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Orientation-dependent transport in junctions formed by d-wave altermagnets
and d-wave superconductors
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We investigate de Gennes-Saint-James states and Josephson effect in hybrid junctions based on d-wave alter-
magnet and d-wave superconductor. Even though these states are associated to long junctions, we find that the
dx2−y2 altermagnet in a normal metal/altermagnet/d-wave superconductor junction forms de Gennes-Saint-James
states in a short junction due to an enhanced mismatch between electron and hole wave vectors. As a result,
the zero-bias conductance peak vanishes and pronounced resonance spikes emerge in the subgap conductance
spectra. By contrast, the dxy altermagnet only features de Gennes-Saint-James states in the long junction.
Moreover, the well-known features such as V-shape conductance for dx2−y2 pairings and zero-biased conductance
peak for dxy pairings are not affected by the strength of dxy altermagnetism in the short junction. We also study the
Josephson current-phase relation I (ϕ) of d-wave superconductor/altermagnet/d-wave superconductor hybrids,
where ϕ is the macroscopic phase difference between two d-wave superconductors. In symmetric junctions,
we obtain anomalous current phase relation such as a 0-π transition by changing either the orientation or the
magnitude of the altermagnetic order parameter and dominant higher Josephson harmonics. Interestingly, we
find the first-order Josephson coupling in an asymmetric dx2−y2 -superconductor/altermagnet/dxy-superconductor
junction when the symmetry of altermagnetic order parameter is neither dx2−y2 nor dxy wave. We present the
symmetry analysis and conclude that the anomalous orientation-dependent current-phase relations are ascribed
to the peculiar feature of the altermagnetic spin-splitting field.
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I. INTRODUCTION

Heterostructures formed by superconductors coupled to
normal state materials bear a great interest in condensed
matter physics due to their potential for realizing emergent
superconducting phenomena of use for future quantum ap-
plications [1–5]. These novel states are often characterized
by low-energy excitations within the superconducting gap,
or subgap states, that can be controlled with great precision.
In the simplest case, when a finite size normal metal is in
contact with a superconductor, subgap bound states appear
in the normal region known as de Gennes-Saint-James states
[6] which are also called Andreev bound states [7,8]. Accord-
ing to Bohr-Sommerfeld quantization [9], these states form
when the total accumulation of phase becomes a multiple
of 2π during a complete cycle comprising two Andreev re-
flections at the normal metal-superconductor interface and
two normal reflections at the open edge of the normal metal.
The bound states manifest themselves as a series of pro-
nounced conductance spikes [10] which have been observed
experimentally in various metallic materials backed on one
side by a superconductor [11,12]. The spikes oscillate as a

function of the thickness of the normal region with char-
acteristic length ξS = h̄vF /(π�), where � is the supercon-
ducting gap. Notably, with unconventional pairing states,
such as d-wave pairings, the resonant bound states evolve
into flat zero-energy surface Andreev bound states [13–16]
and can be found at normal regions of arbitrary thick-
ness [17,18]. The surface flat bands manifest themselves
as a zero bias conductance peak in tunneling spectroscopy
[14,17,19–23].

The de Gennes-Saint-James states have also been ex-
tensively studied in ferromagnet/superconductor hybrids
[24–29]. In this regard, it was shown that the oscillations at
the scale of ξF in the induced pairing amplitude and in the
local density of states at the Fermi energy are related to the
evolution of the resonant states [25], where ξF = h̄vF /(πM )
is the ferromagnetic coherence length with M the exchange
field in the ferromagnet. Here, ξF is generally much smaller
than ξS so that the oscillation is short ranged. For strong
ferromagnets such as half metals, Andreev reflection is of-
ten suppressed or forbidden [30–32]. Remarkably, equal spin
Andreev reflection was observed in experiments due to spin-
flip and spin-mixing processes at the spin-active boundary
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between ferromagnet and superconductor [33], and is the key
factor to produce the resonant states in the superconducting
gap.

Recently, a novel class of magnets dubbed altermagnets
(AMs) has attracted substantial interest [34–50]. AM mate-
rials exhibit anisotropic nonrelativistic introin splitting field,
without net magnetization. From symmetry perspective, the
opposite-spin sublattices in AMs are connected by rotational
or mirror symmetries, rather than translational or inversion
symmetries, leading to even-parity order parameter such as
d , g wave, etc. Various AM materials have been found like
RuO2 [36,38,42], MnTe [51–53], and FeS [54], see also Refs.
[43,45,48].

The interplay between altermagnetism and superconduc-
tivity bears fundamental interest and is expected to be useful
for spintronic applications [50]. It was found that the Andreev
reflection in AM/superconductor (SC) junctions is strongly
orientation dependent [55–59] and spin polarized [60]. Also,
it was shown that even without net magnetization, there are
0-π oscillations when modulating the junction length and AM
strength in Josephson junctions with spin-singlet SCs and
d-wave AMs [61–63]. The exotic ϕ-Josephson junction was
also predicted in altermagnetic Josephson junctions with sim-
plest s-wave pairing potential [64,65]. It was shown that the
current-phase relation has a rich diversity of anomalous char-
acteristics such as multiple nodes [64], tunable skewness [66],
and orientation dependence [67]. Despite the recent efforts,
transport in junctions formed by AMs and high-temperature
superconductors has so far received little attention. Given that
d-wave AMs represent the magnetic counterparts of high-
temperature superconductor with d-wave pairings, it is natural
to wonder about transport in junctions formed by them. This
problem, however, has not been addressed yet.

In this paper, we focus on the transport characteristics in
two types of hybrid junctions combining d-wave supercon-
ductors (d-SCs) and a d-AM interlayer. First, we study the
normal metal (N)/AM/d-SC junction as depicted in Fig. 1(a).
We investigate the possibility of the formation of de Gennes-
Saint-James states and the robustness of the zero-energy
surface Andreev bound states against altermagnetic order. We
demonstrate the schematics of the quasiparticle trajectories
in Fig. 1(c) with four modes to form resonant states, which
are depicted in Figs. 1(d) and 1(e). The phase accumula-
tion along the x direction for a fixed transverse momentum
is proportional to (k+

e,↑ − k−
e,↑ + k−

h,↓ − k+
h,↓)L where L is the

width of the AM interlayer. Due to the distinct band splitting,
the phase accumulation is enhanced by dx2−y2 -AM order but
largely vanishes for dxy-AM order. Thus, the resonant states
can be formed in the short junction with dx2−y2 -AM order
and the oscillatory transport behavior can thus be expected.
Interestingly, we found that the phase accumulation also af-
fects the formation of surface Andreev bound states, which
are vulnerable to the dx2−y2 -AM order but almost immune to
the dxy-AM order, though the time-reversal symmetries are
broken for both cases. Second, we investigate the Josephson
effect of the d-SC/AM/d-SC Josephson junction as shown in
Fig. 1(b). We calculate the Josephson current I (ϕ) for various
orientations of the junctions where ϕ is the macroscopic phase
difference between two d-SCs. We obtain the altermagnetism-
induced 0-π transitions in symmetric junctions. In the case

FIG. 1. Schematics of (a) the normal metal (N)/altermagnet
(AM)/d-wave superconductor (d-SC) junction and (b) the
d-SC/AM/d-SC junction. (c) Sequential transport processes inside
AM interlayer which are necessary to form de Gennes-Saint-James
states. Solid line stands for electron and dashed line stands for
hole. (d) For the dx2−y2 -AM case, band splitting enhances phase
accumulation (k+

e,↑ − k−
e,↑ + k−

h,↓ − k+
h,↓)L and thus the resonant

states can be generated with small L. Such phase accumulation is
almost zero for the dxy-AM case (e) and no resonant state can be
formed in the short junction.

of dx2−y2 -SC/AM/dxy-SC junction, where the first order of
Josephson current is absent without AM [68,69], we find that
the first-order Josephson coupling reemerges when AM is nei-
ther dx2−y2 nor dxy wave. We further provide the explanation
of our numerical results by symmetry analysis.

The paper is organized as follows: In Sec. II, we introduce
our model and formalism. In Sec. III, we show numerical
results for N/AM/d-SC junctions and discuss the orientation
dependence of forming resonant states. In Sec. IV, we show
the Josephson effect in d-SC/AM/d-SC junctions. Our con-
clusions are given in Sec. V.

II. MODEL AND FORMALISM

In this section, we provide a formulation to calculate con-
ductance and Josephson current using the scattering approach.
As depicted in Figs. 1(a) and 1(b), we consider N/AM/d-SC
and d-SC/AM/d-SC junctions which are translation invari-
ance in the y direction. Ĥ corresponds to the Hamiltonian of
low-energy excitations

Ĥ =
(

H0 �̂

�̂ −H∗
0

)
, �̂ = iσ̂y�, (1)

H0 = h̄2k2

2m
+ U − μ + Mσ̂z, (2)

in the basis (ψ↑, ψ↓, ψ
†
↑, ψ

†
↓ )T . � is the position-dependent

d-wave pairing potential. The wave vector k is given by
k = (kx, ky) and μ is the uniform chemical potential so
that the Fermi wave vector is kF = √

2mμ/h̄, with m the
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electron mass. U is the barrier potential U (x) = U1δ(x) +
U2δ(x − L) and we define dimensionless parameters Z1(2) =
mU1(2)/(h̄2kF ). σ̂i=x,y,z are Pauli matrices in the spin space.
M denotes the exchange potential of altermagnet and without
loss of generality, the Néel vector of AM is along the z axis,

M =
[

J1

2

(
k2

x − k2
y

) + J2kxky

]
	(x)	(L − x), (3)

with 	 being the Heaviside function, J1 = 2Jk−2
F sin 2α, J2 =

2Jk−2
F cos 2α, and J the strength of the exchange energy of

the AM. The junction length is L . We denote α the angle
between the lobe of the direction of the altermagnet and the
x axis. For α = 0, the magnetization has pure dx2−y2 -wave
symmetry and for α = π/4, it has pure dxy-wave symmetry.

To find the conductance and Josephson current, we construct
the wave functions in each region of the junction.

In the N/AM/d-SC junction as shown in Fig. 1(a), � is
given by

� = �0 cos (2θ − 2χ )	(x − L), (4)

where θ is the propagating angle in superconductors of quasi-
particles with ky = kF sin θ . The quantity χ is taken to be the
angle of the positive d-wave lobe with respect to the interface
normal. We denote ψ1(2) for wave functions as an incident
spin-↑ (↓) electron with energy E injects from the normal
side. Due to the translational invariance along the y axis, the
transverse momentum ky is conserved. On the normal side, we
have

ψ1(2)(x � 0) = (eik+xě1(2) + a1(2)e
ik−xě4(3) + b1(2)e

−ik+xě1(2))eikyy. (5)

Here, we denote k± =
√

2m(μ ± E )/h̄2 − k2
y as the wave vectors for electrons (+) and holes (–), and ai and bi are the coefficients

of reflected waves. We define ě1 = (1, 0, 0, 0)T , ě2 = (0, 1, 0, 0)T , ě3 = (0, 0, 1, 0)T , and ě4 = (0, 0, 0, 1)T as basis functions.
In the middle AM region, we have

ψ1(2)(0 < x < L) = (w1(1̄)eik+
e,↑(↓)xě1(2) + w2(2̄)eik−

e,↑(↓)xě1(2) + w3(3̄)eik+
h,↓(↑)xě4(3) + w4(4̄)eik−

h,↓(↑)xě4(3))eikyy, (6)

with wave vectors

k±
e,s = ± h̄

h̄2 + psmJ2

√
2m(μ + E )

(
1 + mJ2

h̄2

)
− h̄2k2

y + m2
(
J2

1 + J2
2

)
k2

y

h̄2 − psmJ1ky

h̄2 + psmJ2
, (7)

k±
h,s = ± h̄

h̄2 + psmJ2

√
2m(μ − E )

(
1 + mJ2

h̄2

)
− h̄2k2

y + m2
(
J2

1 + J2
2

)
k2

y

h̄2 − psmJ1ky

h̄2 + psmJ2
. (8)

Here, we define ps=↑ = +1 and ps=↓ = −1, while wi and wī are the coefficients of scattering waves. On the superconducting
side, the wave functions are given by

ψ1(2)(x � L) = ( f1(1̄)eiq+xě1(2) ± f1(1̄)γ1eiq+xě4(3) + g1(1̄)γ2e−iq−xě1(2) ± g1(1̄)e−iq−xě4(3))e
ikyy, (9)

where the wave vectors are q± =
√

2m(μ ± √
E2 − �2)/h̄2 − k2

y , and f1, f1̄, g1, and g1̄ are the coefficients. The coherence
factors γ1 and γ2 are as follows [19]:

γ1 = �(T ) cos (2θ − 2χ )

E +
√

E2 − �(T )2 cos2 (2θ − 2χ )
, γ2 = �(T ) cos (2θ + 2χ )

E +
√

E2 − �(T )2 cos2 (2θ + 2χ )
. (10)

The scattering coefficients are determined by continuity of wave functions ψ |x=0+ = ψ |x=0− , ψ |x=L+ = ψ |x=L− and(
h̄2

m
+ J2σ̂z

)
∂xψ |x=0+ − h̄2

m
∂xψ |x=0− = (−iJ1kyσ̂z + 2U1)ψ |x=0, (11)

h̄2

m
∂xψ |x=L+ −

(
h̄2

m
+ J2σ̂z

)
∂xψ |x=L− = (iJ1kyσ̂z + 2U2)ψ |x=L. (12)

As a result, we can utilize the Blonder-Tinkham-Klapwijk (BTK) formalism [19,70–72] to compute the differential conductance

σ/σ0 =
∫ π/2

−π/2
σ (θ ) cos θdθ

/ ∫ π/2

−π/2
σ0(θ ) cos θdθ, (13)

with σ (θ ) = 2 + |a1|2 + |a2|2 − |b1|2 − |b2|2. Here, σ0 denotes the conductance when the superconductor is in the normal state
σ0(θ ) = 2 − |bN1|2 − |bN2|2, and bN1(2) is the corresponding scattering coefficient for the spin-↑ (↓) electron reflection.
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FIG. 2. Tunneling conductance. AM1 (AM2) stands for the N/AM/SC junction in the case of Z2 = 0 (Z2 = 0.5). FM stands for the
N/ferromagnet/SC junction with Z2 = 0. (a)–(d) Angle-resolved conductance σ (θ ) of AM1 geometry. (e)–(h) The normalized conductance
σ/σ0 of AM1 (black), AM2 (red), and FM (blue). We set kF L = 10, �0 = 0.01μ, Z1 = 2 for all panels. The altermagnetic strength is J/μ = 0.2
in the AM1 and AM2 junction. The exchange field in the FM junction is M = 0.5μ. The superconductor has dx2−y2 -wave symmetry (χ = 0)
in panels (a), (b), (e), and (f) and has dxy-wave symmetry (χ = π/4) in panels (c), (d), (g), and (h). The altermagnetic orders of AM1 and AM2
have the dx2−y2 -wave symmetry (α = 0) in panels (a), (c), (e), and (g) and dxy-wave symmetry (α = π/4) in panels (b), (d), (f), and (h).

For the d-SC/AM/d-SC Josephson junction as shown in
Fig. 1(b), the pair potential is given by [69,73–75]

�(x) =
⎧⎨
⎩

�(T ) cos (2θ − 2χL )eiϕ, x < 0,

0, 0 < x < L,

�(T ) cos (2θ − 2χR), x > L.

(14)

Here, ϕ is the macroscopic phase difference between the left
and right superconductors and χL and χR are the angles of the
positive d-wave lobe on the left and right side, respectively.
The pair potential at zero temperature �(T = 0) is still �0

and its temperature dependence is determined by mean-field
approximation [69,74]. We focus on the Josephson effect in
the low temperature limit in this paper. Now, we can solve
wave functions of each region for the scattering processes. By
using the standard Furusaki-Tsukada’s formula [69,74,76], we
obtain the Josephson current

I =
∫ π/2

−π/2

ekBT

2h̄

∑
ωn,s=↑,↓

(
�(T ) cos (2θ − 2χL )ahe,s√
ω2

n + �2(T ) cos2 (2θ − 2χL )

− �(T ) cos (2θ + 2χL )aeh,s√
ω2

n + �2(T ) cos2 (2θ + 2χL )

)
cos θdθ, (15)

with ahe,s (aeh,s) being the coefficient of Andreev reflection
from incident electron (hole) to reflected hole (electron) with
spin s. Here, we have made analytical continuation of incident
quasiparticle energy E → iωn into Matsubara frequencies
ωn = πkBT (2n + 1), (n = 0,±1,±2....). Equation (15) al-
lows us to directly calculate the dc Josephson current in even

more complicated or long junctions, but we will focus on the
short junction with kF L � μ/� in this work.

III. IDENTIFICATION OF DE GENNES-SAINT-JAMES
STATES VIA CONDUCTANCE

First, we show the angle-resolved conductance σ (θ ) and
the normalized conductance σ/σ0 of N/AM/d-SC junctions
in Fig. 2 using Eq. (13). To observe the resonant states,
we require a finite barrier strength between N and AM (we
set Z1 = 2), which can confine the quasiparticle transport
inside the AM. For a d-wave superconductor, e.g., yttrium
barrium copper oxide YBCO, a representative choice would
be �0 ≈ 10 − 20 meV , and μ ≈ 1 eV [77] so that we can
estimate �0 = 0.01μ. The length of the AM layer is set to
kF L = 10, which experimentally relates to the short junction
limit kF L � μ/�0. We first consider the case of no bar-
rier (Z2 = 0) at the right interface between AM and d-SC
(AM1 geometry). For altermagnets, the spin-splitting is non-
relativistic and it can reach several hundred meV [43] and
here we first choose J/μ = 0.2 in Fig. 2. From Figs. 2(a)
and 2(c) we can see that there are subgap resonance spikes
when the altermagnetic order has dx2−y2 -wave symmetry, in-
dicating the formation of de Gennes-Saint-James states. As a
result, the characteristic subgap resonance peaks show up in
the normalized differential conductance σ/σ0, see the black
lines in Figs. 2(e) and 2(g). In comparison, a short dxy-AM
can not produce resonant states or the resonance spikes in the
angle-resolved conductance spectra as shown in Figs. 2(b) and
2(d). Instead, we found the well-known V-shape conductance
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and the zero-biased conductance peak for dx2−y2 -SC and dxy-
SC, respectively, see the black lines in Figs. 2(f) and 2(h). We
now consider a finite barrier between AM and d-SC, that is,
Z2 	= 0 (AM2 geometry) plotted with red lines in Fig. 2. The
presence of the second barrier does not qualitatively change
the dependence on the altermagnet orientation of the resonant
states. Such induced resonant states have strong dependence
on ky and when the dispersion E (ky) is almost flat across a
certain range of ky, the resonant peak in the conductance σ

clearly appears. It is also worth noting that there are similari-
ties between ferromagnet [29] and dx2−y2 -AM in terms of the
ability to generate de Gennes-Saint-James states as a result of
their band splittings. For a junction featuring a FM instead of
an AM (FM geometry), we plot the N/FM/SC conductance
with the ferromagnetic exchange field M = 0.5μ [78,79] with
blue lines in Fig. 2. For both pairing states, there are subgap
resonant spikes in the spectra.

The previous results are explained through a resonance
condition for the emergence of Andreev states in the inter-
mediate AM region. That is, resonances form when the phase
accumulated after scattering on the left and right interfaces
of the intermediate AM region is a multiple of 2π . We now
show how the phase accumulated is greatly influenced by
the symmetry of the AM order. First, we look at the phase
accumulation by the Andreev reflections at the right inter-
face between altermagnet and d-wave superconductor (for
simplicity, we consider the Z2 = 0 case). For a semi-infinite
AM/d-wave SC junction, we obtain the coefficients rh↓,e↑,
rh↑,e↓, re↑,h↓, and re↓,h↑ corresponding to the Andreev reflec-
tion probability amplitudes of the spin-up incident electron,
the spin-down incident electron, the spin-down incident hole,
and the spin-up incident hole, respectively. Specifically,

rh↓,e↑(h↑,e↓) = ±2[k+
e,↑(↓) − k−

e,↑(↓)]kx(1 ± α̃2)

[�1(2)γ1γ2 − �1(2)]γ −1
1

, (16a)

re↑,h↓(e↓,h↑) = ±2[k+
h,↓(↑) − k−

h,↓(↑)]kx(1 ∓ α̃2)

[�1(2)γ1γ2 − �1(2)]γ −1
2

, (16b)

with

�1(2) = [
�e

1(2) − kx
][

�h
1(2) + kx

]
, (17a)

�1(2) = [
�e

1(2) + kx
][

�h
1(2) − kx

]
, (17b)

�e
1(2) = (1 ± α̃2)k−

e,↑(↓) ± α̃1ky, (17c)

�h
1(2) = (1 ∓ α̃2)k+

h,↓(↑) ∓ α̃1ky. (17d)

Here, α̃1(2) denotes the dimensionless AM strength α̃1(2) =
mJ1(2)/h̄2 and we assume that |α̃1(2)| < 1 to have a well-
defined Fermi surface. The wave vector kx is given by kx =√

k2
F − k2

y . When the propagating spin-up electron or spin-
down hole undergo sequential Andreev reflections at the
interface of our system, the gained phase is the argument of
re↑,h↓rh↓,e↑, with

re↑,h↓rh↓,e↑ = 4(k+
h,↓ − k−

h,↓)(k+
e,↑ − k−

e,↑)k2
x

(
1 − α̃2

2

)
(�1γ1γ2 − �1)2γ −1

1 γ −1
2

. (18)

First, we consider a dx2−y2 -wave superconducting pairing,
where γ1 = γ2 is expected. When the energy E is at the band
edge E = −|�+| (E = |�+|), γ1(2) takes the value γ1 = γ2 =

−1(+1). Moreover, we have γ1 = γ2 = −i at zero energy.
Therefore, as E varies inside the energy gap, the accumulated
phase due to sequential Andreev reflections, φAR, is a value be-
tween −2π and 0. A dx2−y2 -AM can give rise to a finite phase
φAM = (k+

e,↑ − k−
e,↑ + k−

h,↓ − k+
h,↓)L together with a phase φN

from the normal reflections at the interface between N and
AM. As a result, it is possible to fulfill the Bohr-Sommerfeld
condition for the formation of an Andreev bound state,

φAR + φAM + φN = 2πm, (19)

where m is an integer. For finite ky, there could be another
phase accumulation along the y axis for the dx2−y2 -AM case
but it would not affect our conclusions.

On the other hand, a dxy-AM makes φAM ≈ 0 for a short L.
Moreover, in the heavily doped regime with E � μ, the nor-
mal reflection coefficients at the N/dxy-AM interface become

re↑ = r∗
h↓ = q − kx − 2iZ1kF

q + kx + 2iZ1kF
, (20)

with

q =
√

2mμ

h̄2 − k2
y + α̃2

1k2
y . (21)

The phase accumulation φN taken from re↑ and rh↓ is zero,
and Eq. (19) reduces to φAR + φAM + φN ≈ φAR ∈ (−2π, 0),
which is insufficient to form Andreev bound states.

We now use a similar reasoning to analyze the dxy-wave
pairing states, where the relation between γ1 and γ2 changes
to γ1 = −γ2. Consequently, φAR belongs to the range (−π, π )
for subgap energies and at zero energy we have φAR = 0.
This indicates that the surface flat bands characteristic of dxy

pairing are robust against the presence of dxy-AM since the
Bohr-Sommerfeld condition [80], Eq. (19), is always satisfied
at E = 0, i.e., φAR + φAM + φN ≈ φAR = 0. However, for a
dx2−y2 -AM, φAM + φN does not vanish and the expected An-
dreev bound states can exist inside the gap for E 	= 0.

To see the dependence of the resonant states on the strength
of the AM, we show the density plot of the conductance
spectra as a function of eV and altermagnetic strength J in
Figs. 3(a)–3(d). Figures 3(a) and 3(c) show that, with the
increase of the strength of altermagnetism J , the oscillatory
conductance spikes emerge if AM has dx2−y2 -wave order.
Specifically, there are more subgap spikes for the dx2−y2 -SC
junction than for the dxy-SC junction for large values of J .
This indicates that dx2−y2 -AM order mainly suppresses the
flat zero-energy states in the dxy-SC junctions. However, if
the AM has dxy-wave order, the characteristic of tunneling
spectra is invariant as compared to the junction without AM,
as seen in Figs. 3(b) and 3(d). We further show the effect
of the junction length on the emergence of resonant states.
Figures 3(e)–3(h) show that the number of spikes is propor-
tional to L since the phase accumulation increases with L.
As expected, the resonant states can be generated for the
dx2−y2 -wave AM order in the short junction [Figs. 3(e) and
3(g)], but can only be found for the dxy-wave AM order in
the long junction limit [kF L > 103, see Figs. 3(f)–3(h)], be-
cause of the negligible difference between electron and hole
wave vectors. We note that the height of the subgap resonant
spikes tends to be suppressed as L increases in Fig. 3(e). The
dispersion of the bound states E (θ ) must become almost flat
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FIG. 3. Parameter dependence of conductance of the AM1 geometry. (a)–(d) conductance varies with J and eV for kF L = 10. (e)–(h)
conductance varies with L and eV for J/μ = 0.2. The AM order is dx2−y2 for (a), (c), (e), and (g) and dxy for (b), (d), (f), and (h). The pairing
symmetry of SC is dx2−y2 for (a), (b), (e), and (f) and dxy for (c), (d), (g), and (h). The barriers in the AM1 case are Z1 = 2 and Z2 = 0 for all
panels.

across a certain range of θ ∈ (θl , θu) to form the resonant
conductance peak, see also the numerical results in Figs. 2(a)
and 2(e). The reason for this is that the density of the resonant
states is particularly high for energies where quasiflat bands
appear. As the junction length L increases, more resonant
states are induced and their dispersions depend more sen-
sitively on the incident angle θ , thus the range of quasiflat
band region (θu − θl ) becomes smaller and the quasiflat bands
have reduced density of states at large L. It is worthwhile to
point out that de Gennes-Saint-James states have already been
shown in the AM/AM/SC junction without unconventional
pair potential [56] and thus found to be absent in semi-infinite
AM/SC system [55] since the resonant states come from the
confinement effect [81].

IV. THE JOSEPHSON EFFECT

In this section, we discuss the current phase relation (CPR)
I (ϕ) in d-SC/AM/d-SC junctions, where ϕ is the phase dif-
ference between the left and the right pair potentials. We
set equal barriers at left and right interfaces (Z1 = Z2 = Z)
between AM and SC. Scattering coefficients are calculated
numerically by imposing boundary conditions for the scatter-
ing wave functions, and the Josephson current is obtained by
Eq. (15).

To analyze the CPR, we further decompose the Josephson
current into a series of different orders of Josephson coupling

I (ϕ) =
∑

n

[In sin (nϕ) + Jn cos (nϕ)], (22)

where n is a positive integer. We consider different parameters
such as the crystal orientation χL,R, α and find that the CPR
is expressed as

∑
n In sin(nϕ) and Jn is zero in our system. To

demonstrate this, a relevant operator is the fourfold rotation
symmetry C4 which corresponds to a rotation angle π/2 with
respect to the z axis and makes kx → ky, ky → −kx, ŝz → ŝz,
and ϕ invariant. Another relevant operator is the time-reversal
symmetry T , which induces the transformations kx → −kx,
ky → −ky, ŝz → −ŝz, and ϕ → −ϕ. We consider the com-
bined symmetry M0 = TC4 [64] which is maintained in the
system,

M0Ĥ (ϕ)M−1
0 = Ĥ (−ϕ). (23)

Consequently, the Josephson current satisfies the well-known
characteristic I (ϕ) = −I (−ϕ) with symmetry protected zero
net current at ϕ = 0 or π , indicating that Jn cos(nϕ) must
vanish in the CPR of our Josephson junction.

Figure 4 shows the Josephson current in dx2−y2 -SC/AM/
dx2−y2 -SC junctions with various crystal orientations of the
AM. It can be seen that the altermagnetic strength J can
drive the 0 − π transitions. Moreover, high-order Josephson
coupling can be dominant in this geometry, for example, the
black curve in Fig. 4(a). We also find the anomalous skewness
in the CPR, e.g., the red curve in Fig. 4(a) and the black
curve in Fig. 4(d). Comparing to the upper panels (a)–(c) with
lower panels (d)–(f), one can see that the 0 − π transition
can occur when the junction length varies, for example, the
black curves in (b) and (e). The feature of Josephson current
is also sensitive to the crystal orientation α of the AM, that is,
α can also drive the 0 − π transition when other parameters
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FIG. 4. Current phase relation of dx2−y2 -SC/AM/dx2−y2 -SC Josephson junction. (a)–(c) kF L = 10 and (d)–(f) kF L = 20. We choose the
temperature kBT = 0.01084�0. The current I has been normalized to the critical current Imax = max[I (ϕ)]. The value of Z is zero for black
and red curves and is one for blue and green curves.

are kept the same. We find a similar behavior of the CPR in
a dxy-SC/AM/dxy-SC junction. The presence of a finite barrier
Z 	= 0 does not break M0 symmetry and, therefore, would not
qualitatively alter the current-phase characteristics, see blue
and green curves in Fig. 4.

We next show the CPR in asymmetric dx2−y2 -SC/AM/dxy-
SC junctions in Fig. 5. For dx2−y2 -AM, the second order
Josephson coupling is dominant but the sign of I2 is highly
tunable by the strength of altermagnetism as shown in

Figs. 5(a) and 5(d). It is also noted that the current at phase dif-
ference ϕ = ±π/2 becomes zero. Such behavior is the same
with the case without magnetization. To explain the nodal
point at ϕ = ±π/2, we consider the mirror reflection with
respect to the xz plane Mxz, which makes kx → kx, ky → −ky,
ŝz → −ŝz, and additional phase ϕ → ϕ − π . We use the mag-
netic mirror reflection symmetry M1 = T Mxz [82,83], which
leads to kx → −kx, ky → ky, ŝz → ŝz, and ϕ → −ϕ + π . We

FIG. 5. Current phase relation of dx2−y2 -SC/AM/dxy-SC Josephson junction. (a)–(c) kF L = 10 and (d)–(f) kF L = 20. We choose the
temperature kBT = 0.01084�0. The value of Z is zero for black and red curves and is one for blue and green curves.
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thus have

M1Ĥ (ϕ)M−1
1 = Ĥ (−ϕ + π ) (24)

for dx2−y2 -AM. As a result, −I (−ϕ + π ) = I (ϕ) will be sat-
isfied and we have I (ϕ = ±π/2) = 0. It then excludes the
presence of odd-order Josephson coupling In in the CPR. For
dxy-AM, we find a similar feature as compared to dx2−y2 -AM.
However, we need to use the complicated combined operator
M2 = T MxzC4 to explain the nodal point at I (ϕ = ±π/2) =
0, where M2 makes kx → ky, ky → kx, ŝz → ŝz, and ϕ →
−ϕ + π . We arrive at

M2Ĥ (ϕ)M−1
2 = Ĥ (−ϕ + π ), (25)

for dxy-AM and the system still has vanishing current I (ϕ =
±π/2) = 0, as shown in Figs. 5(c) and 5(f). For an AM that
is neither dx2−y2 wave nor dxy-wave, there is no operation that
maps Ĥ (ϕ) to Ĥ (−ϕ + π ), and thus the node at ϕ = ±π/2
is no longer protected and found to be lifted. Indeed, our
numerical results are consistent with our symmetry analysis
since the first order Josephson coupling exists for α = π/8 as
shown in Figs. 5(b) and 5(e). As mentioned above, a finite
Z would not change the features of the current-phase rela-
tion, especially the symmetry-protected vanishing current. We
conclude that the CPR, as well as the tunneling conductance,
sensitively depends on the orientation of the AM crystal. This
is in sharp contrast to the results in dx2−y2 -SC/ferromagnet/dxy-
SC junctions where the first-order sinusoidal component never
appears in the CPR [84].

V. SUMMARY

In summary, we have theoretically studied the differential
conductance and Josephson effect in d-wave altermagnet/d-
wave superconductor hybrids. We find that the subgap states,
known as de Gennes-Saint-James states, can be enhanced
by the dx2−y2 -altermagnet in the short junction but can
only be formed in the long junction if the altermagnet
has dxy-wave order. We have shown that a robust zero-
bias peak against the altermagnetic field can appear when
both altermagnetic and superconducting order have dxy-wave
symmetry. We further reveal that the 0-π transition can
occur in symmetric d-wave Josephson junctions by alter-
magnetism, which has been widely reported in conventional
s-wave Josephson junctions. Notably, we find the orientation-
dependent first order Josephson coupling in an asymmetric
dx2−y2 -superconductor/altermagnet/dxy-superconductor junc-
tion. This feature does not occur in Josephson junctions with
d-wave superconductors and ferromagnets, unveiling a unique

effect of altermagnetism. Since subgap states are known to
promote the formation of odd-frequency spin-triplet Cooper
pairs [5,16,85], our results suggest an intriguing possibility for
enhancing emerging pair correlations in altermagnets [65,86]
and also a powerful way to control them via the Josephson
effect. Our findings thus demonstrate the peculiar role of
altermagnets on the Josephson effect, of practical significance
for both controlling the Josephson current and designing new
functional devices in superconducting spintronics.

In terms of material candidates to experimentally test our
predictions, it might be possible to exploit the reported d-
wave altermagnets [45], such as RuO2, Mn5Si3, or MnO2.
Moreover, recent studies have shown that both the mag-
netic strength and orientation of altermagnets are electrically
controllable [87]. Josephson junctions based on d-wave super-
conductors with different crystallographic orientations were
already reported in high-Tc cuprates [88,89]. Although it may
be challenging to continuously tune the orientation angle in
experiments as we propose, it might be still possible to exam-
ine several discrete angles, avoiding the difficulty of changing
pair potentials in one sample. These advances demonstrate
that our predictions hold experimental feasibility.
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