PHYSICAL REVIEW B 111, 195109 (2025)

Topological quantized edge pumping spin flip in the Rice-Mele model with spin-orbit coupling
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The quantized Thouless pumping charge in a spinless Rice-Mele model originates from a degeneracy point
in the parameter space and cannot be detected when open boundary conditions are applied. In this work, we
investigate the topological features of a spinful Rice-Mele model. We demonstrate that spin-orbit coupling
facilitates the transition of a single degenerate point into a degenerate loop, which is anticipated to be the source
of the topological characteristics. When periodic boundary conditions are considered, we find that the pumping
spin is zero for an adiabatic loop within the nodal loop and is 2 (in units of 7i/2) for an adiabatic passage
enclosing the nodal loop. When open boundary conditions are considered, the boundary-bulk correspondence is
demonstrated by quantized pumping spin flips at the edges, which can be obtained by completing double periods
of a closed passage, rather than a single cycle. Our findings reveal an alternative dynamic manifestation of the

boundary-bulk correspondence.
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I. INTRODUCTION

Thouless pumping, as the quantum version of matter
pumping [1] by a mechanical device, has garnered signifi-
cant attention over a long period. It involves the transport
of charge without a net external electric or magnetic field,
achieved through an adiabatic cyclic evolution of the underly-
ing Hamiltonian. In contrast to transport by a classical device,
the transported charge in a Thouless pump exhibits two in-
triguing features. First, the total probability of the transferred
particles is precisely quantized during a cyclic adiabatic pas-
sage. Secondly, as a demonstration of topological invariant, a
nonzero pumping charge for the ground state is shown to be
related to a degenerate point [2]. Recently, the versatility and
control of synthetic quantum systems have made experimental
realization of quantum pumping possible. Electron pumping
experiments have been performed in various semiconductor-
based nanoscale devices [3-5]. More recently, the topological
charge pump was realized in optical superlattices based on
ultracold atom technology [6-8] and it has been also exten-
sively studied in theory [9—-17]. To date, there have been many
works focusing on the topological pumping charge in different
systems, such as in superconducting circuits [18-21], in multi-
terminal Josephson junctions of conventional superconductors
[22,23], and in topological superconductors [24—-28].

In this work, we studied the topological Thouless pumping
of a spinful Rice-Mele (RM) chain with spin-orbit coupling.
In general, the quantized Thouless pumping charge in a
spinless RM model originates from a degeneracy point in
the parameter space. We demonstrate that spin-orbit cou-
pling facilitates the transition of a single degenerate point
into a degenerate loop, which is anticipated to be the
source of the topological characteristics. There has been a
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substantial amount of prior work focusing on the topology of
the nodal line, primarily in semimetals, such as those reported
in [29-33]. Additionally, research has also been conducted
on materials with spin-orbit coupling, including [34-37]. It
is important to note that, in semimetals, the nodal line is a de-
generacy line that lies in three-dimensional momentum space
rather than parameter space in our scenario and its topological
properties are demonstrated through the integral of the Berry
connection in momentum space along a loop that interlocks
with the degenerate loop [29,31,32]. When periodic boundary
conditions are considered, analytical and numerical studies
show that the pumping charge remains zero as the degenerate
point transitions to a nodal circle. In contrast, we find that the
pumping spin is zero for an adiabatic loop within the nodal
loop and is 2 (in units of 7/2) for an adiabatic passage enclos-
ing the nodal loop. Up to now, topological spin pumping has
been extensively studied in numerous works. These studies
include theoretical perspectives on systems with spin-orbit
interaction [38—45] and experimental realizations in superlat-
tices, superconductors, and magnetic systems [46—48]. The
Z, invariant [49] and the spin Chern number [50,51] have
been proposed to characterize the topological properties de-
termined by symmetry. In addition, we also investigate a
dynamic manifestation of the boundary-bulk correspondence.
We calculate the pumping spin flip for different adiabatic
passages under the open boundary conditions. We find that
the quantized pumping spin flips at the edges can be obtained
only when double periods of a closed passage are considered.
The pumping spin flips at the edges is zero for an adiabatic
loop within the nodal loop and is 2 (in units of 7/2) for
an adiabatic passage enclosing the nodal loop. Our findings
not only propose an origin for the topology but also provide
another method for dynamically detecting the boundary-bulk
correspondence. The structure of the paper is outlined as fol-
lows. We commence in Sec. II by presenting the Hamiltonian
and examining its symmetry. In Sec. III, for a straightforward
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scenario where spin-orbit coupling is absent, we assess the
validity of employing pumping charge as a topological indi-
cator. Consequently, we introduce the concept of topological
pumping spin. In Sec. IV, we derive the zero-energy point
equation of the energy band in parameter space under peri-
odic boundary conditions. The topological properties of the
system originate from this equation. In Sec. V, we focus on
the case where spin-orbit coupling is negligible. We theo-
retically investigate the pumping spin of every energy band
using perturbation theory. Furthermore, we present numeri-
cal results for the general case of spin-orbit coupling, which
demonstrate that the pumping spin is a universal topological
invariant for the system. In Sec. VI, we introduce the concepts
of spin-flip current and pumping spin flip. Our numerical
simulations demonstrate that the distribution of the pumping
spin flip exhibits marginal characteristics and the aggregate of
the marginal pumping spin flips is found to be quantized. we
draw conclusions in Sec. VII. Some detailed derivations are
given in the Appendices.

II. MODEL AND SYMMETRY

Considering the one-dimensional RM model on 2N lattice
with spin-orbit coupling, the Hamiltonian is

H = Z Ho' +HS()7 (1)
o=1.1

where the coupling-free part is

2N

1+ (=1)8
Hy =Y (-1) [T(c;acﬁl,a +H.c.)
j=1

—(=1y Vc},(,c,»,a} @)

and the spin-orbit coupling term is

2N

A +
Hy, = 5 E E [(—I)GC}’GCH_L_(, + H.c.]. 3)
j=lo=t

Here, H; + H| can be seen as two independent RM models
with opposite spin and c;’a is the fermion creation opera-
tor at site j; o =%, | denotes spin polarization. We have
CoN+1,0 = C1,» for the system with periodic boundary con-
dition, while c;y+1,, = 0 for open boundary condition. The
strength of hopping is dimensionless and spin-dependent,
given by (—1)" = —(=1)¥ = 1. Term H,, characterizes the
spin-orbit coupling with the strength 1 /2.

For the Hamiltonian Hy + H , both total fermion number
n with spin o =1, | and total spin component s, are conser-
vative, that is

[n,,Hy + H ] = [s;, Hy + H ] =0, 4)
where
2N
Ny = Zc}ygcw 4)
j=1

and

2N
Sq = Zsj-‘. (6)
j=1

Here the spin operators s¢ (¢ = x, y, z) at jth site (in units of
li/2) are defined as

o _ o.F ¥ af Cjt
sj=(cjp i o (ch)’ )

where 0 (o = x, y, z) are Pauli matrices, given as

c (0 1y, (0 —i
=\ o) TG o)
UZ:<(1) _°1>. ®)

We note that the term H, breaks the conservations of n,
and s,, but remains the conservation of total fermion number
n = ny +n,. In addition, defining a spin-flipping operator R
as follows

RejoR™' =cj ;. )
which flips a spin to the opposite direction, we have
RHR '=—H. (10)

This means that the energy levels of H are symmetric with
respect to 0. In addition, considering a gauge transformation
as follows

Acj A7 = (=1)c;,, (11)
with j € [1, 2N], then we have
RAH(V)(RA)™' = H(-V), (12)

which indicates that H(V) and H(—V) have the same
spectrum.

III. TOPOLOGICAL PUMPING SPIN

In this work, we investigate the topology of the Hamilto-
nian H by considering the time-dependent parameter § = §(¢)
and V =V (t). To proceed, we first give a brief review of
features of the Hamiltonian H,,. It can be diagonalized in the
form

H, = Zsk,g((x;gakﬁ — ,3/:0/3,(’0)7 (13)
3

where the spectrum is given by

o =V VI + vl (14)

Here y =[(1 — &)+ (14 8)e*1/2 and wave vector k =
2nw /N, n=1,2,...,N. Two sets of fermion operators
{otk.0» Br.o} can be extracted from the single-particle solution
of the equation, given by

Ho Y5, = £eo Vi ,), (15)

where |y ) = |0) and |y, ) = B |0). Here |0) is the
vacuum state satisfying ay ,|0) = Bi.»|0) = 0. For the adia-
batic time evolution along an arbitrary loop with

S¢+T)=48@), V@E+T)=V(), (16)
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the pumping charge Q, = /OT J,dt is shown to be a demon-
stration of the Chern number, where the current across two
neighboring sites is equivalent to the k integral of the Berry
curvature, that is

. 2
Jy = 2L f (@ (W, DIV, — Bl DB W, )dk.
T Jo

a7
We have the following topological characteristics:
__J(=1)°, enclosed (0, 0),
Qo = {0, otherwise, (18)

which arise from the degenerate point at (5, V) = (0, 0). The
pumping charge can be computed by quasiadiabatic passage.
Obviously, for the ground state of Hy + H| the obtained
pumping charge Q4 + Q, is vanishing whether the loop in the
8 — V plane encloses the origin or not. Then the topological
invariant in H; + H| cannot be detected via the pumping
charge.

Nevertheless, it is obvious that the sub-Hamiltonians H;
and H| are really topologically nontrivial. We need an al-
ternative topological invariant to characterize such topology.
Technically, an amount of pumping charge Q, is always as-
sociated with an amount of pumping spin (—1)°Q,. Then
we can employ the total pumping spin for the ground state,
defined as § = Q4 — Q,, as topologically invariant, which

obeys
27
s=15

In the following, we will investigate what happens in the
presence of spin-orbit coupling.

enclosed (0, 0),

otherwise. (19)

IV. NODAL CIRCLE

In this section, we focus on the solution of the system in
the presence of spin-orbit coupling. Under periodic bound-
ary conditions, the system has translational symmetry, with
each unit cell including four degrees of freedom. Employing
Fourier transformation

Coj— a
2j-11 oiki bk,T
€2j.1 — k.t
= e, (20)
€2j-1,) VN | Pk
€251 k.|

the Hamiltonian can be written as
H= Z AN (1)
27 >k>0

where the operator vector is defined as

i i i i i
v = (ak’T bk,T a —b,w) 22)
and the core matrix is
\%4 ¢ & 0
0 E ¢ =V

Here the k-dependent factors are given by

c=[1-8+1+8e "2,
£ =x1(1—e")2. (24)

The four eigenvalues of /; can be expressed as

S = u\/;g“* FEET V2 40 AV2EE 4 (08 + 50,
(25)

with u, v = %. The derivations in the Appendixes show that
the energy gap between positive and negative bands closes
only when k = 0 or . The corresponding zero-energy points
form a nodal loop in the § — V plane, obeying the equation

2 +vr=2% (26)

Obviously, it is a circle with radius X centered at the origin. In
Fig. 1, the spectral structure in the parameter space, obtained
from the spectrum ¢,, ,, is plotted for different values of A as
an illustration.

V. TOPOLOGY ORIGINATED FROM NODAL LOOP

It has been shown that the quantized Thouless pumping of
charge and spin in the RM model, in the absence of spin-orbit
coupling, originates from the degeneracy point at the origin.
Furthermore, this is also true when multiple degenerate points
are involved. Now, a natural question arises: what happens
when these degenerate points form a degenerate loop, which
contains an infinite number of degenerate points? Our strategy
consists of two steps: (i) we perform an analytical analysis by
considering an adiabatic loop that is far from the nodal circle;
(ii)) we conduct numerical simulations to verify the results
obtained.

Now we focus on the first step. The spin-orbit coupling
term Hg, can be regarded as perturbation under the condition
82 4 V2 > A2.In the following, we only focus on the negative
energy bands. Applying the perturbation method, we can get
zero-order approximation eignstates of A for two negative
energy bands, given by

) _ W) F im0 iy
O | = \/E s

where the factor Ay is given by

Ay = arg |:sin (¢k — g) + i cos 0y cos (¢k - g)} — ¢,

27

(28)
with
2 — 52
O, = arctan |:\/1+8 +«/(§1V 5 )COSk:|,
. (1 +68)sink
P _mtan[(l “5H+d +a)cosk]' (29)

Accordingly, for an adiabatic time evolution along an ar-
bitrary loop far from the nodal loop, the pumping charge
for each band is Q* = [/ J*d1. Here the current across two
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FIG. 1. Spectral structure in the parameter space for the Hamiltonian given by Eq. (1). (a) Several representative nodal circles derived from
Eq. (26) on the § — V plane for different spin-orbit coupling strengths, as indicated in the panel. (b) Color contour plots of the energy band
e_._ from Eq. (25), with the wave vector k set to 7. The black circle represents A = 1, which corresponds to the one plotted in (a).

neighboring sites is

; 2w
= é/o (@ (@ D) — @Bl DB @i 1dk. (30)

Since the factor A has no contribution to the Berry curvature,
direct derivations show that

JE =10+ ). (31)

Then the pumping charge Q* = (Q4 + Qy)/2 is vanishing
whether the loop in the § — V plane encloses the nodal circle
or not. In contrast, the pumping spin for the ground state can
also be regarded as a topological invariant, obeying
2,
s=15
This conclusion should still hold true when the adiabatic loop
approaches the nodal circle due to the fact that the Chern num-
ber must be an integer. On the other hand, although the nodal
loop is in the two-dimensional parameter space rather than
in three-dimensional momentum space as in the semimetal
system, we find that, within a certain parameter region, we can
map our model to a semimetal model studied in a previous
work by adjusting the parameters § and V. In this previous
work [52], a Z, invariant defined on a sphere enclosing the
whole nodal loop is given and the details are presented in Ap-
pendix B. However, it is a challenge for us to establish the cor-
respondence between the quantized spin pumping and the Z,
invariant. This should be an interesting topic for future work.
Now we turn to the second step. In order to verify and
demonstrate the conclusions, numerical simulations are per-
formed for quasiadiabatic time evolution in finite systems.
The driven system adopts periodic boundary conditions to
simulate the dynamic behavior of the topology originating

from the nodal circles. To this end, we introduce the local
charge current J; , and spin current $; operators as

. 14+ (=1)'s
jo_1+CEDe

enclosed the nodal circle,

otherwise. (32)

Lo S5 (=€) e+ He,  (33)
. 14+ (=1)s
Sl = T ZC;,JCI‘HJ + H.C., (34)

for the dimer across two neighboring sites / and / + 1 with
[ €[1,2N].

In the following we are going to calculate the pumping
charge and spin of ground state for a quasiadiabatic passage in
the parameter space. We consider the time-dependent Hamil-
tonian H (t) with periodically varying parameters as follows:

8(t) = Ry cos (wt + 6y) + do,
V(t) = Ry sin (wt + 6p) + Vo, (35)

which is a closed loop with a center at (5o, Vj) in the 6 — V
plane. Here, w controls the varying speed of the Hamiltonian
and the period is 7 = 2m /w. As in the discussions in the
related studies [49,51], we would like to analyze the time-
reversal symmetry of the model with the parameters given in
Eq. (35). First, we rewrite the Hamiltonian in the form of Pauli
operators, which is

1+ (—=1)/8( Ao
H(t) = Z [%C;UZQJA + EC}-O'}CJ'+1 +H.c.
J

+V(r)(—1)f“cjazcj} (36)
where the operator vector is given by C; = (c;T, cj. 1)- then we
introduce the time-reversal operator defined as

@ — e—iﬂa)'/ZK’ (37)

with K being the complex conjugation operator, and then we
have

00" = —¢° (38)

and
OH(1)® ! £ H(—1). (39)
This means that H(¢) do not preserve the time-reversal sym-

metry due to Pauli matrix o in the hopping term. This is a
crucial difference from the two references.
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FIG. 2. Schematics of the adiabatic passages, the corresponding energy spectrum, pumping spin currents, and pumping spins of the ground
state for several quasiadiabatic passages. The driven system adopts periodic boundary conditions to simulate the dynamic behavior of the
topology originating from the nodal circles. (al) The green circle represents the nodal circle for A = 1 in the § — V plane, while the red loops
P1, P2, and p; are three adiabatic passages in parameter space with a counterclockwise direction. The corresponding parameter equations are as
follows: p;: § = 1.8 cos(wt), V = 1.8 sin(wt); pr: 8 = 0.05 cos(wt), V = 0.05 sin(wt); p3: § = 0.1 cos(wt) + 2,V = 0.1 sin(wt) + 2. Panel
(a2) shows the plot of the instantaneous spectrum of the time-dependent Hamiltonian for the passage p;, where 8 = wt and the evolutionary
period of every energy level is 2. Panels (bl), (b2), and (b3) correspond to the spin currents (S;) = (¢(¢)|S;|¢(z)) and pumping spin ¥, for
the passages pi, p2, and ps, respectively, obtained from the numerical results for Eqgs. (34) and (44). Here the position / is taken arbitrarily due
to the translational symmetry. The results indicate that pumping spin is nearly quantized, being 2 or 0, determined by whether the adiabatic
passage encircles the nodal circle or not. Other parameters are N = 10, w = 0.001, and Az = 7 /200.

The pumping charge and spin for an evolution period can
be expressed as

T

0y = /O GO0 @), (40)
T

s = /0 GOS0, @1)

where |¢(¢)) is the evolved state from the initial ground state
|$(0)) of H(0). The practical computation is performed by us-
ing a uniform mesh in time discretization. Time is discretized
into t,,,, with tp = 0 and #,; = T'. For a given initial eigenstate
|¢(0)), the time-evolved state is computed using

lp(t,)) = TH exp [—iH (ty—1)(tm — tu-111¢(0)),  (42)

m=1

where 7 is the time-order operator. In the simulation, the
value of M is considered sufficiently large to obtain a con-
vergent result and the pumping charge and spin is

M

Qo X Y (U)o (b)) At (43)
m;l

TR Y (PSP (tn)) AL, (44)

=1

3

where At = (t; —t;,—) is the time step. In the process of
computation, the value of @ should be sufficiently small to
fulfill the requirement of quasiadiabatic evolution.

In Fig. 2, the schematics of the adiabatic passages, the
corresponding energy spectrum, pumping spin currents, and
pumping spins of the ground state for several quasiadiabatic
passages are presented. The results indicate that the pumping
spin is nearly quantized, being 2 or 0, determined by whether
the adiabatic passage encircles the nodal circle or not. The
results are similar to the pumping charge of the ground state of
a RM model with single degeneracy point, where the pumping
charge is 1 or 0, determined by whether the adiabatic loop
encircles the degenerate point or not. This strongly implies
that the topology of the spinful RM model with spin-orbit
coupling is the same as that in the single spinless RM model
with a degenerate point. In addition, the pumping spin cur-
rents in Fig. 2(b) are approximately symmetric with respect to
0 = m (V = 0), which probably originates from the symmetry
described in Eq. (12).

VI. EDGE PUMPING SPIN FLIP

In the previous section, we explored the behavior of
pumped spin under periodic boundary conditions. An intrigu-
ing question arises when considering open boundaries: what
changes occur? A previous work has presented a method
in terms of parallel transport and gauge fields to detect
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FIG. 3. Schematics of the adiabatic passages, the corresponding energy spectrum, pumping spin flip distribution, and total edge pumping
spin flip of the ground state for several quasiadiabatic passages. The driven system adopts open boundary conditions to simulate the
dynamic behavior of the boundary-bulk correspondence. (al) The green circle represents the nodal circle for A =1 in the § — V plane,
while the red loops p;, p2, and p; are three adiabatic passages in parameter space with a counterclockwise direction. The corresponding
parameter equations are as follows: p;: § = 1.8 cos(wt + ), V = 2.7 sin(wt + 6y); p2: § = 0.05 cos(wt + 6y), V = 0.05 sin(wt + 6y); p3:
8 =0.1 cos(wt +6y) + 1.3, V = 0.1 sin(wt + 6y) + 1.3. Panel (a2) shows the plot of the instantaneous spectrum of the time-dependent
Hamiltonian for the passage p;, where 6 = wt + 6, and the evolutionary period of every energy level is 4. There is a crossing point between
two energy levels of twofold degeneracy edge states at @ = 2. One of the edge energy levels is indicated in green. It indicates that any edge
state completes its adiabatic cycle with a period of 47r. Panels (b1), (b2), and (b3) correspond to the distribution of the pumping spin flip ,° and
total edge pumping spin F for the passages p;, p2, and ps, respectively, obtained from the numerical results for Eqs. (47) and (48). We observe
that the pumping spin flip F° vanishes in the bulk region. The results indicate that total edge pumping spin flip F' is nearly quantized, being 2
or 0, determined by whether the adiabatic passage encircles the nodal circle or not. Other parameters are N = 10, w = 0.0005, 6, = 7 /2, and
At = 1 /200.

spin pumping current in an open system [53]. Inspired by
this study, in the following, we focus on the system with
open boundary conditions. In this situation, we always have
0y = Q, = 0 for any adiabatic passage due to the disconnec-
tion at the boundary. It is obvious that the total pumping spin
is always zero for any adiabatic passage and thus cannot be
used to characterize the topological feature. Nevertheless, we
note that there should be an accumulation of particles at the
ends of the chain, which may induce a spin-flip current. The
operator of the spin-flip current can be defined as follows:

A
ZG — ZC;-,GCZ+1*70- + H.C.,
where [ € [1, 2N — 1]. In comparison with the normal current
operator, it measures the current across sites / and / + 1, asso-
ciated with spin flipping. When there is no spin-orbit coupling,
it becomes clear that no spin flip current can flow, as the

(45)

channels remain disconnected. However, in the presence of
spin-orbit coupling, a transport channel between two opposite
spins exists, potentially creating an accumulation of spin flips.
Similarly, we can define the pumped spin flip as
2T

F = /(; (@OIT P))dt, (46)
for a given adiabatic passage. Here, T is the period of the
time-dependent Hamiltonian, with parameters as described in
Eq. (35). In general, the integral period is T, corresponding
to a single cycle of the quasiadiabatic time evolution along
the adiabatic passage. However, for an open chain, a double
cycle of the quasiadiabatic time evolution along the adia-
batic passage should be considered to ensure that every initial
single-particle eigenstate can evolve back. To demonstrate
this point, we plot the energy level structure for the passage
in Fig. 3(a2). We can observe that the edge states do not

195109-6
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revert after a single adiabatic passage cycle, whereas all other
eigenstates do.
To perform numerical simulation of the quantity, we have

2M
FP ~ Y {pta)| T ()l (1)) At A7)

m=1

which is similar to the formulation presented in Eq. (44). The
details and the results are elucidated in Fig. 3. It displays
several adiabatic loops in parameter space, while Fig. 3(a2)
shows the energy spectrum of the adiabatic loop encircling
the nodal circle in Fig. 3(al). We find that two distinct en-
ergy levels, which are separated from the rest, correspond
to the energies of the edge states. These two energy levels
cross once after one period 7', causing the edge state to adi-
abatically evolve along the green energy level depicted in
Fig. 3(a2) and then return to its initial state after evolving
for two periods. In (bl), (b2), and (b3) of Fig. 3 we present
the corresponding simulation results for the pumping spin flip
defined in Eq. (47). The results in Fig. 3(b1) demonstrate that
F? = F°, indicating that the pumping spin flip is position
dependent. Specifically, the magnitude of the pumping spin
flip decreases from the edges to the middle of the open chain,
reaching zero at the center region. Furthermore, the pumping
spin flip exhibits symmetry with respect to the center of the
chain, but with opposite signs. To characterize the topology of
the edge properties of the pumping spin flip, we introduce the
concept of total pumping spin flip for a half chain, defined as
follows:

N-—1
F=7)F, (48)

I=1,0

which is the sum of the pumping spin flip over half of the
sites. The numerical results reveal that the total pumping spin
flip approaches the value of 2 with high precision when the
adiabatic loop encircles the nodal circle. Conversely, when
the adiabatic loop is either entirely within or outside the nodal
circle, the total pumping spin flip is close to 0 with minimal
deviation. Hence the quantized total pumping spin flip can
serve as an indicator for the topology of the system under open
boundary conditions. Here, it is worth noting that, although
Fig. 3(b) indicates that the contribution of the pumping spin
flip comes from the edge region, the contribution from the
edge states is negligible. This suggests that the edge distribu-
tion of the pumping spin flip does not originate from the edge
states. In addition, zero-energy edge states always exist for a
given point inside the nodal loop. However, the corresponding
evolved states do not exhibit chiral propagation. This result
reveals the dynamic behavior associated with the boundary-
bulk correspondence.

VII. SUMMARY

In summary, we investigate the dynamic demonstration on
topology in association with nodal loop in a system with peri-
odic and open boundary conditions. In contrast to the previous
works, the nodal loop lies in a 2D parameter space, rather than
a 3D space. The topology studied in the present work origi-
nates from a degenerate line, while in the previous work, such
as that in Ref. [54], the related topology feature essentially

originates from an isolated degenerate point. Furthermore, we
also investigate a dynamic manifestation of the boundary-bulk
correspondence by computing the pumping spin flip for differ-
ent adiabatic passages under the open boundary conditions.
The results indicate that pumping spin flips at the edges are
also quantized only for double periods of a closed passage.
Our findings not only propose an origin for the topology but
also provide another method for dynamically detecting the
boundary-bulk correspondence.
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APPENDIX A: NODAL LOOP

In this Appendix, we derive the equation for the nodal loop
based on the spectrum provided in Eq. (25). When the energy
gap closes, we obtain the following result:

(O +EE"+ VP =4VEEE + (8" +E0),  (AD)
which implies that
(0" —E6" + V) = (¢&" — 6 (A2)
Furthermore, by applying Eq. (24), we find that
[EF = %[S(Cosk— 1) — i sink] (A3)
and then
(CC* —EE* + V)2 = —2%sin’k. (A4)

Clearly, the equation has solutions only when & is either O or
7. For k = 0, we get

(O —EE VI=14VE=0, (A5)

which indicates that there is no solution. For k = 7, we get
the solution

2 +Vvi=22 (A6)

which represents a circle with radius A.

APPENDIX B: MAPPING TO A SEMIMETAL MODEL

At first, we map the core matrix h;, given by Eq. (23)
to a three-dimensional momentum space by replacing the
parameters

(6, V, k) = (—y sink,, y sinky, k; + ), B1)
where y = /1 — A%2/2 (|]A| < 1). Note that such a map does
not cover all the region of (§, V). However, we are only in-
terested in the region in the vicinity of (k, k,, k;) = (0, 0, 0).
Second, in such a region, we have

sink, ~ k,,

sink, ~ k. (B2)
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Then the matrix in Eq. (23) becomes

hie & hy
ky ky + ik, Ay 0
| ke =ik, —k, 0 Ay
- Ay 0 ky ky — ik, (B3)
0 Ay ky + ik, —k,
Third, applying a unitary transformation
—1i 1 1
Iy 1 —i 1 i
U= 5| 1 ; L —il (B4)
i —i
we find that
k, ky 0 Ay —ky
- ky —k, Ay +ky 0
=Yl 0 aytk K k|
Ay —ky 0 ky —k;
(B5)

which is identical to the matrix

q: qx 0 —qy+m
_ qx —-q; gytm 0
H@ = 0 gy +m q: qx ’
—qy+m 0 qx —q;
(B6)

appearing in Ref. [52]. As shown in this paper, this model
describes a topological nodal line semimetal associated with
the nodal ring

a:=0, qi+q =m’, (B7)

in its spectrum

ﬂ@:iJﬁ+Wﬁ+ﬁimﬁ (BS)

As reported in that work, a Z, invariant defined on a sphere
enclosing the whole nodal loop is given for such a three-
dimensional model.
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