
PHYSICAL REVIEW B 111, 195404 (2025)
Editors’ Suggestion

Systematic investigation of dynamic nuclear polarization with boron vacancy
in hexagonal boron nitride

Yuki Nakamura ,1 Shunsuke Nishimura ,1 Takuya Iwasaki ,2 Shu Nakaharai ,3 Shinichi Ogawa ,4 Yukinori Morita,4

Kenji Watanabe ,5 Takashi Taniguchi ,2 Kento Sasaki ,1 and Kensuke Kobayashi 1,6,7

1Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
2Research Center for Materials Nanoarchitectonics, National Institute for Materials Science,

1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
3Department of Electric and Electronic Engineering, Tokyo University of Technology,

1404-1 Katakuramachi, Hachiohji, Tokyo 192-0982, Japan
4National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

5Research Center for Electronic and Optical Materials, National Institute for Materials Science,
1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

6Institute for Physics of Intelligence, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
7Trans-scale Quantum Science Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

(Received 28 January 2025; accepted 9 April 2025; published 2 May 2025)

Dynamic nuclear polarization (DNP) using the boron vacancy (V−
B ) in hexagonal boron nitride (hBN) has

gained increasing attention. Understanding this DNP requires systematically investigating the optically detected
magnetic resonance (ODMR) spectra and developing a model that quantitatively describes its behavior. Here,
we measure the ODMR spectra of V−

B in h10B15N over a wide magnetic field range, including the ground
state level anticrossing (GSLAC), and compare them with the results of the Lindblad-based simulation that
considers a single electron spin and three neighboring 15N nuclear spins. Our simulation successfully re-
produces the experimental spectra, including the vicinity of GSLAC. It can explain the overall behavior of
the magnetic field dependence of the nuclear spin polarization estimated using the Lorentzian fitting of the
spectra. Despite such qualitative agreement, we also demonstrate that the fitting methods cannot give accurate
polarizations. Finally, we discuss that symmetry-induced mechanisms of V−

B limit the maximum polarization.
Our study is an essential step toward a quantitative understanding of DNP using defects in hBN and its quantum
applications.

DOI: 10.1103/PhysRevB.111.195404

I. INTRODUCTION

Spin defects in wide-bandgap semiconductors have at-
tracted attention as a platform for developing quantum
technologies [1–4]. For example, spin defects in diamond
[5–8] and SiC [9] are extensively studied for applications in
quantum sensing, quantum simulation, and quantum commu-
nication due to their optical addressability and long coherence
times from cryogenic to room temperatures. Recently, the
boron vacancy (V−

B ) in hexagonal boron nitride (hBN) was
discovered to have electron spins that can be manipulated
at room temperature [10,11]. Since hBN is a van der Waals
(vdW) crystal, V−

B has the following advantages in its quan-
tum sensor application to materials: (i) V−

B can be brought
within a few atomic layers of a measurement target through
stamping methods [12]. (ii) V−

B can be created at arbitrary
two-dimensional positions by irradiating hBN with a focused
ion beam [13,14]. (iii) hBN is thin, small, easy to process,
and readily integrated into various devices. Currently, V−

B is
beginning to be used as a quantum sensor to explore the
physical properties of materials [12,15–17].

Both nitrogen and boron atoms have nuclear spins, which
couple to the V−

B electron spin via hyperfine interactions. In

general, nuclear spins in solids have longer coherence times
than electron spins. In diamonds, for instance, they are fre-
quently utilized as quantum memories [18–22]. In such cases,
the nuclear spins are manipulated and read out via electron
spins. Realizing such nuclear spin control and application
with quantum defects in hBN [23–25] requires understanding
the hyperfine interactions with two-dimensionally distributed
nuclear spins and the phenomena arising from them.

Dynamic nuclear polarization (DNP) is a phenomenon
driven by hyperfine interactions and is used for initializing and
reading out nuclear spins. Recently, several papers [23–27]
reported that the high polarization of V−

B electron spins in-
duced by optical pumping is transferred to the three adjacent
nitrogen nuclear spins. Gao et al. [23] demonstrated DNP and
coherent control of nitrogen nuclear spins in hBN with natural
isotope composition ratios (hnatBnatN). Ru et al. [25] reported
DNP in hnatBnatN in the magnetic field of 25–100 mT and
140–200 mT, excluding the ground state level anticrossing
(GSLAC) of V−

B . They proposed a model that considers a
single electron spin, three nitrogen nuclear spins, and optical
transitions and found that the calculated results of the Lind-
blad equation are qualitatively consistent with experimentally
estimated polarization. Some of the present authors [26],
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Clua-Provost et al. [27], and Gong et al. [24] reported DNP
in isotopically engineered hBN (hnatB15N or h10B15N). The
optically detected magnetic resonance (ODMR) spectra of
V−

B in such isotopically engineered hBN are more straightfor-
ward than those of hnatBnatN. Based on the simplified ODMR
spectra, Clua-Provost et al. [27] estimated the polarization
of nitrogen nuclear spins in a wide range of magnetic fields
(10–150 mT), including GSLAC, and compared the results
with a simulation similar to that of Ru et al. [25].

This paper first presents high-resolution and accurate
ODMR spectra of V−

B in h10B15N obtained between 10 and
150 mT. Second, we show that the estimated nuclear polariza-
tions using the Lorentzian fitting of the ODMR spectra are
qualitatively consistent with the true (genuine) polarization
in the Lindblad-based simulation of a model that considers
a single electron spin, three adjacent nitrogen nuclear spins,
and optical transitions; that is, the simulation can explain
the overall behavior of the polarization depending on the
magnetic fields. Third, we prove that the simulation consid-
ering microwave and inhomogeneous broadening reproduces
the experimental spectra quantitatively over a wide range
of magnetic fields, including GSLAC. Nevertheless, we also
demonstrate that the conventional Lorentzian fitting method
is not sufficiently accurate to estimate the true polarization.
Finally, based on the simulation, we discuss that dynamics
related to defect symmetry such as coexistence of flip-flop and
flip-flip interactions and nuclear spin entanglement limit the
maximum polarization.

This paper is organized as follows. Section II introduces
the fundamental properties of V−

B in h10B15N and the hyper-
fine interactions with 15N. Then, we explain the mechanism of
DNP in h10B15N. Section III describes our simulation based
on the Lindblad equation. Section IV outlines our experimen-
tal setup and sample specifications. Section V discusses the
experimental and simulation results and their implications.
Section VI concludes the study.

II. DNP IN HEXAGONAL BORON NITRIDE

hBN is a vdW material composed of a hexagonal lattice ar-
rangement of boron and nitrogen atoms, as shown in Fig. 1(a).
It is a wide-gap semiconductor with a band gap of ∼6.0 eV
[28]. The negatively charged vacancy at the boron site is
referred to as V−

B . The electrons localized in this defect form
multiple levels within the band gap, such as the orbital ground
state (GS) and excited state (ES), which are spin triplets,
and the metastable singlet state (MS) [Fig. 1(b)]. When V−

B
is in the GS (ES) state, the electron spin levels are split by
Dgs = 3.47 GHz (Des = 2.09 GHz) in a zero magnetic field.
The electron spin has a quantized axis along the z direction
(the c-axis of the hBN crystal) [Fig. 1(a)], and the magnetic
quantum number mS is defined as the projection of the spin
angular momentum onto the z axis. We can excite the transi-
tion from GS to ES in a spin-conserving manner (�mS = 0)
by irradiating with a green laser (transition rate: �L), as shown
in Fig. 1(b). The relaxation from the ES to GS includes
spin-conserving radiative relaxation, which involves a direct
transition accompanied by the photoluminescence (PL) with
a transition rate of �0, and spin-nonconserving nonradiative
relaxation via intersystem crossing (ISC) through MS. The

VB
-

Energy

Bz (mT)

Dgs

Des

75 124

ESLAC

GSLAC

(b)(a)

(c)

ES

GS
flip-flop flip-flip

ISC

ex
ci

ta
tio

n
&

 ra
di

at
iv

e 
de

ca
y

(d)

ES Des

DgsGS

MS
VVB

-

FIG. 1. (a) Schematic of V−
B in h10B15N. The x axis is defined

along the a axis and the z axis along the c axis of the h10B15N
crystal. (b) Energy level structure and optical transitions of V−

B . The
relevant transition rates �L, �0, γ e

0 , γ e
1 , γ

g
0 , and γ

g
1 are depicted.

(c) Magnetic field dependence of V−
B energy levels. In the present

experiment, the zero-field splitting is estimated as Dgs = 3.47 GHz
for the GS and Des ∼ 2.09 GHz for the ES. Level anti-crossings
(LAC) between mS = 0 and mS = −1 occur at Bz ∼ 124 mT (GS)
and Bz ∼ 75 mT (ES). (d) DNP mechanism. Green arrows indicate
optical excitation from GS to ES and radiative transitions from ES
to GS. Red arrows represent ISC from ES mS = ±1 to GS mS = 0.
Light blue arrows correspond to flip-flop transitions |mS = 0, mI 〉 ↔
|mS = −1, mI + 1〉. Gray dashed arrows indicate flip-flip transitions
|mS = 0, mI + 1〉 ↔ |mS = −1, mI 〉.

transition rates in this non-radiative paths are γ e
0 , γ e

1 , γ
g
0 ,

and γ
g
1 , as defined in Fig. 1(b). Since γ e

0 < γ e
1 [29–31] and

γ
g
0 > γ

g
1 [30,31], the nonradiative relaxation process allows

us to polarize, or initialize, the electron spin state into mS = 0
through continuous optical excitation. Furthermore, due to
these relaxation processes, the PL intensity for the mS = ±1
states is weaker than that of the mS = 0 state. Therefore,
we can read out the electron spin state by referencing the
difference in the PL intensity.

The electron spin of V−
B in h10B15N is coupled to the

three adjacent 15N nuclear spins via hyperfine interactions. In
this paper, the three adjacent 15N atomic nuclei are indexed
as i = 1, 2, and 3, as shown in Fig. 1(a). The Hamiltonian
considering the electron spin and the three nuclear spins is
given by

Ĥv = DvŜz
2 + γeBzŜz −

3∑
i=1

γnBzÎ
(i)
z +

3∑
i=1

ŜĀ(i)
v Î

(i)
,

3∑
i=1

ŜĀ(i)
v Î

(i) =
3∑

i=1

∑
j=x,y,z

∑
k=x,y,z

A(i)
v, jk Ŝ j Î

(i)
k , (1)
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where v = gs or es denotes the orbital levels, Bz is the mag-
netic field along the z-axis, Ŝ and Ŝz are the electron spin
operators of V−

B with S = 1, and Î
(i)

and Î (i)
z are the nuclear

spin operators of the nearest-neighbor 15N nuclei with I (i) =
1/2. γe = 28 MHz/mT is the gyromagnetic ratio of the elec-
tron spin, and γn = −4.3 kHz/mT is the gyromagnetic ratio
of the 15N nuclear spin. The term

∑3
i=1 ŜĀ(i)

v Î
(i)

represents the
hyperfine interactions between V−

B and the nearest-neighbor
15N nuclei, where A(i)

v, jk ( j = x, y, and z, k = x, y, and z) are
the components of the hyperfine interaction tensor Ā(i)

v .
In most of the magnetic fields used in this study, the

condition |Dv − γeBz| � |A(i)
v, jk| ∼ 100 MHz is satisfied,

allowing the secular approximation:
∑3

i=1 ŜĀv(i)Î
(i) ≈∑3

i=1 A(i)
v,zzŜzÎz(i) = Av,zzŜz(

∑3
i=1 Î (i)

z ). Thus, the states

|mS, mI = ∑3
i=1 m(i)

I 〉 form a good basis. As a result,
the energy levels of |mS = ±1〉 are split by |Av,zz|
for each of the four total nuclear spin states mI =
{+3/2,+1/2,−1/2,−3/2}.

On the other hand, when the condition |Dv − γeBz| ∼
|A(i)

v, jk| is satisfied, the off-diagonal components of the Hamil-
tonian in Eq. (1) cannot be neglected. This condition is called
the level anticrossing (LAC) [red circles in Fig. 1(c)]. The
hyperfine interaction term in Eq. (1) can be rewritten as [24]:

3∑
i=1

ŜĀ(i)
v Î

(i) =
3∑

i=1

{
Av,zzŜz Î

(i)
z + (

A(i)
v,+Ŝ+ Î (i)

− + H.c.
)

+ (
A(i)

v,−Ŝ+ Î (i)
+ + H.c.

)}
, (2)

where Ŝ± ≡ Ŝx ± iŜy, Î (i)
± ≡ Î (i)

x ± iÎ (i)
y , and

A(i)
v,+ = A(i)

v,xx + A(i)
v,yy

4
,

A(i)
v,− = A(i)

v,xx − A(i)
v,yy

4
+ A(i)

v,xy

2i
. (3)

In the derivation of Eqs. (2) and (3), the mirror symmetry
of V−

B concerning the x-y plane is considered, leading
to A(i)

v,xz = A(i)
v,yz = A(i)

v,zx = A(i)
v,zy = 0 [24,26]. The second

term of the right-hand side of Eq. (2) represents flip-flop
interactions and causes transitions between |mS = 0, mI〉 ↔
|mS = −1, mI + 1〉 [light blue arrows in Fig. 1(d)]. The
third term represents flip-flip interactions, causing transitions
between |mS = 0, mI + 1〉 ↔ |mS = −1, mI〉 [gray dashed
arrows in Fig. 1(d)].

Considering the D3h symmetry of the hyperfine interac-
tions in GS [23], the following simple expression can be
obtained (see Appendix A for details):

A(i)
gs,+ = Ags,xx + Ags,yy

4
,

A(i)
gs,− = Ags,xx − Ags,yy

4
e2iφ(i)

,

φ(1) = 0, φ(2) = −2π/3, φ(3) = −φ(2), (4)

where Ags,xx ≡ A(1)
gs,xx < 0 and Ags,yy ≡ A(1)

gs,yy < 0, leading

to |A(i)
gs,+| > |A(i)

gs,−|. A similar symmetry argument can be

TABLE I. Hyperfine parameters used in our simulation [23].

Parameter Value

Ags,xx −64 MHz
Ags,yy −125 MHz

Ags,zz −64 MHz

A(1)
es,xx −5.1 MHz

A(2,3)
es,xx −64 MHz

A(1)
es,yy −4.9 MHz

A(2,3)
es,yy −73 MHz

A(i=1,2,3)
es,zz −60 MHz

A(1)
es,xy 0 MHz

A(2,3)
es,xy 8.3 MHz

A(i=1,2,3)
es,yx −A(i=1,2,3)

es,xy

applied to ES, yielding |A(i)
es,+| > |A(i)

es,−|, as Appendix A de-
scribes. Therefore, the flip-flop interaction is dominant.

Under GSLAC or excited-state LAC (ESLAC) conditions,
the flip-flop interaction induces the transition |mS = 0, mI〉 ↔
|mS = −1, mI + 1〉. Optical excitation further drives transi-
tions such as |mS = −1, mI + 1〉 → |mS = 0, mI + 1〉, initial-
izing the electron spin while simultaneously experiencing the
flip-flop interaction. This process increases the total angular
momentum of the system, resulting in nuclear spin polariza-
tion toward increasing mI . In contrast, the flip-flip interaction
induces the transition |mS = 0, mI + 1〉 ↔ |mS = −1, mI〉,
leading to polarization toward decreasing mI , causing depo-
larization.

The flip-flop and flip-flip transitions are maximized under
the following conditions, respectively,

(flip-flop:) Ev,0,mI = Ev,−1,mI +1, (5)

(flip-flip:) Ev,0,mI +1 = Ev,−1,mI , (6)

where mI = {+1/2,−1/2,−3/2}, and Ev,mS ,mI ≡
〈mS, mI |Ĥv|mS, mI〉 represents the diagonal elements of
the Hamiltonian in Eq. (1). The magnetic fields that satisfy
conditions Eqs. (5) and (6) are as follows:

(flip-flop:) B+−,v,mI = Dv + (mI + 1)Av,zz

γe + γn
, (7)

(flip-flip:) B++,v,mI = Dv + mI Av,zz

γe + γn
. (8)

These equations tell that the magnetic fields that maximize
the flip-flop and flip-flip transitions differ. By using zero-field
splitting and hyperfine interactions (listed in Table I, intro-
duced later), we can calculate the specific field conditions.
Then, we derive the range of the GSLAC by the upper and
lower limits of these magnetic fields as follows:

BGSLAC,low < Bz < BGSLAC,up,

BGSLAC,low ≡ B+−,gs,+1/2 − |Ags,yy|
γe + γn

= 115.8 mT,

BGSLAC,up ≡ B++,gs,−3/2 + |Ags,yy|
γe + γn

= 131.5 mT. (9)
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III. SIMULATION BASED ON LINDBLAD EQUATION

One of the purposes of this study is to investigate how
far the experimental results can be explained by the model
based on the three 15N nuclear spins adjacent to the V−

B in
h10B15N. In this subsection, we introduce the Lindblad equa-
tion that considers the spin Hamiltonian and optical transitions
described in the previous subsection and explain how to cal-
culate the nuclear spin polarization and ODMR spectra.

The density matrix ρ̂ in the present model can be expressed
as follows:

ρ̂ =
∑
m,n

ρmn|m〉〈n|,

|m〉, |n〉 = ∣∣level, mS, m(i)
I

〉
, (10)

where |level, mS, m(i)
I 〉 ≡ |level, mS, m(1)

I , m(2)
I , m(3)

I 〉 (i = 1,
2, and 3). For level = GS or ES, the basis states
|level, mS, m(i)

I 〉 are labeled by mS = {+1, 0,−1} and
m(i)

I = {+1/2,−1/2}. The basis states |MS, mS, m(i)
I 〉 are

labeled by mS = {0} and m(i)
I = {+1/2,−1/2}. ρ̂ is a 56×56

matrix (56 = (2×3 + 1×1)×23), and it follows the Lindblad
equation described below:

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] + D̂ (ρ̂). (11)

The Hamiltonian Ĥ in Eq. (11) is expressed as follows:

Ĥ = Ĥgs ⊕ Ĥes ⊕ Ĥms,

Ĥ(gs,es) = D(gs,es)Ŝz
2 + γeB(Ŝz cos θ + Ŝx sin θ )

+ E⊥
(
Sx

2 − Sy
2)

−
3∑

i=1

γnB
(
Î (i)
z cos θ + Î (i)

x sin θ
) + Ĥhf,(gs,es),

Ĥhf,(gs,es) =
3∑

i=1

{
A(gs,es),zzŜzÎ

(i)
z + A(i)

(gs,es),+(Ŝ+ Î (i)
− + H.c.)

+ A(i)
(gs,es),−(Ŝ+ Î (i)

+ + H.c.)
}
,

Ĥms = −
3∑

i=1

γnB
(
Î (i)
z cos θ + Î (i)

x sin θ
)
. (12)

Ĥgs, Ĥes, and Ĥms are the spin Hamiltonians for GS, ES,
and MS, respectively. Ĥgs and Ĥes are similar to Eq. (1), but
they additionally consider the tilt of the bias magnetic field
θ and strain E⊥. B denotes the magnitude of the magnetic
field, and Bz = B cos θ . The strain parameter E⊥ = 52 MHz
originates from lattice distortions [32] and the surrounding
charge distribution [33]. Ĥhf,(gs,es) represents the hyperfine in-
teraction terms for GS and ES. Unless otherwise specified, the
simulation in this paper use the hyperfine parameters shown in
Table I. All hyperfine parameters, except for Ags,zz, are based
on the first-principles calculations [23], scaled by a factor
of nitrogen isotope gyromagnetic ratios γ

15N
n /γ

14N
n = −1.4.

Ags,zz = −64 MHz is derived from the experimental data as
described below.

TABLE II. Transition or relaxation rates used in our simulation.
We neglect the electron spin and nuclear spin T1 relaxations in ES.

k Process Rate �k

1 Laser excitation: �L 2.14 µs−1

2 Radiative decay: �0 0.10 µs−1

3 Nonradiative decay: γ e
0 2.0 ns−1

4 Nonradiative decay: γ e
1 0.74 ns−1

5 Nonradiative decay: γ
g
0 38 µs−1

6 Nonradiative decay: γ
g
1 5.6 µs−1

7, 8 Electron spin T1 in GS: 1/3T1,gs 1/(12 µs)/3

9 Electron spin T2 in GS: 1/T2,gs 1/(180 ns)

10 Electron spin T2 in ES: 1/T2,es 1/(2 ns)

11, 12 Nuclear spin T1 in GS: 1/2T1,n 1/(2 ms)/2

13 Nuclear spin T2 in GS and ES: 1/T2,n 1/(200 µs)

The second term on the right-hand side of Eq. (11) is
expressed as follows:

D̂ (ρ̂) =
∑

k

�k

(
L̂k ρ̂L̂†

k − 1

2
{L̂†

k L̂k, ρ̂}
)

. (13)

Here, L̂k are jump operators describing non-Hermitian pro-
cesses, and �k are the transition or relaxation rates. The optical
transitions from |m〉 to |n〉 are included in Eq. (11) with a
jump operator of L̂k = |n〉〈m|. T1 relaxations are included in
Eq. (11) with a jump operator of L̂k = Ŝ+/

√
2, Ŝ−/

√
2, Î+,

or Î−. The phase relaxation in the superposition of |m〉 and
|n〉 (e.g., T2 relaxation) is included in Eq. (11) with a jump
operator of L̂k = |m〉〈m| − |n〉〈n|. As shown in Table II, we
consider a total of 13 non-Hermitian processes (k = 1, 2, . . .,
and 13) in Eq. (11). The processes corresponding to k =
1, 2, . . ., and 6 represent the optical transitions depicted in
Fig. 1(b). The processes for k = 7, 8, . . ., and 13 describe
the T1 and T2 relaxations of the V−

B electron spin and 15N
nuclear spins.

Unless otherwise noted, we perform the simulation by
inserting the parameters listed in Table II into Eq. (13). All
optical-transition parameters (k = 1, 2, . . ., and 6) are deter-
mined by fitting the time-resolved PL (see Appendix C).
The T1 relaxation rates of the V−

B electron spin in the
GS (k = 7 and 8) are experimentally determined, and the
T2 relaxation rate in the ES (k = 10) is adopted from
Ref. [27]. The other relaxation rates (k = 9, 11, 12, and 13)
are adjusted to match the simulation results with the experi-
mental results.

Under the above conditions, we solve the steady-state
solution of the Lindblad equation for the following two
cases:

(A) Without microwave irradiation.
(B) With microwave irradiation.
We now explain the two cases of (A) and (B) in turn.
For case (A), we numerically obtain the steady-state ρ̂sat

with the Lindblad equation by converting Eq. (11) into a
Liouville space form [see Appendix D]. We can obtain the
polarization of the three adjacent 15N nuclear spins using the
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following formula:

Psim,true =
∑

mI
mIρgs,mI

(3/2)
∑

mI
ρgs,mI

,

ρgs,mI =
∑

∑
m(i)

I =mI

∑
mS

〈
GS, mS, m(i)

I

∣∣ρ̂sat

∣∣GS, mS, m(i)
I

〉
, (14)

where Psim,true is a true (genuine) nuclear spin polarization
in the simulation. The present approach is similar to that
proposed previously [25,27].

In experiments, the polarization is usually estimated using
the fitting of ODMR spectra with the sum of four Lorentzians
[25,26]. We refer to this method as “4-dip fitting” and discuss
experimental polarization values Pexp,4dip and Pexp,4dip,area de-
fined in Eqs. (17) and (19), respectively, later. This estimation
assumes that the contrast or area of a decomposed spectral
component is proportional to the nuclear spin population.
However, as we will discuss in detail in Sec. V D, consider-
ation should be given that the estimation accuracy is degraded
if the ODMR spectra are distorted by factors other than the
nuclear spin population.

Now, we calculate the ODMR spectra in case (B) and
compare them either directly or with the results of 4-dip fitting
to make a fairer comparison with the experimental results.
We consider microwave irradiation by rewriting Eq. (12) as
follows:

Ĥ(gs,es) → Ĥ(gs,es) + Bmw cos (2π fmwt )

(
γeŜx − γn

3∑
i=1

Î (i)
x

)
,

Ĥms → Ĥms −
3∑

i=1

γnBmw cos (2π fmwt )Î (i)
x , (15)

where Bmw and fmw are the microwave amplitude and fre-
quency, respectively. Using the ρ̂sat obtained in case (A) as
the initial condition, we calculate the time evolution under mi-
crowave irradiation using Eq. (11). We numerically obtain the
state at t = 1 µs when the system has sufficiently relaxed and
regard this as the steady state under microwave irradiation.
The PL intensity Isim under microwave irradiation is expressed
as follows:

Isim = �0ρes,

ρes =
∑

mS ,m
(i)
I

〈
ES, mS, m(i)

I

∣∣ρ̂(t = 1 µs)
∣∣ES, mS, m(i)

I

〉
. (16)

By calculating the PL intensity for each microwave frequency,
we obtain ODMR spectra. By applying 4-dip fitting to these
simulated spectra to emulate experimental polarization es-
timation, we obtain Psim,4dip. In Sec. V D, we evaluate the
accuracy of the 4-dip fitting by how well Psim,4dip agrees with
Psim,true [Eq. (14)].

We performed numerical simulation on a workstation
equipped with dual intel CPUs (56 cores in total). A reason-
able calculation speed was obtained using the Julia packages
DifferentialEquations.jl and Distributed.jl to calculate time
evolution.

IV. EXPERIMENTAL METHOD

We measure the ODMR of V−
B in h10B15N synthesized us-

ing a metathesis reaction [26]. The hBN flake, approximately
70 nm thick, was stamped onto an 800 nm wide gold wire
on a sapphire substrate, which was fabricated using electron
beam lithography (Elionix, ELS-F125). We used a helium ion
microscope (Carl Zeiss Microscopy, Orion Plus HIM) to ir-
radiate a (300 nm)2-sized spot with helium ions (acceleration
voltage of 30 keV, irradiation dose of 1015/cm2) to create a
V−

B ensemble [13,34].
Using a homebuilt confocal microscope [35] equipped

with optical filters optimized for the PL wavelength of V−
B

[36], we illuminated the V−
B spot with a green laser (wave-

length of 532 nm). The PL in the wavelength range from
750 to 1000 nm was detected using a single-photon counting
module (Excelitas Technologies, SPCM-AQRH-16-FC-ND).
Microwaves for manipulating the V−

B electron spin were
supplied to the gold wire via coaxial cables and copla-
nar waveguides from an analog signal generator (Keysight,
E8257D). The microwave magnetic field was spatially con-
centrated around the thin gold wire (∼800 nm), allowing us
to drive the V−

B electron spin without using a microwave
amplifier. This configuration provides uniform microwave
field strength over a wide frequency range from 1 MHz to
8 GHz. A magnetic field parallel to the quantization axis of
the V−

B was applied in the range from 10 to 150 mT using an
electromagnet (GMW, 5203). The alignment of the magnetic
field was performed by moving a manual stage carrying the
electromagnet.

V. RESULTS AND DISCUSSION

A. Magnetic field dependence of ODMR spectra

We measured the ODMR spectra for mS = 0 ↔ +1 and
mS = 0 ↔ −1 at Bz = 10–150 mT. We present the result
obtained at the optical power of 0.73 mW as functions of
the microwave frequency and Bz as a color map in Fig. 2(a).
The transitions between mS = 0 ↔ ±1 decrease the PL ra-
tio, which is the ratio of the PL intensity with and without
microwaves. The upper (lower) branch corresponds to the
resonance of mS = 0 ↔ +1 (mS = 0 ↔ −1). Each resonance
frequency shift is equivalent to the product of the magnetic
field and the gyromagnetic ratio γe due to the Zeeman split-
ting. Note that the ODMR signal of the ES is small enough
to be ignored at the microwave and optical power in this
experiment (<0.2% at Bz = 0 mT).

We focus on the ODMR spectra at several characteris-
tic magnetic fields, as indicated by the arrows (b), (c), and
(d) in Fig. 2(a). Figure 2(b) shows the spectrum at Bz =
30.7 mT, away from the LACs. The spectrum consists of
four dips. They correspond to the electron spin resonances
under mI = +3/2,+1/2,−1/2, and −3/2. The separation
between the dips equals the hyperfine interaction strength of
|Ags,zz| = 64 MHz, which is consistent with the previous work
[24,26,27]. The symmetric shape of the spectrum tells that the
nitrogen nuclear spins are not polarized.

On the other hand, the ODMR spectra are not symmetric
at specific magnetic fields. Figure 2(c) displays the spec-
trum at Bz = 75.0 mT on the ESLAC; The dips for mI > 0
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FIG. 2. ODMR spectra at an optical power of 0.73 mW. (a) Magnetic field dependence of the spectra is shown on a color map. The vertical
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vertical axis shows the PL ratio, and the horizontal axis shows the microwave frequency. The black solid lines represent the fitting results of
four Lorentzians (“4-dip fitting”). The decomposed Lorentzians are shown as solid blue, green, or red lines in (b), (c), and (d), respectively.

are enhanced, suggesting that the nuclear spins are polarized
in the mI > 0 direction. Figure 2(d) shows the spectrum at
Bz = 132.8 mT, slightly above the range of the GSLAC (Bz >

BGSLAC,up = 131.5 mT) [see Eq. (9)]. Again, as in Fig. 2(c),
the asymmetric spectrum suggests the nuclear spin polar-
ization. Note that the spectra under the GSLAC [inset in
Fig. 2(a)] are more complex and varied, making it difficult
to estimate the polarization straightforwardly. We will discuss
this point in more detail later in Fig. 5.

To estimate the nuclear spin polarization, we use the 4-dip
fitting. The fitting by four Lorentzians (solid lines) reproduces
the experimental ODMR spectra (markers) well, as presented
in Figs. 2(b)–2(d). The fitting yields the contrast CmI and
line width νmI of each dip. The area of each dip AmI can
be estimated from the contrast and line width. In the con-
ventional method, the nuclear spin polarization is calculated
by considering that the area of each dip corresponds to the
occupancy of each mI . However, the correspondence between
the dip area and the occupancy does not always hold because
the line width varies in a complex manner due to competition
between microwave driving and other inhomogeneous broad-
ening. Therefore, in this study, we simply estimate nuclear
spin polarization by assuming that the contrast of each dip
corresponds to the occupancy of each mI using the following
equation:

Pexp,4dip =
∑

mI
mICmI

(3/2)
∑

mI
CmI

. (17)

We obtain Pexp,4dip = 0.1 ± 0.1%, 14 ± 1%, and 26 ± 3% for
Figs. 2(b)–2(d), respectively. The accuracy of the estimation
method based on the 4-dip fitting, including the area-based
one, is discussed later in Sec. V D.

B. Magnetic field dependence of polarization

We discuss the magnetic field dependence of the polariza-
tion of the adjacent 15N nuclear spins, estimated by analyzing
the experimental ODMR spectra. First, we focus on the result
obtained at the optical power of 0.73 mW shown in the mid-
dle panel of Fig. 3. The markers present the magnetic field
dependence of the polarization Pexp,4dip [Eq. (17)] obtained
for the ODMR spectra shown in Fig. 2(a) using the 4-dip fit-
ting. Pexp,4dip increases around ESLAC (∼75 mT) and GSLAC
(∼120 mT) except for the middle of GSLAC (gray area).

We can successfully reproduce a similar behavior using
the simulation discussed in Sec. III; The magnetic field de-
pendence of Psim,true [Eq. (14)] is superposed by the black
solid line in the same panel. Pexp,4dip and Psim,true behave
similarly in the magnetic fields. It is evident that the flip-flop
interaction contributes to the increase in polarization. Fur-
thermore, we obtain a steep decrease in polarization Psim,true

at the middle of GSLAC (Bz = 122.0 mT). The flip-flip in-
teraction for the ground state is most pronounced at this
magnetic field.

Next, we show the optical power dependence. The top and
bottom panels of Fig. 3 are the results obtained at the optical
powers of 0.18 mW and 1.55 mW, respectively. Similar to
the behavior in the middle panel (0.73 mW), the polarization
Pexp,4dip changes around ESLAC and GSLAC in both cases.
Also, Fig. 3 indicates that the higher the optical power, the
larger the polarization change appears near the ESLAC.

At a laser power of 1.55 mW, the estimated Pexp,4dip near
the GSLAC exceeds 30%, showing a large deviation from
the true polarization Psim,true. One possible reason is power
broadening, which makes the hyperfine splitting in the ODMR
spectra indistinct, reducing the accuracy of the 4-dip fitting.
Therefore, in Secs. V C and V D, we discuss Pexp,4dip obtained
at 0.18 mW to minimize this effect.
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FIG. 3. Magnetic field dependence of the polarization of the
adjacent 15N nuclear spins. The top, middle, and bottom panels are
obtained at optical powers of 0.18, 0.73, and 1.55 mW, respectively.
Markers indicate the polarization Pexp,4dip estimated using the 4-dip
fitting of ODMR spectra for mS = 0 ↔ +1 and Eq. (17). The black
solid lines are the true nuclear polarization Psim,true [Eq. (14)] in the
steady state under continuous optical excitation in our simulation.
The gray area indicates the range of GSLAC (BGSLAC,low < Bz <

BGSLAC,up) [Eq. (9)]. We use θ = 0.6◦ in the simulation.

We remark that the 4-dip fitting analysis is not straight-
forward near GSLAC, shown in gray in Fig. 3, because
mixing electron and nuclear spins results in complex ODMR
spectra. Although our simulation depicted by the solid
black lines qualitatively reproduces the trend under GSLAC,
even this observation is theoretically non-trivial. A more
quantitative discussion and analysis will be made later in
Secs. V C and V D.

So far, our simulation reproduces the observed behavior
qualitatively well. At the end of this subsection, we point out
an experimental result that cannot be reproduced. Figure 4(a)
shows the estimated polarization Pexp,4dip for mS = 0 ↔ +1
and mS = 0 ↔ −1 under a laser power of 0.73 mW. The po-
larizations obtained from the two transitions agree very well,
except near Bz ∼ 58 mT and 91 mT. A prominent dip and peak
appear at Bz ∼ 58 mT and 91 mT, respectively, only for the
mS = 0 ↔ +1 transition. To examine this phenomenon more,
we present the ODMR spectra for mS = 0 ↔ −1 and mS =
0 ↔ +1 at Bz ∼ 91 mT in Figs. 4(b) and 4(c), respectively.
The ODMR contrasts corresponding to each nuclear spin state
clearly differ between the two spectra. We believe this is due
to something we did not consider in our simulation model,
such as nuclear spins other than the nearest-neighbor nitrogen
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FIG. 4. (a) Comparison of Pexp,4dip as a function of Bz between
mS = 0 ↔ +1 (green) and mS = 0 ↔ −1 (navy). The optical power
is fixed at 0.73 mW. The black solid line presents the corresponding
Psim,true. Pexp,4dip (mS = 0 ↔ +1) and Psim,true are the same as those
shown in the middle panel of Fig. 3. (b) ODMR spectrum and the
result of the 4-dip fitting for mS = 0 ↔ −1 (navy) at Bz = 91.0 mT.
(c) ODMR spectrum and the result of the 4-dip fitting for mS = 0 ↔
+1 (green) at Bz = 91.2 mT.

atoms [37] or fast and complex optical transitions [38,39]. We
leave the identification of this cause as a future work.

C. ODMR spectra at GSLAC

We discuss the ODMR spectra at GSLAC in detail and
investigate their consistency with our simulation model.

First, we show the experimental ODMR spectra Iexp (red
markers) and simulated spectra Isim (black solid lines) at var-
ious magnetic fields Bz between 115.3 and 127.0 mT in the
left panel of Fig. 5. As the magnetic field approaches 121 mT,
the experimental spectra become broad so that the four dips
are almost indistinguishable. Correspondingly, the simulation
results indicate that the spectra shape becomes complex, and
many dips appear around 121 mT.

The above behavior is due to mixing the electron and
nuclear spins in V−

B at GSLAC. The number of dips in-
creases because the complex mixing increases the number of
transitions between eigenstates. Theoretically, strong mixing
can occur under conditions where Eq. (9) is satisfied. In the
present case, the magnetic field conditions with strong mixing
are estimated to be Bz = 120.2, 121.1, and 122.0 mT, which
are consistent with experiments and simulations. Such mixing
is also observed in the LAC of diamond nitrogen-vacancy
centers [40,41].

Next, we discuss the differences between the experimental
and simulated spectra. The simulated spectra are sharper than
the experimental ones due to hyperfine interactions not fully
considered in our simulations. Our model described in Sec. III
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blue solid lines. In this simulation, we use θ = 0.6◦, �L = 2.14 MHz, and Bmw = 0.25 mT.

considers line broadening due to microwave or laser irradia-
tion [42], T2 relaxation, and T1 relaxation (see Table II). On
the other hand, it does not count inhomogeneous linewidths
due to hyperfine interactions with boron nuclear spins, which
is the main reason for the experimental linewidth broadening
of V−

B [37]. Accurately accounting for multiple boron spins
with large nuclear spins is difficult because it dramatically
increases the size of the Hamiltonian and, thus, the compu-
tational cost.

We, therefore, reproduce the experimental spectra by em-
pirically incorporating inhomogeneous linewidths. We regard
them as resulting from a static magnetic field distribution by
assuming that all but the nearest-neighbor nitrogen nuclear
spins are stationary during individual ODMR measurements.
Thus, the spectra are expressed by the following convolution:

Iconv(B) ∝
∑

B′=B+nδB

P(B′ − B)Isim(B′), (18)

where P(B) = (�B/2)2

B2+(�B/2)2 is the shape of inhomogeneous
broadening, �B = 50 (MHz)/γe = 1.78 mT is the effec-
tive field width of the broadening, δB = 0.1 mT, and n =
{−25,−24, . . . , 25}. We appropriately choose the range
of n so that the simulation reproduces the experimental
spectral shape, while a slight change in n does not af-
fect the result. We perform the normalization to ensure
that the area of the spectrum remains conserved after
the convolution.

The right panel of Fig. 5 compares the experimental spec-
tra Iexp (red markers) and the simulated spectra considering

the inhomogeneous broadening Iconv (blue solid lines). They
agree satisfactorily. It is significant to note that the agreement
implies that even in GSLAC, the ODMR spectra can be ex-
plained only by the dynamics of the three adjacent 15N nuclear
spins. Slight spectral differences between the experiment and
simulation would be caused by variations in experimental mi-
crowave power or by polarization or mixing of nuclear spins
other than the nearest-neighbor nitrogen spins.

D. Comparison based on the 4-dip fitting

We are interested in how much quantitative information
about DNP can be obtained from the experimental ODMR
spectra. Therefore, this subsection compares experiments and
simulations using the 4-dip fitting. We treat the simulated
spectra with inhomogeneous broadening as if they were
experimental data and emulate the polarization estimation
in the same way as in Eq. (17). We define the resulting
polarization as Psim,4dip, as briefly mentioned at the end
of Sec. III.

We start to investigate the validity of our model by com-
paring this Psim,4dip and Pexp,4dip [Eq. (17)]. Figure 6(a) shows
Psim,4dip (blue triangles) and Pexp,4dip (red circles). Clearly,
Pexp,4dip and Psim,4dip are in good agreement; their behavior
in magnetic fields is quantitatively similar. This agreement
indicates that our simulation reproduces essential features of
the experimental ODMR spectra nicely. We have already seen
such examples in the right panel of Fig. 5.

How about the nuclear polarization? The true polarization
Psim,true [Eq. (14)] obtained in the simulation is superposed
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Psim,true [Eq. (14)]. Psim,true and Pexp,4dip are the same as those shown
in the top panel of Fig. 3.

in Fig. 6(a) by a solid black line. We notice that Psim,true and
Psim,4dip disagree. In particular, there is a difference of a few
times around Bz = 100–120 mT. Note that both values are
purely derived from the model, not experiments. This discrep-
ancy implies that the accuracy of the polarization estimation
by Eq. (17) using the 4-dip fitting is unsatisfactory, especially
around GSLAC.

Now, it is interesting to examine the conventional estima-
tion method using the 4-dip fitting. Usually, the following
formula, which relies on the area of the spectrum instead of
the contrast, is used to estimate polarization [25–27].

Pexp,4dip,area =
∑

mI
mI AmI

(3/2)
∑

mI
AmI

, (19)

where AmI is the area of the spectral component correspond-
ing to the mI state. We apply Eq. (19) to the experimental
data and the simulation. The resulting values are denoted as
Pexp,4dip,area and Psim,4dip,area, respectively. Figure 6(b) com-
pares Psim,4dip,area (blue triangle markers) and Pexp,4dip,area (red
circles) with Psim,true superposed in a solid black line. As previ-
ously, Pexp,4dip,area and Psim,4dip,area agree well. However, they
significantly deviate from the true value Psim,true, especially
around GSLAC. This observation proves that the conventional
area-based polarization estimation using the 4-dip fitting does
not work quantitatively.

Interestingly, the results using contrast (Psim,4dip) are
closer to the true polarization Psim,true than the conven-
tional area-based estimation (Psim,4dip,area). It may suggest the

usefulness of the contrast-based fitting method for estimating
polarization.

The quantitative inaccuracy of the 4-dip fitting in both
experiments and simulation is due to the mixing between the
V−

B electron spin and the 15N nuclear spins. As the mixing
becomes intense, the number of dips in Isim increases, invali-
dating the assumptions of the 4-dip fitting, namely, ρgs,mI ∝
CmI or ρgs,mI ∝ AmI . For instance, the differences between
Psim,true and Psim,4dip, as well as Psim,true and Psim,4dip,area, are
most pronounced at around GSLAC. The left panel of Fig. 5
shows that Isim contains numerous additional dips beyond the
main four dips, indicating that the effects of mixing cannot be
ignored. In contrast, at Bz = 127.0 mT, the edge of GSLAC,
Psim,true closely matches both Psim,4dip and Psim,4dip,area and
Isim exhibits a more evident four-dip structure with reduced
mixing effects. The correlation between the number of dips
in the simulated ODMR spectrum Isim and the differences
between Psim,true and Psim,4dip is consistent with the conclu-
sion that mixing degrades the quantitative reliability of the
4-dip fitting.

E. Maximum polarization

Based on our simulation model, we discuss maximum
polarization and the factors limiting it. Our experiments and
simulations [Figs. 3, 4, and 6] suggest that the polarization
of 15N nuclear spins is at most approximately 20%. A similar
maximum polarization (∼30 %) was reported in the previous
studies [25,27]. These values are far from the high polariza-
tion (∼100 %) obtained in the DNP of a nitrogen nuclear spin
of the NV center [43]. Understanding the factors that limit
maximum polarization is one of the most fundamental issues
in DNP studies.

As described in Sec. II, the flip-flip interaction A(i)
− Ŝ+ Î (i)

+ +
H.c. reduces the polarization [24,25,27]. According to Eq. (4),
the flip-flop and flip-flip interactions in the GS can be de-
scribed by two independent parameters: Ags,+ ≡ |A(i)

gs,+| =
|Ags,xx + Ags,yy|/4 and Ags,− ≡ |A(i)

gs,−| = |Ags,xx − Ags,yy|/4,
respectively. To check the impact of the flip-flip term on the
flip-flop term, the magnetic field dependence of the polar-
ization Psim,true simulated for several different Ags,− is shown
in Fig. 7(a) while maintaining Ags,+. Except for the narrow
magnetic field region (Bz ∼ 121.4 mT), the polarization in-
creases as Ags,− decreases. If the flip-flip interaction were
quenched (Ags,− = 0 MHz), the maximum polarization could
exceed 65%, but for the present flip-flip interaction strength,
which is calculated to be Ags,− = 15.1 MHz from the values
in Table I, the maximum is below 30%. Thus, the flip-
flip interaction is the main factor that limits the maximum
polarization.

We continue to discuss in more detail to find other factors
that suppress the maximum polarization. When consider-
ing only the flip-flop interactions, the maximum polarization
achievable in the DNP coincides with the electron spin polar-
ization. On the other hand, as indicated by the horizontal black
dashed line in Fig. 7(a), even in the absence of the flip-flip
interaction (Ags,− = 0 MHz), the polarization does not match
with the electron spin polarization Pe between the electron
spin sublevels mS = 0 and mS = −1, as can be calculated
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as follows:

Pe = ρgs,mS=0 − ρgs,mS=−1

ρgs,mS=0 + ρgs,mS=−1
,

ρgs,mS =
∑
m(i)

I

〈
GS, mS, m(i)

I

∣∣ρ̂sat

∣∣GS, mS, m(i)
I

〉
. (20)

Usually, the discrepancy between maximum nuclear spin po-
larization and electron spin polarization can occur owing
to the fast nuclear spin relaxation. In the simulations, we
set the nuclear spin decoherence and relaxation as 1/T2,n =
1/200 µs−1 and 1/T1,n = 1/2 ms−1, respectively (Table II).
They are much smaller than the inverse of the flip-flop
or flip-flip interaction strengths, so such trivial suppression
should be weak.

Figure 7(b) presents the T2,n dependence of the polarization
at 132 mT, simulated for several different Ags,− corresponding
to Fig. 7(a). Without the flip-flip interaction (Ags,− = 0 MHz),
the polarization is the largest at T2,n ∼ 1 µs, and the maximum
value is nearly identical to the electron spin polarization Pe.
This observation implies the existence of a polarization sup-
pression that depends on nuclear spin coherence. As expected,
the polarization suppression occurs as T2,n decreases below

∼0.1 µs. Interestingly, the polarization is again suppressed as
T2,n exceeds ∼10 µs, which is counter-intuitive. This suggests
that polarization suppression for long T2,n is not trivial simply
due to spin relaxation.

Figure 7(b) indicates that the coherence-dependent sup-
pression appears similarly for finite Ags,−. The maximum
polarization is suppressed as the flip-flip interaction becomes
stronger. This suppression includes the influence of reduced
electron spin polarization in the presence of the flip-flip inter-
action (data not shown). The stronger suppression for short
T2,n and large Ags,− is due to lowering the effective polar-
ization speed under the coexistence of flip-flop and flip-flip
interactions. The above-mentioned nontrivial suppression at
long T2,n also varies with the flip-flip interaction. As the
flip-flip interaction increases, the dependence on T2,n weak-
ens and converges to a constant value. Thus, the polarization
in the present interaction Ags,− = 15.1 MHz remains almost
constant at slightly above 20% for T2,n � 1 µs. This behavior
infers that the above nontrivial suppression for longer T2,n is
irrelevant in the present case.

F. Role of dark states

Finally, we examine the suppression that occurs when T2,n

is very long. Generally, in coherent quantum systems, it is
known that transitions can be suppressed by destructive inter-
ference of the entanglement states, called “dark states” [44].
The dark states tend to arise in highly symmetric systems [45].
This requirement is satisfied in hBN, where the three nitrogen
nuclear spins adjacent to V−

B are equivalent.
To describe the dark state in V−

B , we represent the orthog-
onal bases for the three nuclear spins by the following linear
combinations:

|φ1〉 = 1√
3

(|+ + −〉 + ei 2π
3 |+ − +〉 + ei 4π

3 |− + +〉),

|φ2〉 = 1√
3

(|+ + −〉 + ei 4π
3 |+ − +〉 + ei 2π

3 |− + +〉),

|φ3〉 = 1√
3

(|+ + −〉 + |+ − +〉 + |− + +〉),

|± ± ±〉 ≡ ∣∣m(1)
I = ±1/2, m(2)

I = ±1/2, m(3)
I = ±1/2

〉
.

(21)

Using these orthogonal bases, we can express the flip-flop on
the mS = 0 in GS as follows:

Ags,+
3∑

i=1

Ŝ− Î (i)
+ |mS = 0〉|φ1〉 = 0,

Ags,+
3∑

i=1

Ŝ− Î (i)
+ |mS = 0〉|φ2〉 = 0,

Ags,+
3∑

i=1

Ŝ− Î (i)
+ |mS = 0〉|φ3〉 =

√
3|mS = −1〉|+ + +〉.

(22)

Since |φ1〉 and |φ2〉 are transparent to the flip-flop interaction,
they are dark states. With these dark states kept coherent, the
transition to the fully polarized state |+ + +〉 is suppressed,
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reducing the achievable polarization. This mechanism is con-
sistent with the polarization suppression for long T2,n observed
in Fig. 7(b). In other words, when these states are phase
relaxed, i.e., some of them transition to |φ3〉, it can increase
the polarization [46].

We note that the influence of the dark state or entanglement
may appear in other defects in hBN, as it is a nuclear-spin-rich
crystal with high symmetry. It would be more pronounced in
isotopically enriched hBN with increased symmetry. Despite
these arguments, our simulations suggest that the impact of
the dark state hardly appears experimentally in the present
case, which is attributed to the strong flip-flip interaction due
to the symmetry of V−

B . However, this does not negate the
entanglement effect in other defects in hBN [47–56]. There-
fore, focusing on the influence of the nuclear spin coherence
in hBN remains essential.

VI. CONCLUSION

We have established that the DNP and ODMR spectra
in h10B15N can be explained by a model that considers the
electron spin of V−

B and three adjacent nitrogen nuclear spins.
Our model based on the Lindblad equation reproduced the
ODMR spectra in a wide range of magnetic fields, including
GSLAC. We found that the polarization estimations based
on the 4-dip fitting, including the conventional area-based
method, are not highly accurate. Developing a rigorous pro-
cess to estimate the true polarization from ODMR spectra
quantitatively is an important future direction. Our model also
revealed that DNP in V−

B is limited by the flip-flip interactions
and less affected by nuclear spin coherence. We discussed the
relevance of the symmetry-induced polarization suppression
mechanisms, which may be observed in other defects in hBN,
a nuclear-spin-rich highly-symmetric crystal. Our quantita-
tive understanding of the fundamental behavior of the most
representative quantum defects in hBN will contribute to the
theoretical developments and applications of the dynamics
of electron and nuclear spins of defects in two-dimensional
materials.
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APPENDIX A: SYMMETRY OF HYPERFINE
INTERACTIONS

We explain the necessary conditions for the hyperfine in-
teractions imposed by the symmetry of V−

B . Figure 8(a) shows
a schematic of the hyperfine interactions when V−

B is in the
GS. According to first-principles calculations, the symmetry
of the system in the GS is D3h [23]. The symmetry concerning
a rotation by φ ≡ 2π/3 in the x-y plane requires the following
condition:

A(2)
xx = Axxcos2φ + Ayysin2φ,

A(2)
yy = Axxsin2φ + Ayycos2φ,

A(2)
xy = (Axx − Ayy)sinφcosφ,

A(2)
yx = A(2)

xy , (A1)

where A(1)
xx ≡ Axx and A(1)

yy ≡ Ayy. The mirror symmetry with
respect to the x-z plane imposes the following conditions:

A(1)
xy = A(1)

yx = 0, A(3)
xx = A(2)

xx ,

A(3)
yy = A(2)

yy , A(3)
xy = −A(2)

xy ,

A(3)
yx = A(3)

xy . (A2)

We get Eq. (4) from Eqs. (3), (A1), and (A2).
On the other hand, first-principles calculations indicate that

in the ES, the system quickly relaxes to a state with C2v sym-
metry, as shown in Fig. 8(b) [23]. From a similar discussion
as in the GS case, the following relation is obtained:

A(1)
xy = A(1)

yx = 0,

A(2)
xx = A′

xxcos2φ + A′
yysin2φ,

A(2)
yy = A′

xxsin2φ + A′
yycos2φ,

VB

(b)(a)

GS: 

VB

ES: 

VB
-- VB

--

FIG. 8. Configuration of the hyperfine interactions between the
V−

B electron spin and the three adjacent 15N nuclear spins in (a) GS
and (b) ES. (b) shows that, according to first-principles calculations
[23], two of the hyperfine interactions (red, i = 2 and 3) are equiva-
lent, while the remaining one (blue, i = 1) is significantly smaller in
the case of ES.
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FIG. 9. Magnetic field orientation dependence of PL intensity.

A(2)
xy = (A′

xx − A′
yy)sinφcosφ,

A(2)
yx = A(2)

xy , A(3)
xx = A(2)

xx , A(3)
yy = A(2)

yy ,

A(3)
xy = −A(2)

xy , A(3)
yx = A(3)

xy , (A3)

where A(1)
xx ≡ Axx �= A′

xx and A(1)
yy ≡ Ayy �= A′

yy. Equations (3)
and (A3) lead to the following conditions:

A(i=1)
es,+ = Aes,xx + Aes,yy

4
,

A(i=2,3)
es,+ = A′

es,xx + A′
es,yy

4
,

A(i=1)
es,− = Aes,xx − Aes,yy

4
,

A(i=2,3)
es,− = A′

es,xx − A′
es,yy

4
e2iφ(i)

,

φ(2) = −2π/3, φ(3) = −φ(2). (A4)

Under Axx, Ayy, A′
xx, A′

yy < 0, it immediately follows that

|A(i)
es,+| > |A(i)

es,−|.

APPENDIX B: EFFECTS OF MAGNETIC
FIELD MISALIGNMENT

Magnetic field misalignment alters the magnetic field de-
pendence of PL intensity. Figure 9 shows the Bz dependence
of PL intensity. Black markers represent experimental data,
and the solid lines in different colors correspond to PL in-
tensity I = �0ρes simulated by the steady-state solutions of
the Lindblad equation without considering microwaves. Each
color represents a misalignment angle θ = 0◦, 0.5◦, 1.5◦, and
3.0◦. We note that the experimental and simulated behaviors
qualitatively agree. However, the changes in the Bz depen-
dence of PL intensity for θ = 0.5◦–1.5◦ are not significant,

Time (ns)
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FIG. 10. Time-resolved PL of V−
B at Bz = 35 mT and optical

powers of 0.18 (light blue) and 0.73 mW (pink). The vertical axis
represents photon counts, and the horizontal axis shows the time
elapsed after the readout laser is turned on. (a) Time-resolved PL
after polarization into mS = 0 by laser irradiation. (b) Time-resolved
PL after applying an adiabatic inversion pulse [60,61] corresponding
to the mS = 0 ↔ +1 transition.

making it difficult to estimate the angle θ accurately. The PL
intensity reduction near the LAC is attributed to the mixing of
the V−

B electron spin ground-state mS levels [30,57,58].

APPENDIX C: TIME-RESOLVED PL

We experimentally estimate the optical transition parame-
ters of V−

B shown in Fig. 1(b) by fitting the time-resolved PL
using a five-level model of V−

B [30,59]. The estimated optical
transition parameters are used in our simulations based on the
Lindblad equation.

Figure 10 shows experimental data of the time-resolved
PL obtained at Bz = 35 mT. The optical powers are set at
0.18 and 0.73 mW, indicated by light blue and pink mark-
ers, respectively. Figure 10(a) shows the time-resolved PL
after polarizing to mS = 0 via initialization laser irradiation,
and Fig. 10(b) shows the time-resolved PL after applying an
adiabatic inversion pulse corresponding to the mS = 0 ↔ +1
transition [60,61]. The vertical axis represents photon counts,
and the horizontal axis represents the time elapsed since the
readout laser is turned on.

We fit the experimental data using the time-resolved
PL described by the rate equations. The occupation
vector for each level in Fig. 1(b) is given by n =
[n0,gs, n1,gs, n0,es, n1,es, nms]T, where n0,gs (n0,es) represents the
occupation of the mS = 0 state in the GS (ES), n1,gs (n1,es)
represents the occupation of the mS = ±1 state in the GS (ES),
and nms corresponds to that in the MS. The time-resolved
PL intensity at a time t , �0(n0,es + n1,es), follows the rate
equation below:

n(t ) = eAt n(t = 0), A =

⎛
⎜⎜⎜⎜⎝

−�L 0 �0 0 γ
g
0

0 −�L 0 �0 γ
g
1

�L 0 −(
γ e

0 + �0
)

0 0
0 �L 0 −(

γ e
1 + �0

)
0

0 0 γ e
0 γ e

1 −(
γ

g
0 + γ

g
1

)

⎞
⎟⎟⎟⎟⎠. (C1)

We set the initial condition of the occupation vector in the case
of Figs. 10(a) and 10(b) as n(t = 0) = [p, 1 − p, 0, 0, 0]T

and n(t = 0) = [p − q, 1 − p + q, 0, 0, 0]T, respectively. The
fitting parameters are {�L, �0, γ

e
0 , γ e

1 , γ
g
0 , γ

g
1 , p, q}. The
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time-resolved PL obtained from this fitting is shown by the
solid lines in Fig. 10. The values estimated from this fitting
are compiled in Table II.

APPENDIX D: LINDBLAD EQUATION
IN LIOUVILLE SPACE

We describe the method for calculating the Lindblad equa-
tion to obtain Psim,true, as mentioned in Sec. III. We vectorize
the density matrix ρ̂ as follows:

ρ̂ =

⎛
⎜⎜⎝

ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n
...

...
. . .

...

ρn1 ρn2 · · · ρnn

⎞
⎟⎟⎠ → |ρ〉〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11

ρ12
...

ρ1n

ρ21
...

ρnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D1)

We convert Eq. (11) into the following Liouville space
form [62]:

∂

∂t
|ρ〉〉 = L̂ |ρ〉〉, L̂ = − i

h̄
Ĥ + D̂,

Ĥ = Ĥ ⊗ I56 + I56 ⊗ ĤT ,

D̂ =
∑

k

�k

{
L̂k ⊗ L̂†T

k − 1

2
(L̂†

k L̂k ) ⊗ I56

− 1

2
I56 ⊗ (L̂†

k L̂k )T

}
. (D2)

I56 is the 56×56 identity matrix. Given that L̂ is time-
independent, we calculated the steady-state solution ρ̂sat

of Eq. (D2) by numerically solving the null space of the
3136×3136 matrix L̂ . Importantly, unless the relaxation of
the 15N nuclear spin is included in the Lindblad equation,
the nonzero steady-state solution of Eq. (D2) is not uniquely
determined.
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