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Effective control of spin-wave (SW) dynamics is among the current topical goals of research in magnonics.
Electric field control of SW dynamics in insulating magnetic materials by creating the Aharonov-Casher (AC)
topological phase without energy dissipation due to joule heating is a highly preferred way. The AC phase is
purely a quantum phenomenon and has no classical interpretation. It manifests as the electric-field-induced shift
in the SW’s phase, group velocity direction, and SW’s attenuation. Within a linear approximation, the magnonic
AC effect can be considered by adding a Dzyaloshinskii-Moriya-like interaction between neighboring spins,
which is proportional to the magnitude and sign of the applied electric field. We study the topological AC effect
on magnetization dynamics in two-sublattice easy-axis insulating antiferromagnets. The analytical calculation
indicates that a static electric field is an effective tool for selectively and successfully manipulating right-handed
and left-handed polarized SWs, their amplitude, and propagation length. Our theory also reveals the electric
field effect on anomalous magnon dispersion characteristics—a superluminal-like propagation of magnons at
nanoscale distances. We also make numerical evaluations for antiferromagnetic dielectric to illustrate the theo-
retical predictions. The AC topological effect gives an effective method for the chirality-selective manipulation
of magnon dynamics and opens promising research directions and practical applications of antiferromagnets in
magnonics.
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I. INTRODUCTION

In recent years, spin-waves (SWs, magnons) have become
promising candidates for carrying information in computing
devices with ultralow power consumption, forming a sepa-
rate physics field—magnonics [1,2]. Apart from the absence
of joule heating during the propagation, another important
feature of SWs is their applicability in a wide frequency
range. For practical applications, frequency is an important
parameter because it affects the speed of calculations. Among
the key dynamic characteristics of SWs are the phase, ampli-
tude, and propagation length. In this regard, one of the main
goals in magnonics is to increase the efficiency of magnonic
device operation by choosing materials and methods for
controlling their functional characteristics. Compared to fer-
romagnets, antiferromagnets (AFMs) have the advantages
of minimized stray fields and fast magnetization dynamics
up to the terahertz range. Moreover, AFMs with collinear
antiparallel-coupled magnetic moments in equilibrium (Néel
order) are resistant to moderate magnetic fields, so the infor-
mation in AFM memory devices is protected from damage
by an external magnetic field. In addition, there are a lot
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of dielectrics, metallic, and semiconducting materials with
antiferromagnetic order.

Compared to ferromagnets with only right-handed SWs,
magnons in AFMs possess both right-handed (RH, counter-
clockwise) and left-handed (LH, clockwise) chirality, due to
the antiparallel magnetic sublattices state [3,4]. The right- and
left-hand polarized SWs could be used as the basic elements
for encoding information, such as the spin-up and spin-down
electrons in modern computers. Possessing these unique fea-
tures, AFMs have a great perspective for applications in
information technology (see recent reviews [5–10]). The main
challenges for implementing AFMs in magnonic devices are
uncovering the mechanisms of proper propagation, separate
manipulation of the RH and LH SWs, and their detection.
The ways to manipulate magnetic dynamics are actively dis-
cussed [11–15]. The energy of the RH and LH magnons is
degenerate without any external fields. The mechanisms of
the SWs splitting and manipulation of their dispersion and
attenuation in AFMs by various methods are among the topics
in connection to digital data processing realization utilizing
AFMs. The most direct way is to apply an external magnetic
field. However, a large field is usually required to obtain a
moderate SWs’ energy splitting.

Lee et al. [13] theoretically and numerically grounded that
the RH and the LH SWs dispersion relations in an AFM will
split into separate bands with specific polarities when crossing
the wall of interfacial inhomogeneous Dzyaloshinskii-Moriya
(DM) interaction. It has also been demonstrated that the
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magnon spectrum can be split by combining the strain or
the DM interaction with adiabatic spin-transfer torque effects.
Kim et al. [14] have shown that circularly polarized magnon
spectrum splitting occurs when magnons pass through a ro-
tating domain wall. Recent studies of an electric current’s
spin-transfer torque effects (Slonczewski-type and Zhang-Li
type) reveal a rather complex behavior concerning the rela-
tionship between the damping of the LH and the RH SWs and
a way to control their polarization separately in AFM [15].

Electric current control of SW dynamics in conducting
magnetics is among the topical goals of research in magnon-
ics. When a spin-polarized current j is injected into a magnetic
material, it exerts a torque on the local magnetic moment
by transferring spin angular momentum and causing the
current-induced SW Doppler shift. Vlaminck and Bailleul
[16] experimentally detected in the metallic AFM Ni80Fe20

stripe the current-induced frequency shift �ω ∼ Pjk ∼ PEk
of SWs with a wave vector k, where E is an external electric
field and P is the degree of spin polarization of the electrical
current. This current-induced frequency shift can be identified
as the Doppler shift as an electron system drifts concerning
the laboratory frame. The modification of SW dynamics in
metallic AFM and in compensated ferrimagnetic by an electri-
cal current that generates spin-transfer torques is theoretically
predicted in Refs. [17] and [18], respectively.

Authors [19,20] proposed another possibility to control
SW dynamics in collinear dielectric AFM. In insulating AFM
magnons cannot be driven by an electric current. But, in
collinear AFM the DM interaction breaks the left-handed and
right-handed SWs’ energy degeneracy causing a population
imbalance between the number of magnons in spin-up and
spin-down states and a population imbalance between the k
and −k states. A temperature gradient ∇T courses a longitu-
dinal magnon current and spin Nernst effect.

In Ref. [21], topological E-field effects induced by a high-
frequency laser on nonequilibrium magnon dynamics in the
insulating AFM have been studied. The authors show that
a linearly polarized laser can generate helical edge magnon
states and induce the magnonic spin Nernst effect. In con-
trast, a circularly polarized laser can generate chiral edge
magnon states and induce the magnonic thermal Hall effect.
In work [22], the magnon spin photogalvanic effect caused
by the Aharonov-Casher (AC) phase has been proposed as
a mechanism in which magnons can be excited and directly
controlled by an electric field of light. Spin current generation
by applying a time-dependent E field due to the coupling
between magnons and the electric field through the AC effect
has also been discussed in a recent paper [23]. The authors
demonstrate that a time-varying electric field can act as an
efficient spin current generator and offer a promising platform
for investigating magnonic topological effects.

The effects of the static electric field on magnetization
dynamics in magnetic insulators has been proposed and ac-
tively discussed [24–26]. The effect of the external electric
field on SW dynamics manifested in the form of an addi-
tional phase called the Aharonov-Casher phase [27], that is
a special case of the Berry phase [28], is an example of
the quantum topological of E-field effects on the dynamic
of neutral particles. It is manifested as a shift in disper-
sion and group velocity direction of SW’s by an external

electric field. In a linear approximation, the AC effect can
be accounted for by adding a DM-like interaction between
neighboring spins, the magnitude of which is proportional to
the applied E field, the exchange coupling, and the spin-orbit
coupling [25,26]. This is an example of a topological effect
in quantum physics. According to the paradigm of quantum
physics, the voltage control of static magnetic parameters
(e.g., an anisotropy through strain-mediated magnetoelectric
coupling) implies a modification of the local (Landau) system
parameters. An example of a local-topological effect on mag-
netization dynamics is the behavior of magnons in magnets
with artificial local magnetic structures, such as Bloch point
singularities. The acquired extra topological phase (the Berry
phase [28]) transforms the dynamics of magnons around these
singular points and formally is equivalent to a quantum elec-
trical charge dynamics in a magnetic field (for more details,
see, e.g., Refs. [29,30]). Similarly, spin waves propagating
through a skyrmion lattice can acquire a Berry phase due to
the nonuniform static magnetization texture [31]. An example
of a global-topological effect on magnetization dynamics is
the shift of a magnon energy by an external electric field
through the induced AC phase, the geometric phase acquired
by chargeless quasiparticles with a magnetic dipole moment
moving in an electric field. Note that an external electric field
breaks the spatial inversion symmetry even if the original
crystal symmetry of a magnet contains [25,32,33].

Zhang et al. [25] proved by the experimental data on cen-
trosymmetric ferrite Y3Fe5O12 (YIG) that the electric tuning
of the SW phase in thin ferromagnet films can be realized with
high efficiency. At an applied electric field of ∼106 V/m, the
phase shift (normalized to the propagation distance) was about
10−5 rad/mm [25]. This value can be drastically enhanced by
decreasing wavelength. The experimental research of Serha
et al. [32] also demonstrated that magnons could accumulate
a geometrical phase by interacting with an electric field due
to the AC effect, even in materials with a center of inversion
symmetry. The authors used two types of magnetostatic SW
propagating through an electric field region perpendicular and
parallel to the film magnetization direction in YIG, revealing
the AC effect’s contribution to the SW phase change [32].
In thin YIG films, it is possible to reduce the crystal sym-
metry by the film shape, impurities, or a mismatch with the
crystal lattice of the substrate. Based on the analysis of the
experimental data, the authors [25,32] note that the SW’s
dynamic is mainly controlled by the magnonic AC effect and
a magnetoelectric effect makes an insignificant contribution.
The agreement of these experimental data with theoretical
estimations points out that SWs can accumulate an additional
phase through the magnonic AC effect and an external electric
field can effectively control the SW power flux and caustics in
thin ferromagnet films.

In this paper, we theoretically study the way to the efficient
control and manipulation in real time of spin waves’ dynamic
properties in insulating AFM by an external electric field. We
consider the AFM stripe to be in the x-z plane and an in-plane
magnetic field H0 is parallel to the z axis (see Fig. 1); the
static electric field and the wave vector of SWs are orthogonal
to each other, E ⊥ k. In this geometry, the E-field induced
SWs phase shift is maximized, whereas the so-called Doppler
shift due to an electric field vanishes (for more details, see
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FIG. 1. Schematic representation of geometry and magnetic or-
der of the AFM nanostripe under consideration. Red and blue arrows
indicate magnetization of first and second sublattices along the z axis.
The external electric field is normal to the film, E ‖ y; spin waves
propagate along the x axis, k ‖ x, H0 ‖ z.

Refs. [16,34]). We focus on the case when the temperature is
low and constant along the AFM stripe. Thus we analyzed the
topological AC effect on the SWs dynamics in two-sublattice
easy-axis antiferromagnetic insulators (AFMIs).

The following section starts with the model formulation
and the phenomenological approach based on the well-known
Landau-Lifshitz-Gilbert (LLG) equations for a two-sublattice
easy-axis AFMI. The main results concerning the E-field
topological effects of SW’s dynamic in an AFMI are presented
in Sec. III. The phenomenological description shows that, in
a collinear AFMI, an external homogeneous E field leads to
an asymmetric magnitude of the phase, the damping shifts
for RH and LH SWs, and opens the possibility of a given
chirality magnon ultrafast propagation at nanoscale distances.
The AC effect on the so-called superluminal-like magnon
propagation at nanoscale distances is also considered. Sec-
tion IV is devoted to its discussions. We end with Conclusion
and Acknowledgments.

II. THEORETICAL MODEL

Aharonov and Casher [27] predicted that a chargeless par-
ticle with a magnetic dipole, m = gμBez (g is the g factor and
μB is the Bohr magneton), propagating in an external electric
field E will acquire, in addition to a standard dynamic phase,
a topological phase ϕAC . In a vacuum, the magnitude of the
extra phase shift is proportional to ∼(E × ez )(gμB/h̄c2) and
is extremely small (here c is the speed of light and h̄ is the
reduced Planck constant) [35,36]. Since a magnon possesses
a magnetic dipole, m = ±gμBez, the question arises about the
applicability of these results to a magnon moving in a material
space, e.g., to a magnon moving in ideal magnetic insula-
tor with the spatial inversion symmetry lattice. Microscopic
theoretical estimation based on the superexchange model pre-
dicted that the electric-field-induced AC phase in magnetic
insulators, e.g., such as YIG, is reasonably large to be experi-
mentally detected [25,33,37–39]. In a linear approximation to
the electric field, the effect of the E field-induced extra phase
on a magnetization dynamics can be considered by adding a
DM-like interaction between the magnetic moments Mi and
M j of neighboring ions that can be written in the traditional
form as di j · (Mi × M j ). The vector di j ∼ JξSOe(E × ei j ) is
perpendicular to the electric field E direction and to the vec-
tor ei j along the line connecting the ions with Mi and M j

magnetic moments; here J is the exchange coupling, ξSO is
the strength of the spin-orbit coupling between these ions, and
e is the absolute value of the electron charge. The physical
reason why the E field effect in this case is much larger than
in a vacuum is that in a magnetic insulator the polarization
of electronic orbitals (the electrons virtually hopping between
the magnetic ions) by the electric field generates the spin-orbit
coupling between the magnetic moments and thus an effective
DM-like interaction.

Based on these predictions, we examine the E field effect
on SWs propagating in a nanostripe of the AFMI with the
centrosymmetric lattice. The magnetization moments M1 =
M1(r, t ) and M2 = M2(r, t ) corresponding to the first and the
second symmetric sublattices are directed oppositely along
the z axis. The electric field is normal to the stripe, E||y,
and magnon propagation direction, k||x; see Fig. 1. The total
energy of the system, F , is

F =
∫

(Eex + Ea + EED + EH )dV (1)

and consists of four components: the exchange Eex, the
magnetocrystalline anisotropy Ea, the electric-field-induced
DM-like coupling EED, and the magnetic field EH energy den-
sities. We consider a general form of the exchange interaction,
written in the continuum description as [12]

Eex = J (M1M2) + 1
2 A[(∂xM1)2 + (∂xM2)2]

+ A12(∂xM1)(∂xM2). (2)

Here J > 0 stands for the homogeneous exchange coupling
between sublattices; A > 0 and A12 > 0 are the inhomoge-
neous exchange intrasublattice and intersublattice coupling,
respectively; ∂x = ∂/∂x. The uniaxial magnetocrystalline
anisotropy energy, with a constant K > 0, is expressed as

Ea = − 1
2 K[(M1 · ea)2 + (M2 · ea)2] (3)

and stabilizes the antiferromagnetic ordering with M1 =
−M2 along the easy axis ea||z [4].

A homogeneous static electric field E||y generates the DM-
like interaction between magnetic moments of neighboring
ions. This energy component, EED, can be presented in the
conventional form

EED = 1
2 d12 · (M1 × M2), (4)

where the vector d12 is perpendicular to both the electric field
E and the unit vector ê12 that is directed along the line that
connects the magnetic moments M1 and M2. Microscopic
calculations [25,33,37–39] give the following form of the
vector d12:

d12 = dAC (E × ê12). (5)

The material parameter, dAC, depends on the strength of the
exchange interaction and the spin-orbit coupling between the
magnetic ions. In typical AFMs with antiparallel-coupled
nearest magnetic moments, the effective intersublattice ex-
change interaction is much larger than the intrasublattice
exchange interaction [3,4]. The strength of spin-orbit coupling
between intersublattice magnetic moments is also larger in
magnitude compared to the coupling between magnetic mo-
ments of the same sublattice due to the shorter interatomic
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distance. Thus, following the results [25,33,37–39], we will
suggest that the leading effective DM-like interaction in
AFMI is dAC ∼ ξSOJe, where J is the intersublattice exchange
coupling and ξSO is the strength of the spin-orbit coupling be-
tween the intersublattice magnetic moments. Compared with
the exchange coupling, the dAC magnitude is relatively weak
and the applied electric field up to |E| ∼ 100 MV/m does not
violate the uniform Néel ground state [25,33,37–39].

The last term in Eq. (1) accounts for the Zeeman energy of
the external static magnetic field H0, which is parallel to the z
axis:

EH = −μ0H0(M1 + M2), (6)

where μ0 is the magnetic permeability of the vacuum.
The magnetization dynamics in AFMI is governed by the

LLG equation of the form ∂M/∂t = γ M × μ0∂F/∂M + R,
where F is the total energy of the system, γ is the gyro-
magnetic ratio, and R is the relaxation term. In the standard
LLG model, the relaxation term is written as αGMi/M0 ×
∂Mi/∂t . Recent theoretical research on dissipative torques
in two-sublattice magnets [40,41] suggested the important
role of cross-sublattice Gilbert terms in the phenomeno-
logical description of SWs’ damping. It was shown that
the intersublattice damping can significantly influence the
magnon’s lifetime. We will consider the case when the
Gilbert damping is captured by a viscous Rayleigh dissipation
function parametrized by the damping constants αi j (i, j =
1, 2) that represent the dissipation rate of the magnetization
mi × ∂mj

∂t within intrasublattices, i = j, and cross-sublattices,
i �= j, assuming that the αi j are spatially homogeneous
and isotropic [40,41]. Hence the magnetization dynamics of
a two-sublattice AFMI can be described by two coupled
LLG equations with the intra- and intersublattice damping
coefficients:

∂m1

∂t
= −γ m1 × μ0h1 + α11m1 × ∂m1

∂t
+ α12m1 × ∂m2

∂t
,

∂m2

∂t
= −γ m2 × μ0h2 + α21m2 × ∂m1

∂t
+ α22m2 × ∂m2

∂t
.

(7)

Here mi = Mi/M0 (i = 1, 2), M0 = |M1| = |M2| is the sub-
lattice saturation magnetization, and hi = −∂F/∂mi is the
effective magnetic field acting on the sublattice. Below, we
will suggest the AFMI is symmetric under sublattice permuta-
tion and the dissipation matrix is symmetric: α11 = α22 = α,
α12 = α21 = αC . The positivity of magnetization dynamics
dissipation implies that α � αC > 0 (see Refs. [40,41] for
details).

We will focus on the electric-field-induced topological AC
effect and will assume that (i) the AFM is a dielectric with the
cubic symmetry lattice and (ii) the SW wave vector, k||x, and
the electric field, E||y, are mutually orthogonal (see Fig. 1).
In this geometry, the SW’s Doppler shift vanishes (see, e.g.,
Ref. [34]) and it provides the maximum topological effect of
an electric field on SW’s dynamic.

There are two possible representations of the wave vector k
and frequency ω for describing the magnetization dynamics in
an absorbing medium: the complex frequency and real wave
vector characterize the temporal decay of SW and the real

frequency and complex wave vector characterize the spatial
decay of a traveling SW; see Refs. [42–44]. The magnons
propagation distance is significant in terms of their practical
application. Considering the damping effect on SWs propa-
gation length, we will use the real frequency and complex
wave vector. Thus a small amplitude sublattices magnetization
dynamic mi around the static equilibrium is presented as

mi = mi0ez + mi(x,y) exp[−i(ωt − kx)] exp[−x/	], (8)

where mi(x,y) = (mix, miy ), mi0 = ±1, |mi(x,y)| � 1, k is the
magnitude of the wave vector, and 	 is the SW’s amplitude
attenuation length.

In the spin-wave approximation, the equations of mo-
tion, Eq. (7), can be linearized. Substituting mi, Eq. (8),
in Eq. (7), transferring to the conventional chiral variables
m1(2)± = m1(2)x ± im1(2)y, in the limit of long wavelength ap-
proximation, ka � 1 (a is the lattice constant), we obtain(

±ω M0
γ

+ P + H0 − iαω M0
γ

R∓ − iαCω M0
γ

R∓ − iαCω M0
γ

∓ω M0
γ

+ P − H0 − iαω M0
γ

)

×
(

m1±
m2±

)
=

(
0
0

)
. (9)

Here we used the notations P = J + K + Ak2, R∓ = J +
A12k2 ∓ dACEk, and k = k + i/	L/R. The magnons’ disper-
sion relation and damping can be found as the eigenvalues of
these matrix equations. In the following sections we discuss
the E-field control of the right-handed spin-up and the left-
handed spin-down SWs’ asymmetric energy splitting, their
propagation lengths, and the damping-induced group velocity
anomaly.

III. CHIRALITY-SELECTIVE DYNAMICS:
ELECTRIC-FIELD-INDUCED ASYMMETRIES IN

FREQUENCY AND DECAY LENGTH OF SPIN WAVES

Frequency. In the spin-wave approximation, the magnons
dispersion relation and damping can be found as the eigen-
values of the matrix equations, Eq. (9). Suggesting that the
dissipation is zero, α = αC = 0, and thus Imk = 0, for the
energy of the right-handed, ωR, and the left-handed, ωL, SWs
propagating through an electric E||y and magnetic H0||z fields
region, we obtain

ωR(k, E ) = γ

M0

√
[εm(k) + dACEk][εl (k) − dACEk]

+ γμ0H0, (10)

ωL(k, E ) = γ

M0

√
[εm(k) − dACEk][εl (k) + dACEk]

− γμ0H0. (11)

Here we introduce εm(k) = [2J + K + (A + A12)k2] and
εl (k) = [K + (A − A12)k2]. When E = 0, the magnetic field
lifts the left- and right-handed SWs energy degeneracy split-
ting them on 2γμ0H0. The dependence of the magnon energy
on the magnetic field is standard [4] and we temporarily
(where not specified) set it to zero, H0 = 0, but E �= 0, to
discuss the effects of the electric field. If the electric field is
applied, the DM-like interaction is generated and the frequen-
cies of the clockwise and counterclockwise SWs have been
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separated. A stronger applied electric field results in a larger
frequency difference for the two polarities. Note that changing
the sign of the applied E field leads to a swap of the sign of the
energy division between the left- and right-handed SWs. The
energy splitting of the long-wave SWs is linearly dependent
on the wave vector k and the applied electric field magnitude:

ωL(k, E ) − ωR(k, E ) = 2γ J

M0
√

εm(0)εl (0)
dACEk. (12)

Figure 2(a) illustrates the evolution of the left- and right-
handed long-wave magnons’ energy dispersion under the elec-
tric field effect. The energy splitting dependence �ω(k, E ) =
ωL(k, E ) − ωR(k, E ) between the right- and left-handed
magnons on the wave vector k at different magnitudes of an
electric field is shown in Fig. 2(b). The dependence of the SWs
energy splitting �ω(k, E ) on the magnitude of the electric
field at fixed wave vector k and magnetic field are shown
in Fig. 2(c). Thus measurements of the SWs energy shift at
E �= 0 make it possible to determine the topological AC-phase
magnitude.

The AFM parameters such as KMnF3 have been used
in graphical representations in Fig. 2 and others (see,
e.g., Refs. [17,45]). Specifically, M0 = 3.76 × 105 A/m,
J = 6.59 × 10−12 a2J/m3, A = 0.5 × 10−11 J/m, A12 =
0.4 × 10−11 J/m, K = 1.16 × 105 J/m3, a = 0.418 nm, and
γ = 1.76 × 1011 rad Hz/T. The DM-like constant dAC is a
parameter in our model and we take dAC = 4.4 × 10−12 C/m
[25,26,39]; the damping coefficients are α = 0.002
and αC = 0.001.

The E-field control of SW propagation length. The external
electric field also affects the propagation distance of left- and
right-handed magnons. Setting the imaginary part of the deter-
minant Eq. (9) to zero and taking into account the dissipation,
k = k + i/	L/R, we find the long-wavelength SWs damping
length in the following form (	L upper sign and 	R lower
sign):

	L/R(k, E ) = γ

M0ωL/R(k, E )

c1k ± dACE (J + 3A12k2)

α(J + K ) − αC (J ∓ dACEk)
,

(13)

where c1 = 2AK − (dACE )2 + 2J (A − A12). Thus the SWs’
attenuation lengths are asymmetric 	R/L(k) �= 	R/L(−k) and
demonstrate the chirality dependence. The electric field in-
creases or decreases the propagation lengths of given chirality
magnons if their propagation is changed in the opposite direc-
tion. The largest difference in the propagation length (and the
lifetime) is between the long-wavelength magnons (k → 0):

[	L(k, E )−	R(k, E )]|k→0|= 2√
εm(0)εl (0)

JdACE

α(J + K ) − αCJ
.

(14)

The dependency of the attenuation length on the frequency
of the LH and RH SWs at E = 50 V/µm is shown in Fig. 3(a).
The attenuation length of one chirality of the SW mode
increases faster than the other. If the sign of the E field
changes, the left- and right-handed SW decay length swap
places. The magnetic field μ0H0 = 0.2 T amplifies the elec-
tric field effect on the attenuation and leads to �	(k, E ) =

FIG. 2. (a) Right-handed ωR (red line) and left-handed ωL (blue
line) spin waves energy dispersion under the E-field effect: (1) E =
50 V/µm (dash-dotted lines); (2) E = 20 V/µm (dashed lines). The
black solid line ω0 corresponds to E = 0. H0 = 0. (b) The energy
splitting �ω(k, E ) = ωL (k, E ) − ωR(k, E ) between the right-handed
and the left-handed long-wave magnons on the wave vector k at
the electric field: E = 50 V/µm (�ω1), 20 V/µm (�ω2), 10 V/µm
(�ω3), and 5 V/µm (�ω4). H0 = 0. (c) The dependence of the
energy splitting �ω(k, E ) = ωL (k, E ) − ωR(k, E ) on the magnitude
of the electric field at different wave vectors: k = 0.5 nm−1 (green
lines), k = 0.1 nm−1 (blue lines), and k = 0.05 nm−1 (orange lines).
H0 = 0 (solid lines), μ0H0 = −1 T (dotted lines), and μ0H0 = 1 T
(dashed lines).

	L(k, E ) − 	R(k, E ) increasing. If the sign of the magnetic
field is reversed, the sign of �	(k, E ) is reversed too when
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FIG. 3. (a) Attenuation length frequency dependence of the
right-handed 	R(ω, E ) (red lines) and the left-handed 	L (ω, E )
(blue lines) spin waves at the electric field E = 50 V/µm. The
magnetic field: H0 = 0 (solid lines), μ0H0 = 0.2 T (dashed lines),
and μ0H0 = −0.2 T (dot-dashed lines). (b) The spin waves attenua-
tion length difference, �	(k, E ) = 	L (k, E ) − 	R(k, E ), depends
on the wave vector at different magnetic fields: H0 = 0 (dashed
line), μ0H0 = 1 T (solid line), and μ0H0 = −1 T (dotted line). E =
20 V/µm. (c) The damping length with an applied electric field: (1)
E = 50 V/µm; (2) E = 20 V/µm. Black line corresponds to E = 0.
α = 0.002; αC = 0.001.

E = 0. Figure 3(b) illustrates the dependence of the attenua-
tion length difference, 	L(k, E ) − 	R(k, E ), on a small k at

E �= 0 without and at applied magnetic field. When H0 = 0,
we have �	(k, E ) = �	(−k, E ). After reaching the maxi-
mum value at k → 0, �	(k, E ) decreases gradually up to
the Brillouin zone boundary. The application of the magnetic
field causes the difference in the attenuation lengths of SWs
propagating in the opposite direction. The magnetic field also
affects the LH and RH SWs damping in the absence of an
electric field.

Note also, as the theory points out [40,41], the SWs damp-
ing reduces with increasing the intersublattices damping αC

(but keeping the ratio αC � α). This antidamping effect of the
intersublattices damping also persists when an electric field is
applied: the cross-sublattices damping αC increases the SW’s
damping length (the lifetime) of both chiralities; see Eqs. (13)
and (14).

The E-field effect on SW’s group velocity. The SW group’s
velocity in magnetic nanoheterostripes is a significant fac-
tor in the magnonic device speed operation. In the absence
of damping, the RH and LH magnons’ group velocity
υR/L(k, E ) = dωR/L(k, E )/dk is

υL/R(k, E )

=
(

γ

M0

)2 c1k ± dACEJ ± 3dACEA12k2 + 2k3
(
A2 − A2

12

)
ωL/R(k, E )

.

(15)

In the long-waves limit, neglecting small terms proportional
k2 and d2

AC , one finds

[υL(k, E ) − υR(k, E )]|k→0 = 2JdACE

M0
√

εm(0)εl (0)
. (16)

Thus the external E field generates artificial DM interaction
and asymmetrically splits the group velocity of LH and RH
SWs. By changing the E-field sign, the sign of the asymmetry
SWs’ group velocity is changed too.

The significant interest in SW’s group velocity is moti-
vated by the prospects of ultrafast nanodevices exploiting
AFMs for spintronics. Since the group velocity character-
izes the speed at which data transfers from one computer
component to another, understanding its limits is an exciting
area of research. As theory predicted [42,43] in the pres-
ence of damping, the magnon dispersion can be anomalous
and the long-wavelength SW’s group velocity can be much
larger than in the absence of damping. Recent studies have
estimated that the SWs’ velocity in AFMs can be around
10–100 km/s [9,46,47]. In this context, observing a magnon
velocity of up to 650 km/s in AFM insulator NiO [44] is
pioneering and impressive. The authors called the observed
effect a superluminal-like magnon propagation. Thus the
question arises: how does the topological AC phase affect the
superluminal-like magnon propagation?

IV. SUPERLUMINAL-LIKE MAGNON PROPAGATION

Following the experimental results in Ref. [44], and to
explore the potential anomalous behavior of frequency and
velocity more deeply, we will consider more accurate terms
proportional to 1/	 in the determinant of Eq. (9). First, we
revise the relationship between the two parameters of the
SW’s propagation: the SW’s vector k real part and its damping
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length 	 or the inverse of the imaginary part of the SW vec-
tor 	 = 1/kim. Setting the imaginary part of the determinant
Eq. (9) to zero and taking into account the dissipation like
for Eq. (13) with respect to 	 we get (	L upper sign and 	R

lower sign)

	L/R(k, E ) = c1
γ

M0ω̃L/R(k, E )

k ± k0

[α(J + K ) − αCJ]
. (17)

The constant k0 = JdACE/c1 describes the chirality-
dependent shift of the minimum SW’s energy along the wave
vector’s axis—the E-field topological effect. Equation (17)
refines (corrects) Eq. (13) in the vicinity k0: a finite damping
causes a sharp dip in the frequency ω̃L/R(k, E ) around k0 (see
below). The graphics for 	L/R(k, E ) for Eqs. (13) and (17)
are almost the same and presented on Fig. 3(c). Nevertheless,
this will play a role for frequency and group velocity. Below
we will show how accounting the imaginary part of the wave
vector, namely ∼1/	2, into the real frequency influences the
SW dynamics and leads to the appearance of a region with
anomalous behavior.

To consider the damping effect on the magnon dispersion
in the long wavelength limit, we will suggest that 1/	 ∼ k,
but still a/	 ∼ ak � 1. It means that the equation for the real
part of determinant, Eq. (9), has new terms ∼1/	2. Inserting
this expression for 	(k, E ), Eq. (17), into the real part of the
determinant Eq. (9) we will get the frequency

ω̃L/R (k, E ) = γ (k ± k0)

M0

√
c1[c2 + (k ± k0)2]

αi
[
(k ± k0)2 + 2c4(k ± k0) + c3

] ,

(18)

where c2 = K (K + 2J )/c1 − k2
0 , c3 = [α(K + J ) − αCJ]2/

αic1, c4 = αCdACE [α(K + J ) − αCJ]/αic1, and αi = 1 +
α2 − α2

C . Considering the damping parameters magnitude
∼10−3–10−4, further, we will suggest αi 
 1. Figure 4 shows
the difference between the frequencies derived from Eqs. (10),
(11), and (18). A finite damping causes a sharp dip around
k = k0 and k = −k0 in ω̃R(k, E ) and ω̃L(k, E ), respectively.
This anomalous magnon dispersion behavior appears due to
taking into account the terms proportional to 1/	2.

The anomalous decrease in ω̃L/R (k, E ) results in an anoma-
lous increase of the magnon group velocity. At small wave
numbers υ̃L/R (k, E ) is

υ̃L/R (k, E ) = γ
√

c1

M0

(k ± k0)4 + 3c4(k ± k0)3 + 2c3(k ± k0)2 + c2c4(k ± k0) + c2c3√
αi[(k ± k0)2 + 2c4(k ± k0) + c3]3/2

√
c2 + (k ± k0)2

(19)

and is larger than υL/R(k, E ), Eq. (15). For the AFMI mag-
netic parameters we used, at nanoscale distance the values
of the group velocity υ̃L/R (k, E ) could be around 320 km/s;
that is extremely high compared to the values from the pre-
vious section, Eq. (15), where group velocity is two orders
times lower in this region. That is so-called superluminal-
like magnon propagation [44]. Considering the fact that
authors [44] have shown the experiment with high velocity
and made some theoretical predictions using a similar idea,

FIG. 4. Damping-induced dispersion of the right-handed
ω̃R(k, E ) (red line) and the left-handed ω̃L (k, E ) (blue line)
spin waves at the electric field E = 50 V/µm and E = 0 (black
line). There is no anomalous behavior of SW’s dispersion when
α = αC = 0: ωR, ωL , and ω0 [Eqs. (10) and (11)].

this opens the perspective for higher group velocities than
previously expected. Moreover, it points out that we should
pay more attention to the dissipation effects in SW’s dy-
namics even when SW’s damping in insulating AFM is very
small. Figure 5 shows the difference between group veloci-
ties calculated from Eqs. (15) and (19). There is almost no
difference between expressions for the frequency, damping
length, and group velocity for most values of the wave vector

FIG. 5. Magnitude of damping-induced superluminal-like
magnon group velocity. Solid lines, Eq. (19): the right-handed
υ̃R(k, E ) (red line) and the left-handed υ̃L (k, E ) (blue line) at the
electric field E = 50 V/µm and υ̃0(k) at E = 0 (black line). Dashed
lines, Eq. (15): υR(k, E ), υL (k, E ), and υ0 at the electric field
E = 50 V/µm and at E = 0, respectively.
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k except a small region around k0. The width of a sharp
dip depends on the main quantities of the material, but its
position, k0 = ±JdACE/c1, can be controlled by the external
E field. Figures 4 and 5 show how the external E field can
dramatically change the kinetic properties of magnons, such
as the wave vector at which the superluminal propagation
of a given chirality magnon occurs. This chirality-selective
topological effect on superluminal propagation SWs behavior
paves the way for the development of advanced magnonic
devices.

V. CONCLUSION

Two types of SWs chirality, the right- and left-handed
modes, exist in the antiferromagnetic structures due to two
antiparallel magnetization sublattices. In systems with bro-
ken inversion symmetry and strong spin-orbit coupling, the
antisymmetric component of exchange interaction, known as
the DM interaction, generates an asymmetric SW dispersion
ωL/R(k) �= ωL/R(−k): magnons propagating in opposite direc-
tions have different phase, amplitude, and attenuation. These
stimulated researchers to use SWs of different chirality and
their nonreciprocity in magnonic devices. The effect of non-
reciprocity could be applied to such magnonic devices as
SW field-effect transistors, diodes, directional SW emitters,
passive nonreciprocal filters, etc. [5,34,47,48]. Applying a
magnetic field can solve the SW spectrum handedness split-
ting. Nevertheless, an electric field could be a more efficient
way of controlling the SWs’ chirality-selective dynamics.
Liu et al. [49] have demonstrated the electric-field-induced
switching of magnon spin current polarization by varying a
gate voltage in the antiferromagnetic insulator Cr2O3. Electric
field control of SWs in different thicknesses of CoFeB films
has also been observed in Ref. [50].

According to the paradigm of quantum physics, control-
ling magnetization dynamics through modification of the
system’s magnetic parameters implies a modification of
the local (Landau) order parameters. In recent years, con-
densed matter physics has been revolutionized by introducing
topology-grounded concepts that characterize physical states
and properties by global nonlocal quantities, which endow
the system with global stability to perturbations. In mag-
netism, the topological concepts can be conditionally divided
into two different scenarios: (i) a nontrivial topology of a
static magnetic order in the real space, e.g., magnetic struc-
tures such as skyrmions, magnetism in curved geometries,
etc., and (ii) topological effects in magnetization dynamics.
The electric field’s topological effect on magnon dynamics

provides a promising platform for developing ultrafast topo-
logical magnonics. The theoretically predicted phenomenon
[51–54] of the change of the SW’s phase due to the magnonic
Aharonov-Casher effect—the accumulation of the topological
phase by a quantum orbital motion of chargeless bosonic
quasiparticles with magnetic dipole moment in an electric
field region—was already obtained with convincing evidence
in experiments on YIG [25,32]. In a collinear AFMI, the exter-
nal E field leads to an asymmetric magnitude of the phase shift
and damping for the right-handed and the left-handed chirality
magnons. This provides a way to manipulate the spin-up and
spin-down SWs’ dynamical phase and their attenuation length
in AFMIs via an external electric field, developing another
direction in the field of antiferromagnetic magnonics—non-
Abelian magnonics in AFM insulators [55].

We have theoretically studied the effect of the quantum
Aharonov-Casher phase on the possibility of directly control-
ling the phase and the attenuation of the right-handed and
the left-handed spin waves in a dielectric collinear antifer-
romagnet by an external electric field. The magnonic AC
phase is purely a quantum effect and can be accounted for by
adding the Dzyaloshinskii-Moriya-like interaction between
neighboring spins. Analytical calculations demonstrate that
the electric field can successfully manage the right-handed
and left-handed spin wave spectrum, amplitude, and propaga-
tion length without adding the magnetic field. The attenuation
of the given chirality magnons can be enhanced or weakened
separately depending on the direction and magnitude of the
electric field. A finite damping makes the magnon’s disper-
sion anomalous, e.g., a giant magnon velocity at nanoscale
distances. An external electric field can control the position
of this superluminal-like magnon velocity region. Effective
control of a given chirality spin wave’s phase, amplitude, and
speed provides a way to design a magnonic device. We hope
the obtained results will contribute to the fundamental under-
standing of topological effects in the chirality-dependent spin
wave dynamics in collinear antiferromagnetic insulators in
different energy ranges that can be a key factor for designing
quantum magnonic devices.
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