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A quantitative understanding of the microscopic mechanisms responsible for damping in van der Waals
nanomechanical resonators remains elusive. In this work, we investigate van der Waals magnets, where the
thermal expansion coefficient exhibits an anomaly at the magnetic phase transition due to magnetoelastic
coupling. Thermal expansion mediates the coupling between mechanical strain and heat flow and determines
the strength of thermoelastic damping (TED). Consequently, variations in the thermal expansion coefficient
are reflected directly in TED, motivating our focus on this mechanism. We extend existing TED models to
incorporate anisotropic thermal conduction, a critical property of van der Waals materials. By combining the
thermodynamic properties of the resonator material with the anisotropic TED model, we examine dissipation
as a function of temperature. Our findings reveal a pronounced impact of the phase transition on dissipation,
along with transitions between distinct dissipation regimes controlled by geometry and the relative contributions
of in-plane and out-of-plane thermal conductivity. These regimes are characterized by the resonant interplay
between strain and in-plane or through-plane heat propagation. To validate our theory, we compare it to
experimental data of the temperature-dependent mechanical resonances of FePS3 resonators.
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I. INTRODUCTION

The discovery of van der Waals (vdW) magnets has opened
new avenues for studying magnetism in the two-dimensional
limit [1,2]. Since this discovery, rapid advancements have
identified new vdW magnetic materials, such as MPX3 (with
M = Fe, Co, Mn and X = S, Se) [3], they are candi-
dates for exploring unusual phenomena in 2D magnetism
[4,5], and realized potential applications like magnetic tunnel
junctions (MTJs) [6]. An emergent area of research within
vdW magnets focuses on the coupling between vibrational
and magnetic degrees of freedom, known as magnetostriction
[7–11]. Magnetostriction is a well-studied phenomenon in
solid-state physics which affects the damping of spin waves,
is crucial for spintronics [12], and offers potential for efficient
and coherent transduction between the optical and microwave
domains, a requirement for the development of quantum net-
works [13–15].

One promising approach to study magnetostriction in vdW
magnets involves (nano)mechanical resonators. Here, changes
in the magnetization in suspended vdW magnets induce varia-
tions in tension, which in turn alter the resonant frequency. In
general, changes in the resonant frequency are small. How-
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ever, they become more pronounced in two specific cases.
First, when the material undergoes a spin reorientation phe-
nomenon due to an external magnetic field, such as a spin flip,
the resonant frequency jumps abruptly [7]. Second, when the
material undergoes a magnetic phase transition, magnetostric-
tion induces a big change in the thermal expansion due to the
emergence of magnetic order and provides a clear shift in the
resonant frequency of the mechanical resonator, which can
be used to detect the transition temperature [16]. Addition-
ally, in-plane anisotropy in such nanomechanical resonators
reveals information about the temperature-dependent order
parameter, providing insight into the nature of magnetism in
the studied material [8].

Besides changes in resonance frequency, the system’s dis-
sipation, quantified by the quality factor, plays a crucial role.
Theoretically investigating dissipation mechanisms in these
devices is complex, since the isolation of contributions from
competing sources is challenging. Considerable effort has
been made to uncover these mechanisms due to the insight
they provide into the resonator’s physics and their importance
in applications [17,18].

Numerous dissipation mechanisms affect nanomechanical
resonators, such as friction with a medium or clamping losses.
Here, we will focus on mechanisms related to the magnetism
in the system. We identify two, thermoelastic damping and
magnetoelastic damping. The latter is a direct coupling be-
tween the mechanical and spin wave modes. We neglect this
effect due to the large mismatch between the frequencies of
the mechanical vibrations (typically in the MHz regime) and
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those of spin waves (typically in the GHz-THz regime), which
makes the coupling small. It is worth noting that although we
neglect this effect in the present work it can become impor-
tant for nonlinear damping close to the phase transition [19].
Additionally, such interaction has been studied in a different
context, most notably in yttrium iron garnet (YIG), where
coherent excitations enable a stronger coupling between the
modes [20].

On the other hand, thermoelastic damping considers the
coupling between mechanical and thermal modes, which de-
pending on the size of the system can be resonant as we will
show later. In addition, experiments in FePS3 [16] and CrSBr
[9] have hinted that thermoelastic damping (TED) is a reason-
able candidate for dissipation around the phase transition in
such systems. However, a quantitative analysis of how TED
is affected by such a magnetic phase transition is still lacking.
Other dissipation mechanisms are listed with more detail in
Table IV in Appendix A.

Thermoelastic damping relies on the coupling between the
strain and temperature fields in the resonator mediated by ther-
mal expansion. The time-dependent inhomogeneous strain
field generates thermal gradients across the resonator, leading
to irreversible heat flow. Modeling TED has been essential
for the development of ultra-high quality factor resonators,
with significant progress made since the first description by
Zener [21], and later detailed for one-dimensional systems
by Lifshitz and Roukes [22]. Both works focused exclusively
on transverse thermal conduction, as the thermal gradient
mostly relaxes along that direction due to the high aspect ratio
of the resonators. Prabhakar and Vanglatore [23] quantified
the error of this approximation and extended the model to
include two-dimensional heat conduction. This extension has
been further explored [24–26], but to our knowledge only for
materials with isotropic thermal conductivity κ . In contrast,
vdW materials are known to be highly anisotropic, with a
ratio of in-plane (‖) to out-of-plane (⊥) thermal conductivity,
κ , reaching up to 900 in MoS2 in the presence of stacking
defects [27]. For FePS3, this ratio κ‖/κ⊥ has been reported
to be 3.2 at room temperature, with κ‖ = 2.7 W/Km and
κ⊥ = 0.85 W/Km, and for MnPS3 the ratio is 5.7 [28]. Based
on this important property of van der Waals materials, we
develop an anisotropic two-dimensional thermal conduction
model for TED and investigate to what extent the in-plane
versus out-of-plane anisotropy affects dissipation compared to
typical nanomechanical resonators made with isotropic mate-
rials like Si or SiN.

In this paper, we propose a model to predict the effect of
thermoelastic damping in suspended anisotropic vdW mag-
nets. First, we describe the system in detail in Sec. II, where
we choose the material and geometry to use as an example.
Then, in Sec. III A we extend the existing TED models to
incorporate anisotropic thermal conduction, which is ubiqui-
tous in vdW materials. The results of Sec. III A apply to all
anisotropic 2D materials. For the rest of the paper, we concen-
trate on magnetic materials that undergo a phase transition. In
Sec. IV, we study the thermodynamical properties of the ma-
terial and show how they are affected by magnetostriction. In
Sec. V, we use the model to predict the temperature and radius
dependence and compare it with experimental measurements.
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FIG. 1. Description of the system. (a) A van der Waals magnet
is suspended over a cavity. The 2D magnetic material forms a thin
plate of thickness h and radius a, which can oscillate freely in the
out-of-plane direction. The system is in vacuum, and the temperature
is controlled by thermalizing the substrate. As the temperature is
changed, a uniform radial tension, N, is exerted on the suspended ma-
terial. (b) Schematic representation of thermoelastic damping. The
bending generates compressed regions (heated, in red) and expanded
regions (cooled, in blue), such that heat currents propagate through
the material giving rise to mechanical energy losses. Two models for
heat transport are represented: an approximation considering only
through-plane heat conduction (Z model) and one including in-plane
heat conduction in the radial direction (RZ model).

Finally, in Sec. VI, we discuss the results and come to some
conclusions.

II. SYSTEM DESCRIPTION

The system under study is described in Fig. 1. It consists
of a thin magnet suspended over a cavity etched in a substrate
(e.g., Si/SiO2), as depicted in panel (a), to which it is clamped
via van der Waals forces. We choose a plate with circular
geometry of radius a and thickness h � a. The suspended
material can then oscillate freely in the out-of-plane direction.
As the temperature changes, a tension N develops in the sus-
pended material due to the mismatch in the thermal expansion
coefficients of the suspended material and the substrate.

Due to thermoelasticity, when different areas of the sus-
pended material are compressed (expanded), they heat up
(cool down) locally. The temperature gradients between these
regions lead to heat currents which cause TED. This is de-
picted in Fig. 1(b) with blue areas showing cold (expanded)
regions and red areas showing hot (compressed) regions.
Typically an assumption is made that only the temperature
gradients across the small thickness contribute, due to the
high aspect ratio between thickness (tens of nanometers) and
lateral size (several micrometers) in typical nanomechanical
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resonators [21,22]. We call the model considering only the
through-plane thermal conduction the Z model and the model
where we drop that assumption the RZ model, in which in-
plane heat conduction is also considered. In panel (b), we
represent these models with different thermal conduction con-
ditions that are discussed throughout this paper. We highlight
that the only anisotropy considered in this work is related
to the thermal conductivity, and for instance, the system is
regarded as isotropic in terms of its elastic properties.

III. THERMOELASTIC DAMPING WITH ANISOTROPIC
THERMAL CONDUCTIVITY

Thermoelastic damping is described by the dissipation fac-
tor Q−1 which is defined to be the ratio of energy loss per
cycle to the energy stored in the oscillator [22],

Q−1 = 1

2π

energy lost per cycle

energy stored
, (1)

where Q is the mechanical quality factor of the resonator.
To obtain the dissipation in the system, first, we model the
thermoelastic interaction in the system in Sec. III A and we
use the obtained results to compute the energy lost per cycle
and stored energy in Sec. III B.

A. Model of thermoelasticity

To model the system we assume that the suspended ma-
terial behaves as a clamped thin plate with isotropic elastic
properties. The equation of motion for the displacement of the
middle surface w of a thin plate with uniform radial tension
N , is given by [29]

D∇4w − N∇2w + ρh
∂2w

∂t2
= 0. (2)

Here, D = Eh3/(12(1 − ν2)) is the bending rigidity—which
depends on the Young’s modulus, E , and the Poisson ratio
ν—and ρ is the mass density of the material. We consider
harmonic oscillations of the plate such that w = W (r, θ )eiωt

with ω the frequency of the mechanical oscillation and W
describing the mode shape. It is described in cylindrical co-
ordinates, with r, θ and t , the radial, angular, and temporal
coordinates. The solution for the fundamental mode of Eq. (2),
and its associated resonant frequency, are given by [24]

W (r) = J0

(
δ−r

a

)
− J0(δ−)

I0(δ+)
I0

(
δ+r

a

)
,

ω =
√

(δ2− + δ2+)2 − (a2N/D)2

2a2

√
D

ρh
. (3)

Here, J0 and I0 are the zeroth order Bessel and modified Bessel
function of first kind, and δ− and δ+ are two parameters. These
parameters modulate the weight between J0 and I0 for the
plate’s shape depending on the tension N and are found by
simultaneously solving two equations shown in Eq. (B1) of
Appendix B.

The radial tension is given by the mismatch of the thermal
expansion of the membrane and the substrate as the tempera-
ture of the system is changed. Thus the tension in the plate is

given by

N (T ) = Eh

1 − ν

∫ T

T0

(αmembrane − αsubstrate )dT, (4)

where T0 stands for room temperature, and α is the isother-
mal thermal expansion coefficient. In a real system, the total
tension has additional contributions, such as pretension, N0,
induced in fabrication, and the thermally generated tension:
Ntot(T ) = N0 + N (T ).

To compute the temperature field generated by the motion
described by w(r, t ), we first need to find the strain profile
in the plate. The strain components can be divided into two
different contributions, namely, the strain induced by ten-
sion (εN ) and the oscillating flexural strain caused by the
vibrations (εflex):

εi(r, z, t ) = εflex
i (r, z) · eiωt + εN

i , i = (r, θ, z). (5)

These components are directly related to the mid-plane de-
flection, W , such that the different contributions take the
following forms [29]:

εflex
r (r, z) = −z

∂2W

∂r2
, εflex

θ (r, z) = − z

r

∂W

∂r
,

εN
r (r, z) = εN

θ (r, z) = (1 − ν)N

Eh
. (6)

The shear term in the r, θ direction is zero for axisymmetric
modes, and the z components of the strain are zero throughout
the whole plate due to Kirchhoff’s assumption, valid for small
deflections of thin plates [30].

We obtain the generated temperature distribution in the
plate via the one-way coupled thermoelastic equation [23]

ρcV
∂T

∂t
+ βTET

∂ε

∂t
= κ∇2T, (7)

where cV is the specific heat, βTE the thermoelastic coupling
given by βTE = αTE/(1 − 2ν) and ε = δV/V stands for the
volumetric strain; here ε = εr + εφ + εz in cylindrical coor-
dinates. Considering that the oscillations of the system are
small and that thermoelastic coupling is weak [31], we can
linearize Eq. (7). To do so we consider a small temperature
field, �, such that the temperature in the system is given by
T (r, t ) = T0 + �(r, t ) where T0 is the environment tempera-
ture and � stands for the temperature field within the material.
Then, Eq. (7) reads

ρcV
∂�

∂t
+ βTE(T0 + �)

∂ε

∂t
= κ∇2�, (8)

in which we can neglect the second-order term βTE�∂ε
∂t . In-

cluding explicitly different in-plane and out-of-plane thermal
conductivities, it reads

ρcV
∂�

∂t
=

[
κ⊥

∂2

∂z2
+ κ‖

(
∂2

∂r2
+ 1

r

∂

∂r

)]
� − βTET0

∂ε

∂t
.

(9)

Using � = �0eiωt , considering no thermal exchange at the
boundaries ∂�0/∂z|z=±h/2 = 0 and assuming perfect thermal
contact at the edges �0(r, z)|r=a = 0, the solution to the tem-
perature field is given by

�0(r, z) =
∞∑

n=1

J0

(
jn
0

a
r

)
cn

b2
n

[
1

bn

sinh(bnz)

cosh(bnh/2)
− z

]
. (10)
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FIG. 2. Strain and temperature profiles (arbitrary units). (a) Vol-
umetric strain profile of a plate. (b) Temperature profile according
to the Z model, with the volumetric strain profile in a) as a heat
source. (c) Temperature profile according to the RZ model, with the
volumetric strain profile in a) as a heat source. The extra boundary
condition significantly changes the heat mode shape at the edges,
as seen in the zoomed-in cuts. Additionally, the central regions are
more extended with respect to the Z model, and the temperature
deviation is reduced to, approximately, half. (d) Individual modes
of the temperature profile in the RZ model. In the RZ model,
the temperature profile is an infinite sum of modes dependent on
the zeros of J0, jm

0 . The second mode has the most amplitude due
to the big overlap with the strain profile shown in (a).

Here, jn
0 are the zeros of J0, and cn and bn are complex-valued

parameters shown in Appendix C.
Figure 2 shows the strain profile and temperature distribu-

tions calculated considering only κ⊥ (Z model) and both κ⊥
and κ‖ (RZ model). The calculation corresponds to a 45 nm
thick, 5 µm radius plate with an amplitude of 1 nm, and
material parameters corresponding to FePS3 at 200 K. The
temperature profile in the Z model [panel (b)] follows exactly
the strain profile [panel (a)], with the strongest temperature
gradients at the edges of the membrane. In contrast, in the
RZ model, due to the addition of the perfect thermal contact

boundary condition at r = a, the temperature gradients there
are smaller than in the center of the membrane. The shape
of the temperature gradient does not follow the strain profile
anymore, as it expands in the in-plane direction due to the
in-plane thermal conduction. In panel (d), we can see the first
four thermal modes contributing to the temperature profile.

Beyond modifying the resulting strength of thermoelastic
damping, this mismatch between the strain and the temper-
ature profiles could lead to intermode coupling. As higher
modes of the temperature profile become occupied, they in-
teract with higher order mechanical modes due to the nonzero
overlap of temperature and strain. Contrarily, this is not al-
lowed in the Z model, where the lack of conductivity in the
plane prevents other thermal modes from being excited. In
this paper, we concentrate on the first mode, but it would be
interesting to explicitly address this effect in future research.

B. Calculation of the dissipation

Once this complex-valued temperature field is known, the
dissipated energy per cycle can be computed by evaluating the
work done by the external stress on the total generated strain
[32], which is given by

�E =
∮

εdσ =
∫

V
dV

∫ 2π/ω

0
ε

dσ

dt
dt . (11)

The real part of the mean displacement-induced stress σ

for an isotropic plate reads

σ = E

1 − ν
ε = E

1 − ν
(εflex cos(ωt ) + εN ), (12)

and its time derivative

dσ

dt
= ω

E

1 − ν
εflex sin(ωt ). (13)

The real part of the total strain generated by the stress also
has the thermal contribution generated in the thermoelastic
process coming from the temperature field computed before

εtot = (εflex + Re{εth}) cos(ωt) + Im{εth} sin(ωt) + εN,

(14)

where the volumetric thermal strain is εth = 3αT�0. The
prefactor 3 comes from the relation between volumetric
and longitudinal thermal expansion coefficients. Introducing
Eqs. (13) and (14) into Eq. (11), we observe that due to the
time integral the only nonzero component is the one propor-
tional to sin2(ωt ):

�E = −Eω

∫
V

dV
∫ 2π/ω

0
εflex Im{εth} sin2(ωt)dt

= −3πEαT

∫
V

dV εflex Im{�0}. (15)

This is a common result for anelastic relaxation processes
[33], where the energy loss comes from the interaction be-
tween the flexural strain and the out-of-phase component of
the thermal strain. The heat generated in phase with the strain
gets reabsorbed by the strain field. The energy loss per cycle,
�E is found by inserting Eqs. (3), (6), and (10) into Eq. (15)—
which involves finding the imaginary part and performing the

245409-4



THERMOELASTIC DAMPING ACROSS THE PHASE … PHYSICAL REVIEW B 111, 245409 (2025)

integral over the volume,

�E = − 4ωπ2E2α2
TT0

κ (1 − 2ν)(1 − ν)a2

∞∑
n=1

Sn, (16)

where Sn can be expressed as

Sn = Bnh3/12 − Cn

Dn
(In)2. (17)

The factors Bn, Cn, and Dn contain information about the
interplay of the mechanical frequency and the ratio of out-of-
plane and in-plane thermal conductivities, and In is a geometry
factor dependent on the mode shape W. These factors are
defined in Appendix D.

The total stored energy can be computed from the elastic
potential energy at maximum deflection

Etot = 1

2
ω2ρ

∫
V

W 2dV, (18)

and the mode shape of Eq. (3), which results in

Etot = 1

2
πhρω2a2

[
J2

0 (δ−)

(
2 − 4δ+I1(δ+)

(δ2− + δ2+)I0(δ+)
− I2

1 (δ+)

I2
0 (δ+)

)

− 4δ−J0(δ−)J1(δ−)

δ2− + δ2+
+ J2

1 (δ−)

]
. (19)

The thermoelastic damping factor for this oscillation system
then becomes

Q−1 = 1

2π

�E

Etot
∝ �E = Eα2

T (1 + ν)

ρcv (1 − 2ν)
. (20)

The proportionality constant �E is a dimensionless quantity
called the relaxation strength. It is the same constant found
by Refs. [21,22] except for the factor related to Poisson’s
ratio, which appears due to the circular geometry, and is
identical to that found by Ref. [24]. The rest of the con-
tribution to Q−1 is different from all previous work due to
anisotropic thermal conduction and is given by the interplay
of mechanical frequency and thermal relaxation of the tem-
perature modes, as well as geometry factors and the tension
contribution.

As seen before, the factor Q−1/�E is complicated as it en-
tails the sum of the interactions between all the thermal modes
and the strain generated in the plate for its fundamental mode.
However, as we will see in the Results section, it is simple
to understand qualitatively in terms of a resonance behavior
between the mechanical time constant, τmech = 2π/ω, and the
thermal relaxation time constants in the z and r directions
are [34]

τz = h2

π

ρcV

κ⊥
, τr = a2

μ2

ρcv

κ‖
. (21)

The factor μ2 is related to the geometry and is taken to be
10, corresponding to a circular geometry [34]. If min(τz, τr ) =
τmech the dissipation will be the highest because temperature
variations happen at the same timescale as the strain varia-
tions, such that thermal expansion forces efficiently contribute
to damping. However, if τz, τr � τmech, the heat gradients
relax without dissipating energy. Similarly, if τz, τr � τmech

the heat gradients do not have time to equilibrate, there is

TABLE I. Elastic and thermodynamic parameters of bulk FePS3

[16,37]. See Appendix E for more information.

ρ E ν γE βT v̄ θD

3375 103 0.304 1.798 1.14 × 10−11 3823 236
kg m−3 GPa Pa−1 m s−1 K

no heat flow, such that no time-dependent thermal damping
forces occur and dissipation is low. Finally, if τr = τmech, but
τz � τmech, or vice versa, the thermal gradients relax quickly
via the fastest route without dissipating energy. We stress that
we only qualitatively discuss the relaxation times to provide
insight and an intuitive picture, all calculations of the dissipa-
tion in this work come from Eqs. (16)–(20).

IV. THERMAL PROPERTIES
WITH MAGNETIC PHASE TRANSITION

So far we have only considered the elastic and thermal
degrees of freedom, in this section we include the magnetic
ones. To quantitatively explain the thermal damping of the
system around the phase transition, we develop a scheme
of merging the magnetic contribution into the thermoelastic
dynamics by generalizing the traditional Grüneisen relation
to include the magnetoelastic interaction [35,36]. Equipped
with this tool we predict the temperature dependence for the
linear expansion coefficient over a wide range of temperatures
across the magnetic phase transition.

Before focusing on the effect of magnetoelasticity, we first
review the thermal and elastic properties of FePS3. For that,
we take experimental measurements from the literature and
match them with a simple model accounting for the contribu-
tions of phonons, magnons, and the phase transition shown in
Appendix E.

The material parameters are shown in Tables I and II, and
the fitting parameters in Table III. In Fig. 3(a), we show, in
red, the calculated specific heat that comes from the elastic
component in blue [Appendix E, Eq. (E5)] and magnetic
components in green [Appendix E, Eqs. (E6)–(E12)], which
is compared to experimental data in black [37]. The magnetic
contribution has the magnon and Ising contributions, which
show an anomaly at the magnetic phase transition temper-
ature, TN = 118 K. The results, with no fit parameters, are
in good agreement with experimental measurements in the
bulk [37]. The thermal conductivity results are shown in panel
(b), showing disagreement between the model and experi-
ments in the low-temperature regime [38]. We attribute this
to the assumption of a temperature-independent lifetime of
the quasiparticles. The best agreement is found for a phonon
lifetime of 67 ps and a magnon lifetime of 100 ns, which
corresponds to the dark blue curve. According to the literature,

TABLE II. Magnetic parameters of FePS3 [40]. See Appendix E
for more information.

J TN g γ

2 118 K 2.15 gγe/2
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TABLE III. Extracted magnetic parameters. See Appendix E for
more information.

γM HE HA

4γE 69μ0 138μ0

the value for the phonon lifetime is reasonable, but the one for
magnons is several orders of magnitude higher than expected
[39], this is probably due to the unrealistic assumption of
temperature-independent lifetimes.

Now we turn our attention to calculating the thermal
expansion coefficient, where we account for the effects of
magnetostriction. We include the magnetoelastic coupling in
the total free energy and analyze the hybrid system with mag-
netic, elastic, and thermal dynamics [41]. The magnetoelastic
coupling energy in general has the form [42,43]

FMEC = −Nsnc
∂J

∂V
〈Si · S j〉 ε, (22)

where Ns is the number of spins per unit volume, nc is the
coordination number, J the exchange constant and ε is the
volumetric strain. The two-spin correlation function 〈Si · S j〉
indicates the average over space and time for any two nearest
neighboring spins. By adding this contribution to the free
energy, we express the total free energy, considering both the

0 100 200
T (K)

(a)

cM

cel

cV
Exp

Exp
ph=67ps

T

(b)

FIG. 3. Thermodynamic properties of FePS3. (a) Specific heat
cV computed as a sum of the elastic (cel) and magnetic (cM) con-
tributions, respectively in blue and green. It is compared with
experimental measurements from Ref. [37] (black circles). (b) Ther-
mal conductivity as a function of temperature for several magnon
lifetimes and phonon lifetime τph = 67 ps, see Eqs. (E7) and (E8). It
is compared with experimental data in bulk from [38] (black circles).

thermal and magnetoelastic coupling,

F = F0 − KT αE�ε + 1

2
KT (ε)2

+ G
∑

i j

(
εi j − 1

3
εδi j

)2

− Nsnc
∂J

∂V
〈Si · S j〉 ε, (23)

where εi j is the strain tensor, G is the shear modulus and KT

the bulk modulus. The strain in equilibrium can be derived
from ∂F/∂ε = 0, for a material with isotropic elastic proper-
ties, leading to the combined effect on volume changes due to
both thermal expansion and magnetostriction

ε = αE� − βT Nsnc
J

V
γM 〈Si · S j〉 , (24)

where βT is the compressibility (1/KT ) and γM is the magnetic
Grüneisen constant describing the volume dependence on the
exchange coupling strength. It can be written in the form

γM = −V

J

∂J

∂V
. (25)

The part of volume changes due to the magnetostriction is
proportional to the two-spin correlation function which can
be changed by the variation of either temperature or external
field. The temperature increase leads to the decay of spin
correlation and results in magnetostriction expansion. Since
the magnetic energy derived from the Heisenberg Hamilto-
nian H = −2J

∑
Si · S j that is EM = −NsncJ 〈Si · S j〉, it is

reasonable to define the magnetic specific heat as [41]

cM = −Ns

V
zJ

∂ 〈Si · S j〉
∂T

. (26)

As a result, the deviation of local spin coherence due
to the small change of local temperature, �, is cM� =
−NszJ 〈Si · S j〉 and the total volume change can be succinctly
expressed in the form

ε = αE� + βT γMcM� = (αE + αM )� ≡ αT �, (27)

taking into account that � is small enough that αE and αM

do not change from T to T0. By merging the magnetoelas-
tic coupling into the free energy, we find how the magnetic
contribution gets included in the elastic thermal expansion
coefficient αT = αE + αM .

The magnetic Grüneisen relation αM = βT ργMcM is simi-
lar to the elastic counterpart, αE = βT γEρcE , where cE is the
specific heat due to the phonon bath. Therefore the overall
thermal expansion coefficient for the hybrid system can be
written into the form

αT = βT ρ(γE cE + γMcM ) = βT ργ cV (28)

with αT and cV = cE + cM the thermal observables which can
be measured and predicted based on this theory. The effective
Grüneisen parameter γ is defined as

γ = γE cE + γMcM

cE + cM
. (29)

The elastic Grüneisen parameter can be calculated from the
Poisson ratio for isotropic materials: γE = 1.5(1 + ν)/(2 −
3ν) [44], and the magnetic Grüneisen parameter can be
extracted from fitting the measured thermal expansion coef-
ficient as shown in Fig. 4. The effective Grüneisen parameter
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FIG. 4. (a) Temperature dependence for the effective Grüneisen
parameter γ derived from Eq. (29) and using values from Tables I–
III. The elastic Grüneisen parameter is γE = 1.798 and the magnetic
parameter γM = 4γE , fitting the experimental data shown in (b). The
dashed line at γ = γE shows that the effective Grüneisen parameter
is not affected by the magnetic interaction both in the low and
high-temperature regimes. (b) Thermal expansion coefficient derived
from Eq. (28), with the magnetic Grüneisen parameter as a fitting
parameter compared with experimental data from Ref. [16] (black
circles).

has a strong temperature dependence as shown in Fig. 4 for
FePS3. This strong temperature dependence is not caused by

variations in the elastic and magnetic Grüneisen parameters
but is mainly a result of the temperature dependence of the
magnetic and elastic specific heats. The effective Grüneisen
parameter shows an anomaly at the phase transition and settles
at the value of the elastic parameter, γE , far from the transition
temperature, TN .

This is of importance for TED as the relaxation strength,
�E , is proportional to α2

T/cV such that

�E ∝ α2
T

cV
= (βT ργ̄ cV )2

cV
= (βTρ)2γ̄ 2cV . (30)

As we have seen, both γ̄ and cV have strong temperature
dependencies, which will be reflected in Q−1.

V. RESULTS

Having computed all the thermal properties we can
now evaluate the dissipation from Eqs. (16)–(20), where
the temperature dependence comes into play through the
temperature-dependent thermodynamic properties discussed
previously. Figure 5(a) shows the temperature and radius
dependence of the inverse quality factor. It is plotted as a
surface on a linear scale and color-coded on a logarithmic
scale. The thickness of the flake is 45 nm, the specific heat
and thermal expansion coefficient are those calculated and
plotted in Figs. 3 and 4, and the temperature dependence of
the thermal conductivity is the one measured in bulk by A.
Halmund [38], scaled to fit the in-plane and through-plane
values measured by Ref. [28]. The scaling is done such
that κi(T ) = κbulk(T ) κi (RT )

κbulk(RT ) , with i = r, z and RT room
temperature. In this way, despite the lack of experimental
measurements of the T -dependent κ‖ and κ⊥, we can include
the anisotropy, under the assumption that the scattering mech-
anisms evolve with temperature in the same way for both
directions.

FIG. 5. Q−1
TED for the Z and RZ models, radius dependence. (a) Temperature and radius dependence of the predicted dissipation for a 45 nm

thick flake. (b) Cross sections of the surface in (a) at radii 0.5, 1, and 3 µm indicated, respectively, by red, blue, and green ¤. (c) Cross sections of
the surface in (a) at temperatures of 90, 130, and 200 K indicated, respectively, by green, blue, and red ∗. The main features are the peak at
the Néel temperature in the constant radius traces and the Debye peaks in the constant temperature traces, where the thermal time constant
matches the resonance frequency of the plate.

245409-7



ALVARO BERMEJILLO-SECO et al. PHYSICAL REVIEW B 111, 245409 (2025)

In panel (b), we focus on three temperature-dependent
traces with radii of 0.5, 1, and 3 µm. All three traces show
the same feature: a peak in dissipation at the phase transition.
This peak coincides with the anomaly at the phase transition
of the thermal expansion coefficient, which appears squared
in the strength of the dissipated energy in Eq. (16). On top
of that, there is another effect due to the interplay of the
thermal time constant and the mechanical resonant frequency
explained previously in Sec. III A. The out-of-plane thermal
relaxation time τz also shows an anomaly at the phase transi-
tion, which brings it closer to τmech, thus closer to resonance,
enhancing the dissipation. A qualitative understanding of this
effect can be obtained by looking at some typical numbers.
Due to the small thickness of the van der Waals materials
used in nanomechanical resonators (tens of nanometers), τz

is very small, of the order of tens of picoseconds at low tem-
peratures and reaching hundreds of picoseconds at the phase
transition and higher temperatures. This is quite far from τmech

which is hundreds of nanoseconds for a 5 µm drum. Even
if the resonance condition is not met, at the phase transition
the time constants are the closest and thus the dissipation is
the most efficient, resulting in the peak at the Néel temperature
of FePS3.

Panel (c) shows the radius dependence of three traces at
constant temperatures of 200, 130, and 90 K. They show
the characteristic Lorentzian shape of a Debye peak, widely
discussed in literature [21,22,32]. As the radius of the plate
changes, its resonance frequency scales as 1/a2 in the ab-
sence of tension, such that at some point it becomes resonant
because τz is radius independent. This peak in dissipation
behavior is what we see in each of the traces of panel (c). For
each of the temperatures, τz has a different value, and thus, the
peak in dissipation condition is met at different radii.

We can also compare the predicted temperature-dependent
dissipation with previously reported measurements in this
system [16]. In Fig. 6(a), we show the calculations according
to the Z model, the RZ model with an isotropic thermal
conductivity corresponding to the bulk measured value, and
that adapted to take into account the reported anisotropy
in FePS3. All the models predict a similar temperature
dependence with a sharp peak at the phase transition and a
slightly increasing tendency above the Néel temperature. If we
compare it with the experimental data shown with black dots,
we notice two things: (1) the peak in the experimental data is
much broader, with higher dissipation in the antiferromagnetic
state, and (2) the models predict values for the dissipation
at, and above the phase transition, 10 times smaller than the
measured values. This is depicted by scaling the modeled
curves by a factor of 10.

If instead we take into account a thermal conductivity mod-
eled with a constant lifetime for both phonons and magnons
and include a proportionality factor that reduces its value, the
magnitude of the dissipation changes appreciably as presented
in panel (b). The calculated dissipation curves correspond to
thermal conductivities reduced by factors of 100, 200, and
300, respectively. These curves present a better agreement
with the experimental data, both in shape and magnitude.

Finally, we analyze the consequences of varying the in-
plane versus out-of-plane thermal conductivities for TED.

exp
(a)

(b)

x10

x1

Z model
RZ iso
RZ anis

Z model
κcal/100
κcal/200
κcal/300

FIG. 6. (a) Predictions of the dissipation according to the Z and
RZ models with the experimental values of bulk thermal conduc-
tivity. They are compared with experimental data from Ref. [16].
None of the models reproduce quantitatively the experimental data.
Qualitatively, both models show a peak at the Néel temperature,
but none predict the rise of the dissipation above 150 K seen in
the experiment. (b) Comparison of the Z model according to the
calculated thermal conductivity divided by factors of 100, 200,
and 300.

We expect that varying κ⊥ and κ‖ will only modify τz and
τr respectively, leaving τmech unchanged. We will then see
all the situations described at the end of Sec. III A, namely,
the different resonances between thermal relaxation rates and
the mechanical mode, and regions where heat gradients relax
without dissipating energy. Figure 7 shows the calculations for
the dissipation of a drum with a thickness of 40 nm and 5 µm
radius at a fixed temperature of 200 K. This drum has f =
15.9 MHz or τmech = 63 ns. For values of τr � τmech (low
κ‖), we can observe the peak dissipation condition when κ⊥ is
such that τz = τmech indicated with a white arrow. Similarly,
for values of τz � τmech (low κ⊥), we can observe the peak
dissipation condition when κ‖ is such that τr = τmech indicated
with black arrows. In this case, we notice that there are two
peak dissipation conditions, which cannot be explained by
what has been discussed so far. This fact hints that there
are two thermal relaxation times in the r-direction. When
τz � τmech or τr � τmech (high κ⊥ or κ‖), heat relaxes quickly
and there is little dissipation. Contrarily, when τz, τr � τmech

(low κ⊥ and κ‖) heat does not have time to relax and the
dissipation is also low.

A possible hypothesis for having two in-plane thermal
relaxation times is related to the fact that the strain generates
heat in localized regions of the drum, namely, at the center
and the edges (Fig. 2). The time it takes for these different
localized heated regions to relax into the substrate is different,
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FIG. 7. Dissipation as a function of in-plane and out-of-plane
thermal conductivities. The drum geometry is 5 µm radius and 40 nm
thickness and the thermal properties are taken at T = 200 K. The
white and black arrows point at values of κ⊥ or κ‖ where the dis-
sipation peaks due to a match of resonance frequency and thermal
relaxation time.

as they travel different lengths through the plate. We can
thus reformulate the in-plane thermal time constant as
τ ∗
‖ = (λa)2

µ2
ρcv

κ‖
, where λ is a parameter that renormalizes the

distance traveled by the heat. If λ = 1 it describes heat trav-
eling from the center of the plate, and if we set λ 
 0.1, it
corresponds to the heat generated in the edges traveling a
shorter length of the drum. In this last case, we get a thermal
time constant 100 times faster. Thus these two constants will
match τmech for different values of κ‖, 2 orders of magnitude
apart from each other. That is the distance we observe between
the black arrows in Fig. 7. A way to validate this hypothesis
could be computing the dissipation following the same proce-
dure as in this work but for higher order modes, such that for
every extra antinode in the strain we should see an extra peak
in the dissipation as a function of κ‖.

VI. DISCUSSION AND OUTLOOK

In this work, we developed a new model for thermoelas-
tic damping that incorporates anisotropic thermal conduction,
specifically suitable for van der Waals materials. This model
improves upon traditional Zener and Lifshitz-Roukes mod-
els by accounting for the anisotropic heat flow typical in
materials with high in-plane to out-of-plane conductivity ra-
tios. We focused on the fundamental vibrational mode of
nanomechanical resonators made of FePS3, using classi-
cal thermodynamics to compute key thermal properties like
specific heat, thermal conductivity, and thermal expansion
coefficient. Incorporating the effective Grüneisen parameter
allowed us to capture the effects of magnetostriction, cru-
cial for understanding dissipation near the magnetic phase
transition. Our results reveal temperature- and size-dependent
dissipation behavior, showing both the Debye peak and an
anomaly at the phase transition, which aligns well with
experimental observations. However, quantitative agreement

with experimental data was only achieved when the out-of-
plane thermal conductivities were reduced by two orders of
magnitude compared to bulk measurements, indicating a need
for better characterization of thermal conductivity in sus-
pended resonators.

The TED model we propose is based on diffusive phonon
and magnon propagation and remains valid as long as the
device dimensions exceed the mean free path of heat-carrying
quasiparticles. At 100 K, the mean free path for phonons is
about 4.5 nm, well below the minimum drum size analyzed
in this work, ensuring the model’s applicability. While we
relied on bulk measurements or theoretical predictions for
thermal conductivity, future studies could benefit from di-
rect, temperature-dependent measurements in nanoscale vdW
devices, especially for in-plane and out-of-plane thermal con-
ductivities. Extending the current analysis to higher-order
vibrational modes would allow for a more comprehensive
exploration of TED, potentially uncovering additional thermal
relaxation times. Reducing the resonator radius to access GHz
frequency ranges could be of interest for some applications
[15], and it would still fall within the model’s validity range.
However, such reductions involve much smaller radii than
those studied in this work, where clamping losses, which scale
linearly with decreasing radius [32], could become dominant.
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APPENDIX A: DISSIPATION MECHANISMS

In Table IV, we show a list of possible dissipation mech-
anisms that could be relevant in a magnetic nano-mechanical
resonator. This list was elaborated to pinpoint the most rele-
vant mechanisms participating in our system of study.

APPENDIX B: TEMPERATURE DEPENDENT
RESONANT FREQUENCY

As the temperature of the system is varied, tension is
exerted on the suspended material which shifts the resonant
frequency. The change in resonance frequency has a direct
effect on the dissipation and is thus a key component for its
calculation.

We saw in Eq. (4) how to calculate the temperature-
dependent tension due to the mismatch in the thermal expan-
sion coefficient of the suspended material and the substrate.
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TABLE IV. Summary of dissipation mechanisms for nanomechanical resonators with magnetic insulating membranes. For each mecha-
nism, we include a description, the presence of temperature dependence, a comment on the relevance, and references.

Dissipation mechanism Description T dep Relevance References

Medium losses Interaction with surrounding
liquid or gas.

Y Possible interaction with trapped
gasses.

[17]

Ohmic loss Interactions between free
electrons in the membrane
and charges in the substrate or
gate electrode.

Y Improbable due to low
conductance of the used
materials.

[46]

Acoustic radiation Transfer of mechanical energy to
the anchoring substrate.

N It is not expected to participate in
any relevant features.

[17,18]

Adhesion loss Loss at the edges by formation
and destruction of bonds
between the membrane and
the substrate.

N Unknown. Out of the scope of
this project. Low for
graphene.

[46]

Interlayer friction Friction between layers due to
weak interlayer vdW
interaction.

Y Unknown. Out of the scope of
this project. Low for
graphene.

[47,48]

Defects Modelled as two level systems,
defects can form structures
that can be excited and store
energy.

Y Improbable. It is only
predominant for amorphous
insulators.

[18,46,49]

Thermoelastic damping Local temperature gradients due
to compression and expansion
lead to irreversible heat flow.

Y Important. Observed in
references.

[16,21,22]

Magnetoelastic damping Magnons become a heat
reservoir via interaction of
phonons and spins.

Y Unknown. [50,51]

Phonon-phonon coupling (Akhiezer) Coupling of the resonant mode
and the phonon bath, or with
higher order modes.

Y Unknown. Out of the scope of
this project.

[18]

Photon-phonon coupling It allows energy transfer from the
membrane to optical modes
(cavity or free-space).

Y Improbable due to low coupling
and off-resonance.

[52]

Many-body electron phenomena Kondo effect, quantum Hall
effect, Fabry-Perot
interference, and
Aharonov-Bohm oscillations.

Y None. Our devices are not in
such quantum regimes.

[18]

Casimir force It opens a channel for energy
transmission from membrane
to substrate.

Y None due to the lack of
conductivity and geometry
factors.

[18]

The total tension is then Ntot(T ) = N0 + N (T ), with N0 a
uniform constant pretension that we keep as a fitting param-
eter when comparing to experimental results. Knowing the
tension and material parameters, we only need to compute
the parameters δ+ and δ− to obtain the temperature-dependent
resonant frequency. To obtain these parameters, we simulta-
neously solve the following equations [24],

δ−
J1(δ−)

J0(δ−)
+ δ+

I1(δ+)

I0(δ+)
= 0, and δ2

+ − δ2
− = a2N

D
. (B1)

Using the computed thermal expansion coefficient for FePS3

(Fig. 4), and that of Si from [53], we calculate the tension
shown in Fig. 8(a). And following the explained procedure we
obtain the resonant frequency, shown in Fig. 8(b), with fitting
parameter N0 = 6.85 N/m. In this case, the parameter N0

also includes the acquired tension from room temperature to
200 K, in addition to the pretension existing in the suspended
material at room temperature.

APPENDIX C: SOLVING THE THERMOELASTIC
EQUATION

To obtain the temperature field we solve Eq. (9) by substi-
tuting ε from Eq. (6) and � = �0(r, z)eiωt ,

[
κ⊥

∂2

∂z2
+ ∇2 + κ‖

(
∂2

∂r2
+ 1

r

∂

∂r

)]
�0

= iω(ρcV�0 − βTET0z∇2W ). (C1)
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FIG. 8. (a) Radial tension accumulated in the plate due to thermal
expansion. In red the model considers only the expansion of the
FePS3 plate, and in blue it corrects for the expansion of the substrate.
(b) Resonance frequency as a function of the temperature of a 45 nm
thick drum fitted according to the plate model with temperature-
dependent tension shown in (a). The model assumes a constant
pretension N0 as a fit parameter. The black dots are experimental
data from M. Šiškins et al. [16].

We assume full thermal contact at the edges: �0(r, z)|r=a = 0.
To find a solution, we expand in terms of eigenfunctions of the
radial part

�0(r, z) =
∞∑

n=1

J0

(
jn
0

a
r

)
Zn(z), (C2)

with Zn the unknown solution of the z component. Substitut-
ing into Eq. (C1), we get

κ‖
∞∑

n=1

(
jn
0

a

)2

J0

(
jn
0

a
r

)
Zn(z) + κ⊥J0

(
jn
0

a
r

)
Z ′′

n

= iω

(
ρcVJ0

(
jn
0

a
r

)
Zn − βTEz∇2W

)
. (C3)

Putting all terms with the Bessel function together, and divid-
ing by κ⊥, it reads

∞∑
n=1

[
Z ′′

n −
(

κ‖
κ⊥

(
jn
0

a

)2

+ iω
ρcV

κ⊥

)
Zn

]
J0

(
jn
0

a
r

)

= −iωz
βTE∇2W

κ⊥
. (C4)

Multiplying both sides by rJ0( jn
0 r/a) and integrating over r

from 0 to a, we get

Z ′′
n (z) − b2

nZn(z) = cnz, (C5)

with coefficients

b2
n = κ‖

κ⊥

(
jn
0

a

)2

+ iω
ρcV

κ⊥
,

cn = −2iω

a2
[
J1

(
jn
0

)]2

T0βTE

κ⊥

∫ a

0
∇2W J0

(
jn
0

a
r

)
rdr. (C6)

The solution to Eq. (C5) is

Zn(z) = cn

b3
n

sinh(bnz)

cosh(bnh/2)
− cn

b2
n

z. (C7)

This solution can be readily introduced in Eq. (C2) to obtain
the temperature field.

APPENDIX D: CALCULATION OF THE DISSIPATED
ENERGY

To express analytically the dissipated energy in terms of
material properties and thermodynamical quantities, it is use-
ful to introduce the following variables:

x2
n = κ‖

κ⊥

(
jn
0

a

)2

, χ2 = ω
ρcV

κ⊥
, b2

n = (ln + imn)2, l2
n = xn + √

x2
n + χ2

2
, and m2

n = −xn + √
x2

n + χ2

2
. (D1)

Taking that into account, the terms in Eq. (17) can be written as

Bn = xn[sinh2(lnh/2) + cos2(mnh/2)],

Cn =
(

2xn −
√

x2
n + χ2

){(
1 + xn√

x2
n + χ2

)[
h

2

(
sinh2

(
ln

h

2

)
+ cos2

(
mn

h

2

))
+ mn sin(mnh)

]
− xn

x2
n + χ2

sinh(lnh)

}

+
(

2xn +
√

x2
n + χ2

){(
1 − xn√

x2
n + χ2

)[
h

2

(
sinh2

(
ln

h

2

)
+ cos2

(
mn

h

2

))
+ ln sin(mnh)

]
+ xn

x2
n + χ2

sin(mnh)

}
,

Dn = (
x2

n + χ2
)3/2

[sinh2(lnh/2) + cos2(mnh/2)]J2
1

(
jn
0

)
,

In =
∫ a

0
∇2W J0(xnr)rdr = (δ −2 +δ2

+)
(

jn
0

)2
J0(δ−)J1

(
jn
0

)
[
δ2− − (

jn
0

)2][
δ+ − (

jn
0

)2] . (D2)
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APPENDIX E: THERMAL PROPERTIES
WITH MAGNETIC PHASE TRANSITION

In this Appendix, we analyze in detail the thermal prop-
erties of FePS3. We develop a simple scheme to understand
the temperature dependence of the specific heat and thermal
conductivity.

In general, below the phase transition, the material’s spe-
cific heat, cV , comes from the thermal excitation of the bosons.
For ordinary insulators, these are typically phonons and they
include magnons for ferromagnetic and antiferromagnetic
materials. If the temperature is homogeneous then the Bose-
Einstein density of excited bosons is uniformly distributed
across the material. However, the existence of a temperature
field leads to the excess number of quasiparticles staying
out of equilibrium and then transport according to the tem-
perature gradient. If the environment temperature is close to
the magnetic phase transition, the coherence of precession
between the neighboring spins breaks down and an additional
contribution to the specific heat should be considered. The
decay of magnetization M as the material heats leads to an
accompanying decrease of the effective exchange field HE and
anisotropy field HA in magnon’s dispersion equation [54]

ωk = γμ0

√
H2

A + 2HE HA + H2
E sin2(πk/km), (E1)

in which γ = gμB/h̄ is the gyromagnetic ratio and μ0 is
the vacuum magnetic constant. The Brillouin zone is limited
according to a spherical energy boundary condition, N = ∑

k,
from which km = 2

√
π/a, with a the magnetic lattice constant

taken to be 15.94 Å. This energy renormalization due to the
magnetization decrease should also be incorporated into the
calculation of the magnon’s specific heat and thermal conduc-
tivity [55,56]. Note that the use of Eq. (E1) is a simplification
as we do not account for the specific lattice of FePS3, nor its
zigzag magnetic ordering.

The specific heat due to bosons is given by

cV = 1

V

∂

∂T

∑
k

h̄ωkn̄k, n̄k = 1

eβ h̄ωk − 1
. (E2)

where V is the system volume, n̄k is the Bose-Einstein’s
equilibrium amount of bosons of energy h̄ωk and β = 1/kBT .
The thermal conductivity is defined as the proportionality co-
efficient for heat flux in response to the temperature gradient,
q = −κ∇T . From kinetic transfer theory, this thermal flux can
be calculated by [57]

qT = − 1

V

∂

∂T

∑
k

h̄ωkn̄kτk(∇T · vk)vk, (E3)

in which an isotropic κ can be extracted if the particle velocity
vk is homogeneous to each direction. However, if the velocity
of the particles has a directional bias, then κ depends on
the orientation and thermal transfer shows anisotropy as we
encounter in this paper. We do not investigate or model the
sources of the anisotropy and focus on the effect it has on the
damping.

The elastic specific heat and thermal conductivity can be
derived from the low-lying phonon modes with dispersion
relation ωk = v̄k, where v̄ is the Debye averaged velocity

[58],

v̄ = 4πkBθD

h̄

( π

6n

)1/3
, (E4)

with θD the Debye temperature and n the density of atoms.
Applying the dispersion relation, a straightforward derivation
leads to the Debye specific heat cD,

cD(T ) = h̄2

2π

3

kBT 2

∫ kD

0
dkkw2

k

eβ h̄ωk

(eβ h̄ωk − 1)2
. (E5)

Here we assumed a two-dimensional system with still three
degrees of freedom for the vibrations. The boundary of the
Brillouin zone over which it is integrated can be defined by
the Debye temperature as kD = kBθD/h̄v̄. Eq. (E5) provides
the specific heat per unit surface, with units in SI J/(K m2).
However, to compare with experimental measurements it is
useful to express it in J/(mol K) for which the specific heat
is simply divided by the density of states nD = k2

D/4π and
multiplied by the Avogadro constant. In Ref. [37], they sug-
gest the elastic specific heat is best modeled by a mix of
Debye and Einstein parts with temperatures TD = 236 K and
TE = 523 K and a combination ratio of 0.54 such that cel =
0.54cD + (1 − 0.54)cE which gives a reasonable estimate for
a wide range of temperatures.

From the magnon dispersion relation (E1), the specific heat
due to thermal magnons is

cmag(T ) = h̄2

π

1

kBT 2

∫ km

0
dkkω2

k

eβ h̄ωk

(eβ h̄ωk − 1)2
, (E6)

where two magnon polarizations have been included, due to
the antiferromagnetic nature of the magnons.

To compute the Debye thermal conductivity, κD, starting
from Eq. (E3) and integrating over the available momentum it
follows that

κD(T ) = h̄2

4π

3v̄2

kBT 2

∫ kD

0
dkkω2

kτk
eβ h̄ωk

(eβ h̄ωk − 1)2
. (E7)

The magnon contribution to the thermal conductivity can be
extracted from the heat flux equation by taking the velocity of
magnons from the dispersion relation, vk = ∇kωk. It results in

κmag =
(

γμ0HE

8km

)2
π

kBT 2

×
∫ km

0
dk

kω2
kτk sin2(kπ/km)

sin2(kπ/2km) + η2 + 2η

eβ h̄ωk

(eβ h̄ωk − 1)2
.

(E8)

It is worth mentioning that the specific heat and thermal con-
ductivity as computed here correspond to 2D systems. If one
wants to compare the results with measurements of bulk mate-
rial, the correct quantities are c3D = c2D/h and κ3D = κ2D/h,
with h the thickness of the sample.

As the environment temperature approaches the phase tran-
sition regime, the magnetic specific heat is dominated by
energy absorption for breaking the spin coherence and due to
the nature of second-order phase transition, the anomaly of the
specific heat near TN should be expected [59]. The derivation
for the anomaly depends on the detailed lattice structure.
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Since FePS3 is an Ising-type 2D antiferromagnet of the hon-
eycomb (hexagon) lattice [60–63], the partition function dues
to its magnetic exchange interaction reads [58,64,65]

1

N
ln Z (T ) = ln 2 + 1

(4π )2

∫ 2π

0

∫ 2π

0
dθ1dθ2 ln

× (cosh3 K + 1 − Pθ sinh2 K ), (E9)

where K = 2J ′/kBT is the normalized temperature, in
which J ′ = 2JS2 is the effective exchange coupling. Pθ =
P(θ1, θ2) = cos θ1 + cos θ2 + cos(θ1 + θ2) is the integrand
parameter. The critical point is reached when sinh K = √

3,
from where the critical temperature is

TN = 2J ′

kB ln(2 + √
3)

. (E10)

One can evaluate the effective coupling energy J ′ based on the
measured Neel temperature. From the partition function, the

Ising specific heat is readily calculated

cIs = − d

dT

(
d

dβ
Z (T )

)
, (E11)

such that

cIs(T ) = kBK2

(4π )2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

×
{

6 sinh 2K sinh K − 4 cosh 2K (2Pθ − 3 cosh K )

cosh3 K + 1 − sinh2 K Pθ

− sinh2 2K (2Pθ − 3 cosh 2K )2

(cosh3 K + 1 − sinh2 K Pθ )2

}
. (E12)

The total magnetic specific heat is the sum of the magnon and
Ising contributions, cM = cmag + cIs. Following this scheme,
the thermodynamic properties of FePS3 are computed and
shown in Fig. 3.
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