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Detection of chiral spin fluctuations driven by frustration in Mott insulators

Kuan H. Hsu ,1,2 Chunjing Jia,3 Emily Z. Zhang ,2,4 Daniel Jost ,2 Brian Moritz,2

Rudi Hackl ,5,6 and Thomas P. Devereaux1,2,4,*

1Department of Materials Science and Engineering, Stanford University, California 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,

2575 Sand Hill Road, Menlo Park, California 94025, USA
3Department of Physics, University of Florida, Florida 32611, USA

4Geballe Laboratory for Advanced Materials, Stanford University, California 94305, USA
5School of Natural Sciences, Technische Universität München, 85748 Garching, Germany

6IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany

(Received 13 February 2025; accepted 30 April 2025; published 12 May 2025)

Topologically ordered states, such as chiral spin liquids, have been proposed as candidates that host fraction
alized excitations. However, detecting chiral character or proximity to these nontrivial states remains a challenge.
Resonant Raman scattering can be a powerful tool for detecting chiral fluctuations, as the A2g channel probes
excitations with broken time-reversal symmetry and local chiral order. Here, we use exact diagonalization to
characterize the resonant A2g channel, alongside two-magnon scattering in B1g and Eg channels, for the Hubbard
model on lattices with increasing levels of geometric spin frustration, where tuning the incident energy near
the Mott gap reveals strong chiral spin excitation intensity. Increased spin frustration in the Mott insulator
results in an overall softening of the Raman A2g response, indicating a tendency toward low energy chiral-chiral
fluctuations in Mott insulators with magnetic frustration and proximity to chiral spin liquid states that can
potentially be tuned by external perturbations.
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I. INTRODUCTION

In strongly correlated systems, frustration can give rise to
exotic phases such as quantum spin liquids (QSL), a highly
entangled state that lacks magnetic ordering even down to
zero temperature [1,2]. A subclass of QSLs, known as chi-
ral spin liquids (CSL), can host fractionalized quasiparticle
excitations with non-Abelian statistics, giving rise to unusual
phenomena such as the fractional quantum Hall effect [3], and
unconventional superconductivity [4,5]. These states, which
break both parity and time-reversal symmetry, may occur
even in systems whose parent Hamiltonians are time-reversal
invariant (Kalmeyer-Laughlin type). For example, theoretical
and numerical studies suggest that such CSLs may be realized
in geometrically frustrated Hubbard-type models [6–11].

Experimentally detecting CSLs remains challenging, as
there are no direct probes for their fractionalized excitations.
However, one can measure the scalar spin chirality (SSC),
offering an avenue for detecting unusual spin textures and
time-reversal symmetry breaking fluctuations in frustrated
magnets. For instance, a nonvanishing SSC in a spin liquid
phase can be a useful indicator to determine whether or not
a QSL is chiral. In magnetically ordered ground states from
SU (2) symmetric systems, signatures of low lying excited
states with chiral character can also serve as an indication
that a CSL state may lie in close proximity of the ground
state. Such states could potentially be stabilized with external
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perturbations. Nevertheless, detecting SSC both experimen-
tally and theoretically have been less explored as a tool for
identifying chiral character in putative QSL states.

To date, several experimental techniques for detecting
SSC in magnetic systems have been proposed. Shastry and
Shraiman first pointed out that fluctuations of the SSC opera-
tor couple to the A2g channel in Raman scattering on a square
lattice geometry [12,13]. Resonant inelastic scattering (RIXS)
in the pre-edge region, with a dipole excitation of a core elec-
tron to an off-site valence orbital, has also been proposed as a
means to measure SSC [14]; however, the use of high-energy
x-rays limits the experimental resolution. Neutron scattering
also may be able to detect SSC if the chiral spin fluctuations
couple to Sz fluctuations [15].

Even with these proposals, Raman spectroscopy remains
the only realized experimental technique that directly de-
tects chiral spin fluctuations. As an optical probe, Raman
scattering also allows for smaller sample sizes, making it
easily accessible for single-crystal and thin-film experiments
[16]. Although limited to providing information for very
small momentum transfer, Raman scattering serves as a well-
established technique for analyzing dynamical properties by
selectively utilizing photon polarization to project out the
symmetry group of excited states. Measurements of the A2g

channel have been made in insulating cuprates [17–19], a
kagome spin liquid candidate [20], and a heavy fermion
superconductor [21].

In this paper, we study the Raman scattering cross-
section of the two-dimensional Hubbard model at half-filling.
We calculate the resonant Raman cross-section directly by
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FIG. 1. Real space spin-spin correlation Sr (a)–(d) and static
spin structure factor Szz

q (e)–(h) in the strong coupling limit: Unit
cells in the first row for the (a) 4 × 4 square lattice, (b) 3 × 3
honeycomb lattice, (c) 12 site (12C [24]) triangular lattice, and
(d) 2 × 2 kagome lattice are shown with the real space spin-spin
correlation Sr plotted as colored dots for points inside the unit
cell. The corresponding first (extended) Brillouin zones are plotted
in the second row for each lattice type using solid (dashed) blue
lines. The intensity of the static spin structure factor Szz

q is plotted
for the accessible k-points in each panel. The spin structure factor
calculated using either the Hubbard model with U = 40t or the
Heisenberg model provide consistent results.

using exact diagonalization (ED) and perturbation theory
for the light-matter interaction (Fermi’s Golden Rule) [22].
Specifically, we focus on Raman scattering in the A2g channel,
which probes excited states that break time-reversal sym-
metry. The dynamical properties of the Hubbard model are
modified by tuning the frustration with different lattice ge-
ometries, with increasing spin frustration from the square
and honeycomb lattices to the triangular and kagome lattices.
Frustration is also introduced by decreasing the strength of
Coulomb interaction strength in the Hubbard model, rather
than relying exclusively on a down-folded, spin-only Heisen-
berg picture.

We first study the static spin correlations, showing that the
static spin structure factor becomes increasingly incoherent
with greater geometric frustration and weaker electron corre-
lation. We derive and calculate the Raman A2g response in the
Heisenberg limit as a chiral-chiral correlator, which smoothly
connects to the Raman A2g cross-section calculated for the
Hubbard model in the off-resonance regime. We observe a
softening of the Raman response in both the two-magnon
and the A2g scattering channel when the ground state appears
to be in close proximity to a nascent chiral spin state for
highly frustrated lattice geometries, which may be stabilized
by external fields [23]. When the incident energy is tuned
near resonance, we show that the Raman A2g cross section is
significantly enhanced and can serve as a reliable tool to detect
chiral character in potential CSL candidates.

II. RESULTS

A. Spin structure factor

We first consider the spin structure factor Sq for the
Hubbard model on four lattices in Fig. 1. The real space spin-
spin correlations in Sr for the square lattice show that spins
are aligned antiferromagnetically, with the corresponding

FIG. 2. Changes in the ground states on the (a) triangular and
(b) kagome lattice, characterized by real space spin-spin correlation
Sr, and static spin structure factor Szz

q : Sharp changes in the static spin
structure factor at the K and M points in the (extended for kagome
lattice) Brillouin zone near ground state transitions are shown across
various values of U . The shaded area specifies the region where the
ground state transition occurs. Real-space spin-spin correlations are
displayed for (c) the triangular lattice in the NMI state at U = 11t ,
and (d) the 120◦ Néel state at U = 12t , with their respective static
spin structure factors in panels (g) and (h). For the kagome lattice,
real-space spin-spin correlations for the q = 0 state at U = 21t and
the

√
3 × √

3 state at U = 22t are shown in (e) and (f), with corre-
sponding static spin structure factors in (i) and (j).

momentum-space Sq strongly peaked at the M-point [(π, π )]
in the Brillouin zone [see Figs. 1(a) and 1(e)]. Here, antiferro-
magnetism persists for all values of U .

Similar to the square lattice, the honeycomb lattice is bipar-
tite and possesses an antiferromagnetic ground state at large
enough U . Here, we evaluate the Hubbard model on a 3 × 3
honeycomb lattice (18 total sites). In the strong coupling limit,
the spins are aligned antiferromagnetically with Sq peaked at
the K-point of the extended Brillouin zone [see Figs. 1(b) and
1(f)]. The strength of Sq gradually decreases with decreasing
U , but the antiferromagnetic ordering persists until U = 8t
with no change in ground state characteristics.

Geometric frustration becomes significant on triangular
lattices, where spin liquid phases have been proposed to be po-
tential ground state candidates for frustrated magnets [25,26]
and organic Mott insulators [27–29]. For a triangular lattice
Hubbard model in the strong coupling limit, frustration leads
to a 120◦ Néel state with long-range order and Sq peaked at the
K-point of the Brillouin zone [see Figs. 1(c) and 1(g)], albeit
less strongly than that of the honeycomb lattice.

Stronger charge fluctuations in the intermediate coupling
regime can lead to an instability in the ground state where the
long-range antiferromagnetic order disappears. At U < 11.8t ,
Sq at the K-point [( 4

3π ,0)] shows a sharp decrease [Fig. 2(a)],
signifying the destruction of 120◦ Néel order. Here, transla-
tional symmetry is broken and the ground state momentum
shifts to the M-point, where the ground state becomes
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FIG. 3. Off-resonance Raman spectra for (a) B1g square lattice
(b) Eg honeycomb lattice (c) Eg triangular lattice and (d) Eg kagome
lattices, with incident energy at ωi = U/4: The spectra are calculated
as a function of U in the Hubbard model, while the right-most col-
umn in each panel with the label HSB is the Raman spectra calculated
in the Heisenberg model using an effective Raman scattering opera-
tor evaluated for U = 40t . Ground state transitions as a function of
U are highlighted by dashed lines, where the different ground states
have been labeled for both the triangular and kagome lattices.

nonmagnetically insulating (NMI). Here, the change from
120◦ Néel order to NMI is subtle and may be hard to observe
without detailed inspection of the spin structure factor. Studies
on large clusters have also indicated a ground state transition
to a spin liquid candidate NMI state at similar values of U
[11,30–32].

Electrons arranged on a kagome lattice experience the most
geometric frustration. The kagome lattice consists of corner-
sharing triangles where the spins on individual plaquettes are
geometrically frustrated. At large U for the Hubbard model
on a 2 × 2 kagome lattice (12 total sites), Sq possesses weak
peaks near the K-points of the extended Brillouin zone [see
Figs. 1(d) and 1(h)]. At intermediate coupling where U <

21.8t , Sq is more strongly peaked at the M-points [Figs. 2(e)
and 2(i)]. This change in the spin correlations signifies a
change of spin ordering at the ground state transition, going
from a

√
3 × √

3 ordered state to a q = 0 ordered state [33].
We note that a study with larger clusters also demonstrated a
similar ground state transition behavior on a 2 × L kagome
cylinder [34].

B. Resonant Raman scattering in the off-resonance regime

Raman light-scattering complements neutron scattering
and can be used to understand the nature of spin excitations.
Unlike neutron scattering that probes excitations involving
odd numbers of spin-flips, Raman scattering enables the prob-
ing of even spin-flip excitations in a material that reflects
the symmetry of the two dipole transitions compatible with
the selected photon polarizations. Formally, Raman scattering
can be decomposed into nonresonant, resonant, and mixed
responses. Nonresonant scattering, or Thomson scattering, is

FIG. 4. Off-resonance Raman spectra in A2g symmetry calcu-
lated for (a) square lattice, (b) honeycomb lattice, (c) triangular
lattice, and (d) kagome lattices, with incident energy ωi = U/4: The
calculated spectra plotted in this figure have the same layout and use
the same broadening parameters as in Fig. 3. The intensity for Raman
A2g scattering on the square lattice (panel (a)) in the Heisenberg limit
(< 1 × 10−10) is too small to appear on the plot for this intensity
range.

a two-particle process that directly connects the initial and
final states via the stress tensor operator and is only dependent
on the energy transfer of the photon, whereas resonant Ra-
man scattering is mediated through excitations to intermediate
states via a four particle process [22].

In this section, we calculate the resonant Raman scatter-
ing cross-section off-resonance using two methods: (1) direct
evaluation of the resonant Raman response in the Hubbard
model using the Kramers-Heisenberg expression far away
from resonance; and [22] (2) an effective Raman response in
the Heisenberg model using the Shastry-Shraiman formula-
tion [12,13], valid when U is much larger than the incident
photon energy ωi and nearest neighbor hopping t . Here, focus
is placed on intermediate to strong coupling, where the spin
and charge responses are well separated because of the Mott
gap. Expressions for effective Raman scattering operators in
spin language are provided in the Supplemental Material [35].
All figures in the results feature line-structures that smoothly
connect the Raman response in the Hubbard model to that of
the Heisenberg model in the large U limit. These structures
correspond to different spin excitations with even number of
spin flips that are symmetry selected by the polarizations;
however, we primarily focus on the evolution of the lowest
energy excitations without commenting specifically on their
character.

We consider the half-filled Hubbard model having charge
gaps, and therefore we limit focus on the most resonant
diagrams only. We will consider these diagrams when the
incident photon energy is tuned away from any direct
transition (calling it ”off-resonance”) in this section, and
in the following section we consider nearly ”on-resonant”
scattering.
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In all lattice geometries considered here, the A2g symmetry
channel projects to the antisymmetric part of the matrix ele-
ment where the photon polarization is taken to be e f

x ei
y − e f

y ei
x,

effectively probing states that break time-reversal symmetry.
In the A2g symmetry channel, the stress tensor cancels exactly,
allowing the resonant A2g Raman operator to be expressed as
an SSC operator. This expression allows us to investigate the
chiral character of strongly correlated system through reso-
nant Raman scattering.

Results

We first study Raman scattering on a two-dimensional
square-lattice Hubbard model, where the low-energy physics
is closely related to insulating cuprates [36]. Here, we ex-
amine the Hubbard model across various coupling strengths
while maintaining the same off-resonance condition (where
ωi = U/4) across all values of U . In subsequent figures,
the exchange energy J is taken as 4t2/U , with Lorentzian
broadening in incident energy �in = 1t and in loss energy
of �loss = 0.1 J (the same for the Heisenberg model). In all
figures, the white region at the left-side of each panel indicates
where the loss energy is larger than the incident energy and
therefore physically inaccessible.

Figure 3(a) shows the off-resonant Raman scattering for
the square-lattice Hubbard model at half-filling. In the B1g

channel, we take the polarizations to be e f
x ei

x − e f
y ei

y (same
as the Eg channel in other lattice geometries), which probes
the antiferromagnetic excitations via two-magnon processes
[37–40]. Here, the intensity remains strong as the interaction
strength increases, displaying a low energy peak at ∼3 J ,
corresponding to the two-magnon excitation energy. In con-
trast, Fig. 4(a) shows scattering in the A2g channel, where the
polarizations are taken to be e f

x ei
y − e f

y ei
x. The energy loss has

a leading peak ∼5 J , gradually increasing to ∼6 J at large U
and the scattering intensity decays rapidly in this channel, as
excited states with chiral character are well separated from the
ground state. The rapidly decaying intensity results from high
order spin flip processes, with the first nonzero contribution
of the effective scattering operator occurring at the order of
t6/(ωi − U )5 (see the Supplemental Material [35]).

For the honeycomb lattice, the two-magnon energy loss,
as observed in the Eg channel [see Fig. 3(b)], is ∼1.8 J , cor-
responding to the energy cost of flipping neighboring spins.
On the other hand, the effective Raman scattering operator in
the A2g channel is finite at order t4/(ωi − U )3 [41], leading to
stronger scattering intensity in the Raman A2g channel when
compared with the square lattice. Indeed, Fig. 4(b) shows that
the intensity in the A2g channel decays much more slowly than
for the square lattice, and the energy loss is ∼4 J in the in-
termediate to strong coupling regime (U > 10t). The gradual
increase in charge fluctuations due to reduced coordination in
the honeycomb lattice leads to stronger A2g scattering inten-
sity and softening in the energy loss.

On the triangular lattice, frustration can lead to a spectral
downshift of the magnon dispersion, detectable in the Raman
Eg channel [42,43], as seen in Fig. 3(c). In the strong cou-
pling limit with 120◦ Néel ordering, the leading excitation in
the A2g channel occurs ∼2 J [Fig. 4(c)], lower than that of
both the square and hexagonal lattices, a further indication

of the influence of frustration in the system. With decreasing
coupling strength, the Raman spectra in the effective Heisen-
berg model [44] connects smoothly to the calculated spectra
in the Hubbard model. As U changes in the intermediate
coupling regime, a ground state transition occurs between
U = 10t and 12t , clearly indicated by a discontinuity in the
Raman spectra in both the Eg and A2g channels [Figs. 3
and 4(c)].

In Fig. 4(d), we show that the calculated Raman spectra for
the kagome Heisenberg and Hubbard models in the strongly
correlated limit have loss energies in the A2g channel ∼2 J ,
similar to the triangular lattice. While the low-energy excita-
tion is gapped, finite-size studies are needed to ascertain the
size dependence of the low-energy excitations observed in the
A2g channel as debates remain on the magnetic ordering of the
kagome Heisenberg model [45–47]. At the ground state tran-
sition where U ∼ 20t , Raman scattering in the Eg [Fig. 3(d)]
[Fig. 4(d)] channel becomes nearly gapless with a clear dis-
continuity in the spectral features, indicative of a ground state
transition into the q = 0 state. We emphasize that low-energy
excitations in the A2g channel persist in the q = 0 state, in-
dicating that the ground state of the kagome Hubbard model
may lie in close proximity to a chiral spin liquid ground state.

C. Resonant Raman scattering near Mott gap

Often, the photon energy used in many Raman scattering
experiments may lie near the value of U , far from the off-
resonance regime. Additionally, some spin liquid candidate
materials have been reported to have intermediate values of
U [27,48]. In both cases, the Shastry-Shraiman approximation
made in Sec. II B is no longer valid. Here, we calculate Raman
scattering on resonance (ωi = U ) to reveal strong chiral spin
excitations that can be accessed when the incident energy
is tuned near the upper Hubbard band center. Experimental
measurements of cuprates also display enhancing intensity in
A2g channel when incident energy is on-resonance [19].

Figure 5 shows resonant Raman response in the B1g and
Eg symmetry for each lattice type. For the square and honey-
comb lattices, the scattering amplitude is roughly an order of
magnitude larger than off-resonance. The scattering intensity
no longer decays with increasing U ; instead, the intensities
are on the same order of magnitude across all U , as high
energy spin excitations become much more visible compared
to off-resonance conditions. The overall characteristics of the
excitation profile remain similar to that in the off-resonance
regime (Fig. 3), as expected, since the character of the final
states remain the same regardless of the resonant condition.

For the triangular lattice, the scattering amplitude in the Eg

channel is noticeably stronger in the 120◦ Néel state than in
the NMI state [Fig. 3(c)]. Similarly, the scattering amplitude
in the Eg channel is also slightly stronger in the q = 0 state for
the kagome lattice [Fig. 3(d)]. Here, the change in intensity of
the two-magnon scattering is consistent with the result shown
in the spin structure factor as discussed in Sec. II A.

Resonant Raman scattering in the A2g symmetry channel
shows increasing scattering intensity as a function of U in
Fig. 6, in stark contrast to the off-resonance scattering, where
the intensity decreases exponentially as U increases (Fig. 4).
On the square lattice, we see an enhancement of chiral spin
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FIG. 5. Resonant Raman spectra in (a) B1g square lattice, (b) Eg

honeycomb lattice, (c) Eg triangular lattice, and (d) Eg kagome lat-
tices, with incident energy at ωi = U : The calculated spectra plotted
in this figure have the same layout and broadening parameters as
in Fig. 3. The resonant Raman spectra exhibit a similar excitation
profile to the off-resonance Raman spectra in Fig. 3. However, the
peak amplitudes differ from those off-resonance, due to different
processes.

excitations [Fig. 6(a)] around 5 J , previously weak in the
off-resonance regime. By tuning the incident energy near
resonance, we recover leading chiral spin excitations that are
difficult to detect off-resonance. We note that previous exper-
imental Raman measurements of insulating cuprates [17,40]
also display enhanced intensity in A2g channel when the in-
cident photon energy is on-resonance. Although we show in
Sec. II B that the Raman scattering intensity in the A2g channel
diminishes quickly with the off-resonance condition, resonant
Raman scattering can still be an effective probe of chiral spin
excitations, amplified by the resonance effect.

A similar enhancement of the A2g scattering intensity can
also be seen in honeycomb and triangular lattices, where the
scattering intensity is now only an order of magnitude smaller
than that of the Eg channel across all values of U . More
notably, the Raman cross section in the A2g channel for the
kagome lattice is of the same order of magnitude as the other
channels, with low lying chiral spin excitations visible in the
q = 0 state [Fig. 6(d)], similar to off-resonance Raman scat-
tering [Fig. 4(d)]. Here, the enhanced scattering intensity in
A2g symmetry makes resonant Raman scattering a promising
tool for probing the existence of spin liquids with chiral char-
acter in materials with a kagome lattice geometry, especially
those with large values of U , such as in herbertsmithite-like
compounds [49].

III. DISCUSSION

We have analyzed the spin structure factor and res-
onant Raman cross section for the Hubbard model on
different lattice geometries. The spin structure factor shows

FIG. 6. Resonant Raman spectra in A2g symmetry calculated for
(a) square lattice, (b) honeycomb lattice, (c) triangular lattice, and
(d) kagome lattices, with incident energy ωi = U : The calculated
spectra plotted in this figure have the same layout and broadening
parameters as Fig. 3, with the same photon polarization as in Fig. 4.

diminishing characteristics of antiferromagnetism with in-
creasing frustration. Furthermore, ground state ordering can
change with decreasing coupling strength in frustrated ge-
ometries. Finally, we employed Raman scattering in different
scattering channels to understand the change in underlying
symmetry of the ground state and the development of chiral
character with increased geometric and charge frustration.

In the strongly correlated limit and off-resonance, the Ra-
man scattering operator in the A2g channel can be expressed
in terms of scalar spin chirality to reveal the presence of
chiral spin excitations. We showed that the strength of chiral
spin fluctuations is highly dependent on the lattice geom-
etry. Bipartite lattices, such as the square and honeycomb
lattices, have much weaker scattering in the A2g symmetry
channel compared to frustrated triangular and kagome lattices.
We observed a softening of the energy in the A2g Raman
response for both frustrated lattice geometries at the bound-
ary of the respective ground-state transitions, indicating the
emergence of chiral character in the intermediate coupling
regime, as also shown in large cluster studies [32,34]. Mean-
while, a clear discontinuity in the Raman spectra can be seen
in all symmetry channels across the ground-state transition.
For the kagome lattice, we observed a near-gapless excitation
in the Raman A2g channel at intermediate coupling strength
(U ∼ 20t ), suggesting that a possible chiral spin liquid phase
may be stabilized in the Hubbard model on the kagome lattice
with an appropriate perturbation [23].

Although the Raman A2g scattering intensity is typically
small in the off-resonance regime, it can become comparable
in magnitude to other scattering channels when the inci-
dent photon energy is tuned near resonance. Figure 6 clearly
shows that the Raman A2g scattering intensity increases to
the same order of magnitude as the two-magnon response in
other scattering channels on-resonance. Low-lying chiral spin
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excitations are accessible through the resonant processes
when ωin ∼ U for all lattice geometries, allowing for reliable
detection of chiral character in Mott insulators.

Our paper establishes the utility of Raman A2g scattering
for detecting chiral fluctuations in Mott insulators. However,
a few open questions remain. Firstly, we note that finite-size
effects are large in the small clusters considered in this pa-
per, and we cannot directly capture the proposed spin liquid
ground states in the triangular lattice Hubbard model in the
intermediate coupling regime [11,29–32] or the kagome lat-
tice Heisenberg models [46,47,50]. Numerical methods such
as density matrix renormalization group (DMRG) allow for
much larger cluster sizes, but it remains difficult to evaluate
the resonant diagram using those techniques [51]. Never-
theless, we emphasize that Raman A2g scattering effectively
detects chiral character independent of finite-size effects, and
opens an avenue for numerical studies on larger clusters and
future experiments.

Additionally, we have only considered Raman scattering
in Hubbard models with nearest-neighbor interactions. How-
ever, similar studies may be performed on more sophisticated
models that can better describe different exotic phases, such
as the inclusion of long-range interactions or antisymmetric
exchange terms that introduce additional frustration beyond
lattice geometry, which may also lead to the realization of

a CSL phase. Without relying on an effective Raman scat-
tering operator, one can compute and study the chiral spin
excitations by evaluating the Kramers-Heisenberg formula for
resonant Raman scattering in the A2g channel to study the
emergence of CSL states in frustrated Mott insulators.
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