the sys-
tem [Figs. 1(a)–1(c)]. However, a uniform CDW order with
δA = δB = 0.5 develops in the entire system when V 	 1. In
this limit, spinless fermions occupy one sublattice of bipartite
HLs, while the other one is empty.

Hubbard model. The Hubbard Hamiltonian with on-site
repulsion (U ) among spinful fermions (electrons) reads

HU = U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
− μN, (6)

where ni,↑/↓ is the electronic density at site i with spin pro-
jection ↑ / ↓ in the z direction. The Hartree decomposition of
HU leads to

HHar
U =

∑
x=A,B

{(
〈nx,↑〉 − 1

2

)(
nx,↓ − 1

2

)

+
(

〈nx,↓〉 − 1

2

)(
nx,↑ − 1

2

)}
− μN, (7)

where 〈nA,σ 〉 = 1/2 + σδA,σ (r), 〈nB,σ 〉 = 1/2 − σδB,σ (r),
σ = +/− ≡↑ / ↓, and r measures the position of a
site [21,23]. Charge neutrality demands μ = 0 and∑

σ=±

∑
r

σ [δA,σ (r) − δB,σ (r)] = 0, (8)

which also keeps the average electronic density at each site
equal to one. Then, an AFM ground state with δA/B,↑/↓ > 0 is
characterized by the order parameter

δAFM = 1
2 (δA,↑ + δA,↓ + δB,↑ + δB,↓), (9)

where the B site is one of the two NN sites in the same
generation of the hyperbolic lattice for a given site belonging
to the A sublattice [16]. In noninteracting half-filled sys-
tems δAFM = 0. We follow the same numerical procedure to

self-consistently compute δAFM everywhere in the system, out-
lined in detail for the CDW order. The results are summarized
in Fig. 2.

Inside the AFM phase, each site develops a finite
magnetization, pointing in the opposite directions on two
complementary sublattices. Consequently, the net magneti-
zation in the system is zero. The AFM order also develops
a mass gap near the half filling, which can be appreciated
in the following way. For spinful fermions, the tight-binding
Hamiltonian ĥspin

0 = σ0 ⊗ ĥ0 and AFM order ĥAFM = σ3 ⊗
ĥ� anticommute, {ĥspin

0 , ĥAFM} = 0 [Eq. (5)]. Two-component
Pauli matrices {σμ} operate on the spin indices. Hence, the
AFM order also acts as a mass for gapless fermions and
its nucleation causes insulation at half filling. Scaling of the
AFM order and its spatial variations are qualitatively similar
to the ones for CDW. For instance, critical on-site repulsion
for AFM order is Uc = 1.68 on (10,3) and the BCS fitting pa-
rameter κ = 3.54 on (12,3) HLs, respectively. And on (12,4)
HL the AFM develops rapidly for weak U .

Weak-coupling QPT. The critical couplings for CDW and
AFM orders on hyperbolic Dirac materials (q = 3) decrease
monotonically with increasing p or the curvature, compared to
the honeycomb lattice, harboring Dirac fermions on Euclidean
flat land (Fig. 3), where Vc ≈ 0.75 [19,24] and Uc ≈ 2.22 [25],
which we also reproduce. It strongly indicates curvature-
induced QPTs at weaker coupling for Dirac fermions on
curved space. Within the mean-field approximation Uc/Vc is
expected to be 3, as the NN repulsion is operative between
the fermionic densities on three pairs of NN sites, while the
Hubbard repulsion is on site. On hyperbolic lattices with
OBC although Uc/Vc ≈ 2.4 remains approximately constant,
it is smaller than 3 [Fig. 3 (inset)], possibly due to a rapidly
increasing large number of sites at the boundary of the system
with only two NN sites, increasing Vc.

Summary and discussion. From numerical Hartree self-
consistent analyses, we show that NN Coulomb and on-site
Hubbard repulsions respectively support CDW and AFM or-
ders on half-filled bipartite HLs. While in Dirac systems such
orderings take place through a QPT at finite interactions, they
nucleate even for infinitesimal V and U when the DOS at half
filling is either finite or divergent. The Fock term for the NN
interaction 〈c†

i c j〉 renormalizes the NN hopping amplitude,
leaving the system gapless. As such any other decomposition
of these interactions yields only gapless states, which are
energetically inferior to the fully and isotropic gapped CDW
and AFM states at zero temperature (no competition with
entropy). From (a) the generation dependence of the local
CDW and AFM orders on HLs with different system sizes,
and (b) local DOS at its various generations, we show that
the dynamic symmetry breaking takes place everywhere in
the system and the entire system then becomes a correlated
insulator [18]. From numerical solutions of the Dyson equa-
tion [26], we show that mean-field solutions for the CDW are
stable against Gaussian fluctuations around it [18], which can
be generalized for the amplitude mode of the AFM order,
leaving aside its two gapless Goldstone modes. Due to a
genuine two-dimensional (2D) nature of the HLs, in which
the ratio of edge to bulk sites reaches a finite number [27],
the Goldstone modes in the AFM order do not destroy any
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long-range order at zero temperature. Due to the two-
dimensional nature of the hyperbolic lattices, the gravitational
anomaly is absent therein and it does not impede our out-
comes [28]. Also, on hyperbolic Dirac materials the critical
interactions for these two orders decrease with increasing
curvature or p. These predictions can be further tested from
quantum Monte Carlo simulations, accounting for quantum
fluctuations, as shown for Euclidean Dirac systems (graphene)
with on-site [29,30] and NN [31,32] repulsions. The univer-
sality class of the QPTs to CDW and AFM phases cab be
captured by Gross-Neveu [33] or Nambu-Jona-Lasinio [34]
models for dynamic mass generation on curved space [35], en-
dowing a unique opportunity to test the predictions of curved
space quantum field theory directly from HL-based numerical
investigations. We note that the application of strong magnetic
fields on hyperbolic Dirac materials by virtue of generating a
finite ρ(0) causes insulation in the half-filled system through
CDW and AFM orderings even for infinitesimal V and U ,
respectively [36]. In the future, we will search for other exotic
correlated quantum phases on HLs, among which topologi-
cal Mott insulators and superconductors are the fascinating
ones.

Designer electronic materials [37–41] and cold atomic se-
tups are promising platforms where our predicted quantum
phases can be observed experimentally. A curved designer
material can be engineered by growing its substrate (typically
Cu) on another material with a different thermal expansion
coefficient. When such a heterostructure is cooled down, the
Cu substrate gets curved, which then can be decorated by
the sites of desired HLs. With tunable hopping amplitudes
t , the ratios V/t and U/t can be adjusted on hyperbolic de-
signer quantum materials to trigger various quantum orders.
In cold atomic setups, desired hyperbolic tessellations can be
achieved by suitable arrangements of laser traps. In such sys-
tems, at least on-site Hubbard repulsion can be tuned to realize
AFM order, as recently demonstrated on various Euclidean
lattices [42–45].
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