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Soliton capacitors in a Cooper-pair box transmission line
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We propose a superconducting circuit that supports the propagation of Korteweg–de Vries (KdV)-type voltage
solitons. By employing Cooper-pair boxes as nonlinear capacitors, we realize a dual system to the previously
reported current solitons based on nonlinear inductors. The proposed voltage solitons manifest as propagating
capacitors, carrying a velocity-dependent induced charge. This unique characteristic facilitates local electrostatic
interactions, which are dual to the magnetic interactions mediated by fluxons.
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I. INTRODUCTION

Nonlinearity confers a fascinating property of nature when
considering cases of large amplitude in many fields ranging
from biology to the universe. One remarkable example is a
solitary wave called a soliton. This occurs when this nonlin-
earity is balanced with dispersion in the nonlinear dispersive
media, resulting in a stable propagation without changing its
shape [1]. This is responsible for stable information commu-
nication, as demonstrated by the successful implementation
of optical solitons in fiber optic communication systems [2].
Solitons also provide valuable insights into complex physical
phenomena.

In electronics, nonlinear transmission lines with an LC
circuit consisting of inductors L and capacitors C as basic
elements serve as nonlinear dispersive media that support
electrical solitons. In fact, voltage solitons described by the
Korteweg–de Vries (KdV) equation have been experimentally
confirmed in nonlinear transmission lines with nonlinear ca-
pacitors [3], validating fundamental soliton theory [4]. On
the other hand, in the superconducting circuit, flux (current-
based) solitons [5,6] dual to voltage solitons have been
devised based on nonlinear Josephson inductance as the
source of nonlinearity necessary for soliton formation. How-
ever, the realization of voltage solitons in superconducting
tunnel devices has remained unexplored due to the challenge
of implementing nonlinear capacitors. In a built-in tunnel
junction regarded as a parallel plate capacitor, in general, its
capacitance cannot be controlled as desired after it is assem-
bled since it depends on its shape and dielectric constant.
In semiconducting transmission lines, the width of the de-
pletion layer varies with the applied voltage. This modulates
the effective capacitance, thereby overcoming the challenge
of implementing nonlinear capacitors in LC transmission

lines [7]. However, this depletion layer mechanism is not
applicable to superconducting tunnel junctions, in which ca-
pacitance and nonlinearity are governed by distinct quantum
mechanical phenomena.

While current solitons have traditionally played a domi-
nant role in signal propagation within Josephson transmission
lines, recent developments in nonlinear capacitance tech-
nology [8] have suggested the feasibility of voltage soli-
tons. These voltage solitons offer several advantages over
their current-based counterparts. Specifically, they exhibit
increased immunity to external magnetic fields and common-
mode noise, while also enabling high-speed switching through
voltage control mechanisms. Furthermore, their primary uti-
lization of electrostatic energy significantly reduces the Joule
heating losses that typically plague current solitons. The
inherent properties of nonlinear capacitance contribute to
maintaining waveform integrity, resulting in relatively low
signal attenuation over transmission distances. These ad-
vantages are particularly relevant for applications requiring
high-density circuit integration, high-speed operation, and
low-power consumption.

In this paper, we propose voltage solitons in supercon-
ducting circuits using Cooper-pair boxes acting as nonlinear
capacitors, demonstrating that the propagating soliton carries
an induced charge dependent on its velocity. A single Cooper-
pair box consists of a small superconducting island that is
connected to a bias voltage source Vb via a small capacitor
Cb on one side and via a small Josephson junction with ca-
pacitance CJ and Josephson coupling energy EJ on the other
side as shown in Fig. 1. In this configuration, the number
of Cooper pairs on the island is quantized under specific
bias voltage conditions. Therefore, the Cooper-pair box was
devised initially as a qubit based on charge states dual to flux,
i.e., a charge qubit [9–11]. Here, we use the Cooper-pair box
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FIG. 1. (a) Cooper-pair box. CJ and Cb are the capacitance of the
superconducting small junction and coupling capacitance, respec-
tively. Vb is the bias voltage, Vc is the island potential, and QJ is the
charge stored in the junction capacitance. (b) The equivalent effective
variable capacitor.

as a nonlinear capacitor [12]. Although the Cooper-pair box
is a built-in device, the effective dielectric constant of the
Cooper-pair box can be controlled by the bias voltage without
changing its shape, which makes it possible to change the
capacitance.

II. COOPER-PAIR BOX AS A NONLINEAR CAPACITOR

Let us briefly review the effective capacitance Ceff in
the Cooper-pair box [12]. The capacitance is defined as
Ceff = δ〈Q〉/δVb, where 〈Q〉 is the mean value of the electric
charge transferred from the battery Vb. The effective capaci-
tance is expressed as

Ceff(Vb) = δ〈Q〉
δVb

= Cb

Cb + CJ

(
CJ − 2|e|∂〈n〉

∂Vb

)
, (1)

where e is the elementary electric charge. The average number
of excess Cooper pairs in the box 〈n〉 is given as [10]

〈n〉 = 1

2

[
1 + η√

1 + η2
tanh κ

√
1 + η2

]
, (2)

with

η = Ec

EJ
(2nb − 1), (3)

κ = βEJ

2
, (4)

where Ec and EJ are the charging energy and Josephson cou-
pling energy, respectively. nb is dimensionless bias voltage
expressed by nb = CbVb/(2|e|) and β = 1/kBT with kB and T
being the Boltzmann constant and temperature, respectively.
The average number of Cooper pairs in the box depends non-
linearly on the bias voltage (nb). This voltage-dependent 〈n〉
gives a nonlinear voltage dependence to the Ceff required for
soliton formation. Here, let us assume T = 0 for simplicity.
Equation (2) reduces to

〈n〉 = 1

2

[
1 + η√

1 + η2

]
. (5)

FIG. 2. Nonlinear LC transmission line consisting of constant in-
ductance L and nonlinear capacitance depending on voltage Ceff(Vn).
The unit cell length is denoted by a. The current and the voltage on
the nth unit cell are In and Vn, respectively.

Substituting Eq. (5) into Eq. (1) and expanding as a power
series around the nb = 0, we obtain

Ceff(Vb) = C0(1 − γVb) + O
(
V 2

b

)
, (6)

where

C0 = Cb

Cb + CJ

⎧⎨
⎩CJ − Cb

Ec
EJ[

1 + ( Ec
EJ

)2]3/2

⎫⎬
⎭, (7)

γ = C−1
0

3C3
b

|e|(Cb + CJ )

( Ec
EJ

)3

[
1 + ( Ec

EJ

)2]5/2 . (8)

Typical parameters [8] for the Cooper-pair box are
Cb ∼ CJ ∼ 1 fF, EJ ∼ 6.6 × 10−25 J, and EC ∼ 10EJ . Then,
the order of magnitude of the capacitance C0 is estimated to be
1 fF. The parameter γ is expected to be 100 V−1. As indicated
by Eq. (6), the capacitance possesses a negative nonlinear
term, which stems from the second term in Eq. (1) and is
caused by Cooper-pair tunneling across the junction [12]. De-
spite its negative nature, this term does not lead to a negative
effective capacitance, Ceff(Vb), according to (1), provided that
(Ec/EJ ) � 1.

III. TRANSMISSION LINES
WITH NONLINEAR CAPACITORS

Let us consider the propagation of electromagnetic waves
in the nonlinear transmission lines shown in Fig. 2. The
fundamental elements of electric circuits are the LC circuits
consisting of inductors and voltage-dependent nonlinear ca-
pacitors. The circuit equation is derived as follows. From
Faraday’s law, the voltage applied to the nth inductor with
inductance L is derived by

Vn − Vn−1 = − L
dIn

dt
, (9)

where Vn is the voltage applied to the nth capacitor and In is
the current flowing through the nth inductor. We obtain

d

dt
(In+1 − In) = − 1

L
(Vn+1 − 2Vn + Vn−1) (10)

by taking the difference with the equation for the (n + 1)th
inductor. From Kirchhoff’s law, we obtain

In+1 − In = − d

dt
[Ceff(Vn)Vn]. (11)
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By substituting Eq. (11) for Eq. (10), the circuit equation is
then obtained as

d2

dt2
[Ceff(Vn)Vn] = 1

L
(Vn+1 − 2Vn + Vn−1). (12)

This equation is equivalent to the equation for nonlinear lattice
vibration with an amplitude-dependent mass since Ceff(Vn)
effectively modifies the system’s inertia. This reduces to a
conventional linear wave equation when Ceff(Vn) is constant.

IV. KORTEWEG–DE VRIES EQUATION

Now, let us find the nonlinear waves hidden in our circuit
using the reductive perturbation method [13], which allows us
to extract the stable waves balancing the nonlinearity and the
dispersion from the circuit equation (12).

A. Continuum approximation

To transition from the discrete equation to a continuous
description, we assume that the voltage Vn varies smoothly
across lattice sites. Defining the continuous field V (x, t ) such
that Vn(t ) ≈ V (x, t ) with x = na (where a is the lattice spac-
ing), we expand the discrete terms in a Taylor series:

Vn±1 ≈ V (x ± a, t )

= V (x, t ) ± a
∂V

∂x
+ a2

2

∂2V

∂x2
± a3

6

∂3V

∂x3
+ a4

24

∂4V

∂x4
+ · · · .

(13)

Substituting these expansions into the discrete Laplacian
Vn+1 − 2Vn + Vn−1, we find

Vn+1 − 2Vn + Vn−1 ≈ a2 ∂2V

∂x2
+ a4

12

∂4V

∂x4
+ O(a6). (14)

The capacitance term Ceff(Vn)is expanded as Ceff(V ) =
C0(1 − γV ), where γ is a parameter describing the nonlinear-
ity of the capacitance. Using this in the original equation and
applying the continuum approximation, we obtain

∂2

∂t2
[C0(1 − γV )V ] = a2

L

∂2V

∂x2
+ a4

12L

∂4V

∂x4
. (15)

B. Reductive perturbation method

To account for weak nonlinearity and dispersion, we in-
troduce a small parameter ε � 1 and scale the variables as
follows:

x′ = ε1/2(x − ct ), (16)

t ′ = ε3/2t, (17)

V (x, t ) = εV1(x′, t ′) + ε2V2(x′, t ′) + · · · . (18)

Here, c is the wave speed to be determined. Substituting these
expressions into the continuum equation and collecting terms
at each order of ε, we derive equations for V1, V2, and higher-
order terms.

1. Zeroth-order equation

At O(ε2), we find the leading-order equation

C0c2 ∂2V1

∂x′2 = a2

L

∂2V1

∂x′2 . (19)

Balancing terms gives the wave speed c = a/
√

LC0.

2. First-order equation

At O(ε3), the first-order equation becomes

−2C0c
∂2V1

∂x′∂t ′ − C0γ c2 ∂2
(
V 2

1

)
∂x′2 = a4

12L

∂4V1

∂x′4 . (20)

Integrating once with respect to ξ and simplifying, we obtain

∂V1

∂t ′ + γ c

2

∂
(
V 2

1

)
∂x′ + a2c

24

∂3V1

∂x′3 = 0. (21)

Introducing the scaled nondimensional variables u = αV1,
x′ = βξ , t ′ = δτ with α = γ , β = a/2, and δ = (3a/2c) such
that the coefficients of the nonlinear and dispersive terms
become unity, we arrive at the standard form of the KdV
equation:

∂u

∂τ
+ 6u

∂u

∂ξ
+ ∂3u

∂ξ 3
= 0. (22)

V. VOLTAGE SOLITON AS A MOVING CAPACITOR

It is important to note that voltage solitons are accompa-
nied by an electric charge Q = CV and transport this charge
during their propagation. The one-soliton solution of the KdV
equation (22) is given in terms of soliton velocity v by

usol = v

2
sech2

(√
v

2
(ξ − vτ )

)
, (23)

where v is the relative velocity normalized by the wave speed
c in the circuit in ξ − τ coordinates. Here, we provide a
comment on the treatment of ε. Reverting Eq. (23) to the
original variables, the voltage propagation is expressed as

V = εv

2γ
sech2

{√
εv

a

[
x − c

(
1 + εv

3

)
t
]}

. (24)

The perturbation parameter ε always appears with the relative
velocity parameter v in the form εv. Since v is arbitrary, re-
defining ṽ = εv is effectively equivalent to setting ε = 1 [14].

It is important to recall that one of the key objectives of
the reductive perturbation method is to identify appropriate
timescales and spatial scales where nonlinearity and disper-
sion are balanced, which is achieved by selecting a suitable
order for the perturbation parameter ε. In the resulting nonlin-
ear evolution equations, such as the KdV equation, the effects
of this small parameter are often absorbed into the scaled
variables and parameters of the equation, and itself does not
explicitly appear.

Note that due to the special properties of the KdV soli-
ton, the quantities corresponding to the amplitude and wave
number are expressed in terms of the soliton velocity. By
applying the continuum approximation to the capacitance,
C(x) = Ceff(Vn)a, the charge associated with this soliton
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FIG. 3. Charge Q associated with voltage solitons as a function
of ṽ at different capacitances C0.

can be obtained based on the sectional quadrature method
Q = ∑

n Ceff(Vn)Vn as

Q = 1

a

∫
C[V (x)]V (x)dx

= 1

a
C0

∫
V (x)dx − 1

a
C0γ

∫
V (x)2dx

= ε1/2 1

γ
C0

∫
usoldξ + O(ε3/2)

= ε1/2 C0

γ

√
v + O(ε3/2)

= C0

γ

√
ṽ, (25)

where higher-order infinitesimals associated with the order of
perturbation are ignored.

The induced charge is proportional to the square root of
the soliton velocity. This arises from the voltage being propor-
tional to the soliton area, which is the product of its height (ṽ)
and its width (1/

√
ṽ), both determined by the soliton velocity.

Consequently, the amount of charge associated with a soliton
can be controlled by manipulating its velocity (see Fig. 3).
This unique characteristic establishes the voltage soliton as
another form of a moving capacitor, offering a different av-
enue for charge transport.

The electrostatic energy when the soliton is considered as
a capacitor is given as

E sol
c (ṽ) = C0

2a

∫ ∞

−∞
V (x)2dx

= C0

4γ 2

∫ ∞

−∞
usol(ξ, τ )2dξ

= C0

6γ 2
ṽ3/2 ≡ E sol

c

6
ṽ3/2. (26)

Figure 4 shows the electrostatic energy of the soliton E sol
c (ṽ)

as a function of ṽ for various representative values of C0.

FIG. 4. Electrostatic energy of the voltage soliton E sol
c (ṽ) as a

function of soliton velocity ṽ for different capacitances C0.

VI. QUANTIZATION OF SOLITON CHARGE

Finally, let us consider a ring-shaped transmission line and
investigate the quantization of effective charge due to the
quantization of soliton velocity. This quantization originates
from the quantization of phase difference across the junction.
Owing to the fact that the transmission line is made of a
superconductor, the voltage and phase difference are linked by
Josephson’s relation. Therefore, the phase difference across
the junction is described as

φ = 2|e|
h̄

∫
V (x, t )dt

= 3a|e|
γ ch̄

∫
usol(ξ, τ )dτ

= −3E sol
c

h̄ω

|e|
Q

tanh

(√
v

2
(ξ − ṽτ )

)
, (27)

where we introduce the characteristic frequency defined as
ω ≡ c/a = (C0L)−1/2. In a ring transmission line, this phase
change should be an integer multiple of 2π ,∮

∂φ

∂x
dx =

∮
∂φ

∂ξ
dξ

= φ(ξ = l/2, τ ) − φ(ξ = −l/2, τ )

� φ(ξ = ∞, τ ) − φ(ξ = −∞, τ )

= 6E sol
c

h̄ω

|e|
Q

= 2πn, (28)

where l is the nondimensional perimeter. When this quanti-
zation is satisfied, the charge carried by the soliton is given
by

Qn = 3

π

E sol
c

h̄ω

|e|
n

. (29)

Moreover, the soliton velocity at that time is given by

ṽ =
(

3

πγ h̄ω

|e|
n

)2

=
(

γ

C0
Qn

)2

. (30)
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One potential application lies in exploiting the mobile local
electrostatic interactions associated with soliton motion for lo-
cal manipulations of quantum devices. This approach provides
quantum manipulation that is dual to the use of local magnetic
interaction of the fluxon for device switching.

VII. CONCLUDING REMARK

Voltage solitons in superconducting circuits with Cooper-
pair boxes acting as nonlinear capacitors have been proposed.
This is dual to current solitons based on nonlinear Josephson
inductance in the preceding studies. The resulting voltage
solitons function as mobile capacitors, with their induced
charge scaling with velocity. This property allows for local
electrostatic interactions, providing a dual counterpart to the
magnetic interactions associated with fluxons. In addition, the
capacitance-derived nonlinearity originates from the charging
energy based on the Coulomb forces so it is expected to have
stronger nonlinearity than the inductance-derived nonlinearity

based on the coupling between superconductors. Therefore,
the proposed voltage solitons can contribute to improving the
performance of the Josephson traveling wave parametric am-
plifier, which has been the subject of much research recently,
due to its locally enhanced nonlinearity. Our findings open
up different avenues for exploring nonlinear wave phenomena
in superconducting circuits and may have implications for
quantum information processing.
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