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We present a comprehensive analysis of boundary phenomena in a spin-% anisotropic Heisenberg chain
(XXZ—%) in the gapped antiferromagnetic phase, with a particular focus on the interplay between fractionalized
spin—i edge modes and a coupled spin—% impurity at the edge. Employing a combination of Bethe ansatz, exact
diagonalization, and density matrix renormalization group methods, we explore the intricate phase diagram
that emerges when the impurity is coupled either integrably or nonintegrably to the chain. For integrable
antiferromagnetic impurity couplings, we identify two distinct phases: the Kondo phase, where the impurity
is screened by a multiparticle Kondo effect, and the antiferromagnetic bound mode phase, where an exponen-
tially localized bound state screens the impurity in the ground state. When coupled ferromagnetically while
maintaining integrability, the impurity behaves as a free spin—%, leading to either a ferromagnetic bound mode
phase, where the impurity remains free in the ground state but may be screened at higher energy excitations
or an unscreened (or local moment) phase where impurity remains unscreened in every eigenstate, whereas for
nonintegrable ferromagnetic coupling, the impurity is not free. In the case of nonintegrable antiferromagnetic
coupling, a third phase emerges, characterized by midgap excitations with two degenerate states below the mass
gap on top of the Kondo and antiferromagnetic bound mode phases, further enriching the phase diagram. Our
findings highlight the nuanced behavior of boundary impurities in gapped antiferromagnetic systems, offering
new insights into Kondo effects and impurity screening in the presence of fractionalized edge modes and bulk

antiferromagnetic order.
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I. INTRODUCTION

The Kondo effect [1,2], which was discovered experi-
mentally in metals containing dilute magnetic impurities,
manifests itself as an increase in the resistivity as the tem-
perature is lowered [3]. Magnetic impurities interact with
the electrons of the metal via spin-exchange, whose effective
strength increases at low temperatures, accounting for the
observed increase in resistivity [4]. It also accounts for other
effects, in particular, the quenching of the impurity spin at
low temperatures. At high temperatures, however, the impu-
rity behaves essentially as a free spin. In other words, the
Kondo effect can be described theoretically in terms of an
RG flow from an (asymptotically free) UV fixed point to a
nontrivial (strong-coupling) IR fixed point [5-9] characterized
by the decrease in “ground-state degeneracy” described by the
universal g function [10,11]. The crossover from the UV fixed
point (around which one has a local magnetic moment) to
the IR fixed point (around which there is complete screening
of the impurity magnetic moment) has been studied exten-
sively by various analytical [12] and numerical tools [8,13,14]
including an exact solution via the Bethe ansatz technique
[15,16].
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The impact of a single impurity on the low-energy physics
of a quantum system is not limited to the Fermi sea of non-
interacting electrons. There has been an immense effort in
understanding the role of novel impurity-mediated features
in strongly interacting systems like Luttinger liquids [17-21],
superconductors [22-28], spin liquids [29,30], quantum chro-
modynamics [31-34], and spin chains [35—40]. Among these
systems, the spin chains provide a simple platform to un-
derstand the effect of impurities in the strongly interacting
systems. Since the effect is mediated by spin-exchange inter-
action, it is natural to expect that Kondo physics would arise in
a system consisting of magnetic impurities coupled to an anti-
ferromagnetic spin chain, often called a spin chain Kondo sys-
tem. The case of gapless Heisenberg spin chain coupled with
magnetic impurities has been studied extensively [35-43].

Here, we study the effect of magnetic impurities coupled
to the edges of a gapped anisotropic Heisenberg spin chain
(XXZ chain). The spin chain Hamiltonian is of the form
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where there are two impurities described by &, and oy at
the left and right ends of the spin chain, respectively, and
the bulk sites are labeled 1 through N,. It is often easier to
parametrize the anisotropy parameter A as cosh(n) so that
when the crossing parameter n € R, the model is gapped.
We will focus on the case where J > 0, meaning that the
interaction within the bulk is antiferromagnetic. However, we
will allow the impurity coupling J;/z to range from —oo to
00, accommodating both antiferromagnetic and ferromagnetic
scenarios.

The XXZ chain with boundary impurities described by
Eq. (1) is not integrable for arbitrary boundary couplings,
unlike the XX chain [43] or the isotropic XXX chain [37] with
boundary impurities. Instead, a particular relation between the
bulk anisotropy A and the impurity parameters Ag ; and Jg 1,
is required [44-47] to maintain integrability as follows:

sinh? () cosh(d,) cosh(n)
sinh?(57) — sinh?(d,) cosh(d,)’

where J, refers to Jg or Ji, and there are two independent free
parameters dj, and dg at the boundary that control the strength
of the impurity. We will use a combination of Bethe ansatz
[48-54] and density matrix renormalization group (DMRG)
[55,56] to probe the integrable case and use DMRG and exact
diagonalization for the nonintegrable regimes of the model. In
the integrable case, the Bethe ansatz equations are
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The equations describe the system in terms of the M spin
momenta A;, j=1---M with M being the number of down
spins. Given a solution for the spin momenta, the energy and
spin component of the eigenstate are given by

sin $(A; + vAg — 2in)
sin 2(A; + vAg + 2in)

(€)

J sinh?
E=|WN-1DJ+ Y — — coshp
—IRL) (sinh” n — sinh“ d,;)
l sinh n
+2J sinh - 4
- T];COSA]‘—COShTI @
. Ny, +2
§= o - ®)

We show that in the integrable case, each impurity exhibits
four distinct phases depending on the impurity parameter d,
and the anisotropy. For antiferromagnetic impurity coupling,
there are two distinct phases: the Kondo phase, where the
impurity is screened by the Kondo effect, and the antiferro-
magnetic bound mode (ABM) phase, where the impurity is
screened by a localized boundary bound mode, which can
be removed to form an excitation where the impurity is un-
screened at the cost of the dressed energy of the bound mode.

Likewise, in the case of impurity ferromagnetic coupling, the
model exhibits two boundary phases: the unscreened phase,
where the impurity is essentially a free local moment, and the
ferromagnetic bound mode (FBM) phase, where the impurity
is unscreened in the ground state but a localized bound mode
can screen the impurity in the excited states. When the in-
tegrability is broken, the antiferromagnetic impurity exhibits
more diverse phases. Apart from the Kondo and ABM phases,
there exists a unique phase in which midgap states are present
in the model. The midgap states are present in the case of
the boundary magnetic field, where the model remains in-
tegrable for arbitrary values of the boundary magnetic field
[57-59].

Another important aspect of the gapped XXZ spin chain
is the recently discovered existence of fractionalized spin
+1/4 edge states [59]. The fractionalized edge spins can be
identified with the strong zero modes when they are pro-
jected onto the low energy subspace spanned by the ground
state and midgap states mode described in Refs. [60—64].
These fractional charges in XXZ chains were also studied in
Refs. [65-67]. More generally, the existence of fractionalized
S/2 spin excitations was recently established for any generic
antiferromagnetic gapped spin-S model with U (1) symmetry
and spontaneous or explicitly broken Z, symmetry [68] where
it was also shown that these fractionalized spins are robust to
certain kind of disorder.

Here we show that the fractional excitations survive in
the presence of the boundary impurity in both integrable and
nonintegrable cases. We further show here, using DMRG re-
sults, that for the nonintegrable case, midgap states appear
in the spectrum, leading to a phase diagram that is richer
than the integrable case. The appearance of midgap states in
gapped systems in the presence of impurities is quite a general
phenomenon that exists in several systems, including super-
conductors and super-fluid with impurities [26-28,69,70], two
dimensional magnets [71], graphene [72,73], and other one
dimensional systems [59,72]. The effect of impurities has
been experimentally studied in a few quasi-one-dimensional
systems [74] where some aspects of Kondo physics, such
as impurity susceptibility [75], have experimentally been ob-
served.

Before we proceed further, we shall briefly discuss some
aspects of the Kondo effect which helps to clarify some of the
terminologies that follow in the remainder of the paper.

II. KONDO EFFECT IN SPIN CHAINS

Let us briefly review the key features of the standard Kondo
effect and examine how they manifest themselves in our
model. The main aspect associated with the effect of a single
spin—% magnetic impurity in a three-dimensional metal can be
captured by perturbed 1 + 1D chiral SU (2); Wess—Zumino—
Witten (WZW) model with a Hamiltonian density of the
form

1
H= T 0T(x)+ 18T, 0), ©)

where J%(t,x) = wTja§w ;g 1s the spin current. The charge
current J =: /%y jo © commutes with the spin current and
decouples. Thus, the Kondo Hamiltonian Eq. (6) only involves
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the spin sector where the perturbative coupling A associated
with the impurity (or defect) coupling is marginally rele-
vant triggering the boundary renormalization group (RG) flow
from the UV theory where the spin—% impurity is essentially
free to the IR endpoint where the impurity spin is completely
quenched. The ground-state degeneracy (g), a quantity that
measures the effective number of degrees of freedom asso-
ciated with a boundary of a two-dimensional quantum field
theory [9,10], in the UV is g =2 as the impurity could be
either up or down or equivalently, the boundary entropy is
Simp = Ing =1In2 whereas, in the IR, g =1 as its spin is
screened such that Si,, = In g = 0. The crossover regime be-
tween these two fixed points is characterized by a dynamically
generated nonperturbative scale Tk.

This boundary RG flow from the asymptotically free UV
theory with g = 2 to the strongly coupled IR theory with g = 1
manifests itself through various physical quantities associated
with the impurity, such as the impurity magnetization, which
transitions from zero at vanishing magnetic field (%) to asymp-
totically reaching 0.5 as 4 — oo. The impurity susceptibility
remains constant at zero temperature but it follows Curie’s
law at higher temperatures. Likewise, the resistivity shows an
upturn as the temperature drops below Tx. These are a few of
the effects resulting from this flow.

Before discussing the Kondo effect in our model Eq. (1),
let us briefly look at the isotropic limit A = 1 where a single
magnetic (Jg = 0) impurity interacts with an antiferromag-
netic Heisenberg chain with SU(2) symmetry is described by
the following Hamiltonian:

N—-1
H=17Y 6611+ w0 - GL. 7
j=1

Following standard steps: fermionizing the model [76],
taking the continuum limit [77], carrying out non-Abelian
bosonization [78,79], and imposing the boundary conditions
Y (x) = —yr(x) for the bulk fermions, the Hamiltonian den-
sity can be written in terms of spin currents as [36,77]

H= i[j(x)]2 2 70y G+ F0)-5. ()
o 27

Here Ax o Jimp and Ap is a constant of order J. Notice that the
bulk coupling constant Ap is marginally irrelevant, whereas
the defect coupling constant g is marginally relevant. Thus,
it is evident that at longer and longer distances and lower and
lower energies where the bulk interaction proportional to Ap
becomes smaller, the Hamiltonian density Eq. (8) contains the
same physics as that of the conventional Kondo Hamiltonian
Eq. (6).

By exactly solving the model given by Eq. (7) on the
lattice, it was explicitly shown that the model exhibits Kondo
physics for 0 < Jip/J < ;—‘ where the impurity is screened
by the multiparticle Kondo effect [37-39]. Whereas when
Jimp/J > ‘3—‘, the continuum description given by Eq. (8) breaks
down as a high energy bound mode exponentially localized
at the boundary appears in the spectrum. This single particle
bound mode then screens the impurity in this regime, and
it is, therefore, possible to unscreen the impurity by excit-
ing this single bound mode. Just like in the conventional
Kondo physics, the effect arises due to the decrease in the

ground-state degeneracy from g =2 when the impurity is
asymptotically free in the UV to g = 1 when the impurity
screened is quenched in the IR. Hence, as in the conventional
Kondo problem, the physical quantities such as magnetization
and susceptibility associated with the impurity are different in
the UV and the IR [36-39,43].

Let us now briefly discuss the Kondo effect in our model
Eq. (1) and stress some differences in the Kondo physics.
We consider Eq. (1) in the gapped antiferromagnetic regime
A > 1 such that our bulk is no longer a CFT, unlike the low
energy of the isotropic Heisenberg chain and the conventional
Kondo problem described by Eq. (6). Because our system is
gapped, the Kondo physics is different in our system com-
pared to the gapless bulk in the conventional Kondo problem
and the Kondo effect in the gapless Heisenberg chain. For
instance, in the XXX chain, the gaplessness implies infinite
correlation such that the effect of impurity propagates deep
into the bulk depending on the ratio of the bulk and bound-
ary couplings [37]. When the model is gapless (A < 1), for
vanishing boundary couplings (J; ;g — 0), the Kondo temper-
ature approaches zero [37,43] and the Kondo length diverges
just like in the conventional Kondo problem [80,81]. How-
ever, the situation is completely different in the current case
primarily due to the existence of a gap in the bulk, which
makes the correlation not only finite but also exponentially
decaying [77]. Thus, in the Kondo phase in the present model,
the impurity is screened by gapped spinons, but its effect does
not penetrate deep into the bulk as in the conventional Kondo
problem or the gapless spin chain Kondo problems.

More prominent differences arise due to the emergence
of the antiferromagnetic order in the bulk (see below) such
that the local expectation values of the z component of the
spin S§% at each site j are nonzero, unlike in the isotropic
case [36,37,39] or the conventional Kondo problem [16,82].
Moreover, unlike in both the conventional Kondo problem and
the isotropic Heisenberg chain, the ground state of the bulk
in the case of the gapped XXZ chain is twofold degenerate
in the thermodynamics limit. When a single spin—% impurity
with an initial entropy of In2 is coupled separately to each
of the two vacua, the system evolves to a unique ground state
characterized by a boundary entropy Sim, = 0. For each of the
vacua separately, this process reduces the ground-state degen-
eracy from g =2 to g = 1, analogous to what occurs in the
conventional Kondo problem and in the isotropic case where
there is only a single vacuum before adding the impurity.

These fundamental distinctions give rise to unique behav-
iors that we will explore in detail in the subsequent sections.
We will begin by examining the bulk physics in Sec. III before
introducing the impurity. Then, in Sec. IV, we will discuss the
four distinct phases exhibited by the impurity under integrable
coupling. Finally, Sec. V will examine the effects of a single
impurity attached with nonintegrable antiferromagnetic and
ferromagnetic coupling, revealing three impurity phases. A
summary of key results for the integrable case is provided in
Table 1.

Impurity-related thermodynamic quantities reflect the
boundary phase transitions, with the flow of impurity entropy
(Simp) between the ultraviolet (UV) and infrared (IR) limits
serving as a key indicator. As discussed in the last row of
Table I, Simp decreases from In(2) in the UV to O in the
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TABLE I. In the gapped antiferromagnetic phase, the XXZ
chain’s bulk is twofold degenerate. When a single free spin with In 2
entropy is integrably coupled to the XXZ chain via antiferromagnetic
exchange coupling, the impurity exhibits either the Kondo or anti-
ferromagnetic bound mode (ABM) phase. In the Kondo phase, the
impurity is screened by a multiparticle cloud, whereas in the ABM
phase, it is screened by a single particle bound mode exponentially
localized at the edge. In both phases, the impurity’s entropy reduces
to 0, indicating that the impurity is no longer free. However, when
the impurity is coupled via ferromagnetic exchange coupling, it
transitions to either the ferromagnetic bound mode (FBM) or un-
screened phase, where the impurity’s entropy remains In 2, showing
that the impurity remains essentially free. The entropy reduction in
the Kondo phase results from the many-body Kondo effect, while in
the ABM phase, it is due to single-particle screening. In the FBM
and unscreened (US) phases, the impurity remains unscreened, akin
to a Kondo impurity coupled ferromagnetically to a metallic bath,
where the coupling is irrelevant, leading to a trivial fixed point in the
IR. Here N denotes the total number of sites (including the bulk and
impurity).

Bulk Kondo ABM FBM usS
Fhol ol
Bagemodes  +1—t +h—f+hot bl -l
R T T I
+3, 4% +3.43
+i+i i+
Edge modes  +1,+1 +1.+3 +3,+3 -1 -1 —1,—1
1 1 1 1 1 1 3 1 3 1
(Odd N) "1 —1 "1 o1 —oti: —i7T3
3 1 3 1
+3—-1 ti 3
Bulk 4+ imp Kondo ABM FBM usS
GS

2%2 2 2 4 4

Degeneracy

In2—0 In2—0 In2—In2 In2—In2
(Kondo (Bound (free (free
effect) mode) impurity) impurity)

Imp. entropy In2
in each vacua  (before
(UV — IR)  coupling)

IR for both the Kondo and antiferromagnetic (AFM) phases
(encompassing the entire range of antiferromagnetic impu-
rity coupling). Conversely, Sy, remains at In(2) in both the
UV and IR limits for the FBM and unscreened (US) phases
(covering the entire ferromagnetic impurity coupling range).
However, despite this shared UV/IR behavior, Fig. 1 reveals
significant differences in the temperature dependence of Simp
between the two sub-phases within each coupling regime:

(1) Kondo phase: Sim, decreases monotonically from In(2)
to O as there are no scales in the boundary.

(2) Bound mode phase: Sy, decreases nonmonotonically
to 0 as there is a massive bound mode at the boundary.

(3) US phase: Sjn, remains constant at In(2) as impurity
cannot be screened at any scale.

(4) FBM phase: Siyp is In(2) at both zero and infinite
temperatures but dips in the intermediate range as there exists
a single particle bound mode that can screen impurity at high
energy.

In(2)

0.5

—0.25 ¢

FIG. 1. Impurity entropy (Simp) vs temperature (7) for various
d/n, illustrating contrasting impurity screening. The plot shows
Simp = In(2) at high T', evolving with decreasing 7': monotonic de-
crease to zero in the Kondo regime; nonmonotonic behavior in bound
mode phases (due to boundary scales); constant Sj,, = In(2) in the
unscreened (US) phase (impurity unscreened at all scales); and non-
monotonic behavior in the FBM phase (due to a single high-energy
screening mode). Results are for a bulk chain of N, = 100 sites with
n = 2.5 and a single impurity, obtained using the finite-temperature
tensor network purification method by implementing in ITensors
library).

These results were obtained using a finite-temperature
tensor network method (purification algorithm [83]) imple-
mented in ITensor library [84]) for 100 bulk sites. The
impurity entropy is defined as the difference between the
thermodynamic entropy of the chain with the impurity and
the thermodynamic entropy of the impurity-free chain.

Before discussing the boundary phases in detail, we will
briefly clarify the underlying bulk physics by considering the
system without impurities, and then proceed to analyze the
physics at the boundary.

III. BULK (NO IMPURITY ATTACHED)

Let us first consider the case when there are no impurities
at the chain edges, Jr = 0 = Ji, to set the notation for the rest
of the paper and briefly review some known results. In this
case, the model is integrable via Bethe ansatz for any values
of anisotropy parameter A. Bethe ansatz was first used to an-
alytically solve the system with periodic boundary conditions
in the isotropic case (A = 1) [48], and the solution was later
extended to include anisotropy along the z direction [85-90].
In the regime where A > 1, the system exhibits both a con-
tinuous U (1) symmetry and a discrete Z, spin-flip symmetry.
The Z, symmetry is spontaneously broken in the thermody-
namic limit, and the ground state is a twofold degenerate state
with a total S = 0 for an even number of sites and S* = :I:%
for odd number of sites [53,90,91].

Excitations above the ground states are constructed by
adding an even number of spinons, quartets, strings, etc. [92].
The fundamental excitations, the spinons, are topological kink
excitations interpolating between the two vacua [93-95]. They
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Spinon energy when 77 = 2

IR
e
.

FIG. 2. Energy of spinon for n = 2. The green dashed line shows
the minimum value of spinon energy m, = E(&m) where E(6) is
given in Eq. (9), and the blue dotted-dashed line shows the maximum
value of the spinon energy M, = E(0).

carry §° = % and are massive with energy,

91(0, e M03(4, ")
(9200, e 04(5, 7))

where 9, (u, q) for « = 1, 2, 3, 4 are Jacobi 6 functions [96]
and prime denotes the derivative with respect to the u variable
(see Appendix A for definitions of these functions). Notice
that the maximum spinon energy, M,, occurs at 6 = 0, and its
minimum value m, occurs at § = &, which is nonzero as
shown in Fig. 2. Thus, the model is gapped with the mass gap
given by M, = 2m,.

Notice that the model has spontaneously broken discrete
spin flip Z, symmetry, due to which the ground state is
twofold degenerate S° = O for even N, and $° = j:% for odd
Nj,. Moreover, an antiferromagnetic order develops in the bulk
where the staggered magnetization (—1)/o where o is given

by [97,98]
2
1 00 1— 87211171
"= z(ﬂ <1+—>> » 10

m=1

E(0) = Jsinh 7

€))

and in the boundary, there are deviations due to the edge
effects as discussed below.

Edge modes

A recent discovery indicates that integrable anisotropic
Heisenberg XXZ-% chain in the gapped antiferromagnetic
regime hosts fractionalized edge spin [59]. These, when pro-
jected onto the low-energy subspace spanned by the ground
state, can be identified with the strong zero energy mode dis-
cussed in Ref. [60]. It was established that the ground state for
an even number of sites with S = 0 contains sharply localized
:i:i edge modes such that we label the twofold degenerate
ground state shown in Fig. 3 as

1 1
IGS)E = ‘:I:Z :Fé_l> (for even N), (11

(5%) (5%)

(a)

NG
=

2€A
=

1 sites sites N
FIG. 3. Schematic representation of the spin accumulation in
the twofold degenerate ground state when the total number of bulk
sites NV, is even. (a) The total spin is S* = O such that the left edge
carries §¢ = { and the right edge carries §* = —1. (b) The total spin
accumulation is S° = 0 such that left edge carries S* = —% and the

right edge carries S° = i.

Likewise, the doubly degenerate ground state §° = :I:% for
the odd number of case shown in Fig. 4 can be labeled by the
two edge modes as

11
|GS)OE‘iZ,iZ> (for odd Ny). (12)

It is important to note that the edge localized fractional
§* = }t excitations in the XXZ chain emerge due to many-
body interactions [59,99] and these excitations are not simple
averages but rather sharp quantum observables.

To understand this better, we look at the spin profile in the
ground state using DMRG. The spin profile of the XXZ chain

has the form
S; = (=D/o + ASH()), (13)

where o is the exact staggered magnetization of the XXZ
chain in the thermodynamic limit defined in Eq. (10) and
A(S%)(j) is the deviation from the bulk antiferromagnetic
order due to the presence of the impurity and open boundary.
Due to the gap in the bulk, all the correlations exponentially
decay, and hence the deviation of the bulk is localized expo-
nentially at the edges, i.e.,

A(SH)()) = ASL() + ASR (), (14)

where ASj (j)is localized near the leftedge j = 1 and AS}(j)
is localized near the right edge j = N,. We shall verify the
existence of fractionalized spin operators Si and Sfé at the left
anfi right edges characterized by fractional expectation values
+7 [59].

S

(a)wz}i\ ﬁ\(b)w%/

1 sites N 1 sites N

FIG. 4. Schematic representation of the spin accumulation in
twofold degenerate ground state when the total number of bulk sites
N, is odd. The spin accumulations at the two edges point in the
same direction such that total spin (a) S° = % and (b) §? = —1 in

=72
the ground state.
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Following Refs. [59,99-101], we define the fractional edge
spin operators as

N
&z 1: . oz T . —aj oz
SL_iL“‘ONIE‘E;SZ(N’“)_i%A}E%oz;e S (19
j=

with §§ defined similarly, replacing exp{—«j} with
exp{—a(N +1—j)}. These operators have quantized
expectation values :I:% in the ground state. The variance
882 ,r Vvanishes in the ground state, indicating that these
fractional operators are sharp observables.

To compute the variance numerically, we adopt the ansatz
from Refs. [59,99] in the thermodynamic limit:

887 p(N. ) = 88} p(00, &) — Aare PV, (16)

where 8SE/R = limy_,¢ (SS%/R(OO, o). This ansatz was verified
for various N using Hamiltonian Eq. (1) with Jy = J;, =0, in
Ref. [59]. We shall analyze how these fractional excitations
behave in the presence of an impurity, and we shall show the
validity of this ansatz even in the presence of an impurity. As
we shall see, the effect of a single quantum impurity in an
already strongly interacting many-body spin chain gives rise
to several interesting phenomena discussed below.

IV. ONE INTEGRABLE IMPURITY

The Hamiltonian Eq. (1) is not integrable for arbitrary val-
ues of boundary couplings Jg and J; and boundary anisotropy
parameters Ag and A;. In the integrable limit, the boundary
couplings and boundary anisotropy parameters are given by
Eq. (2) [44-47]. Consider the case with one integrable impu-
rity attached, which is defined through dg = 0 and d;, = d; the
Hamiltonian then takes the form

Nz;—lJ
— “(~XAFX Y Y Z,.Z
H = § : Z(Ui 041 + 0707y, + Ao, Ui+1)
i=1

Jim ) ) 7 ~
+ Tp(aifnpafc + 0ip0i + Aimp"ﬁnp"f)' (17

In this case, the impurity exhibits four distinct phases, de-
pending on the value of the impurity parameter d, as shown
in Fig. 5. There are two distinct phases when the impu-
rity coupling is antiferromagnetic: the Kondo phase and the
antiferromagnetic bound mode phase. Likewise, when the
impurity coupling is ferromagnetic, there are two distinct
phases: the ferromagnetic bound mode phase and the un-
screened phase. The phase diagram is exactly the same as in
the isotropic limit studied in Ref. [37]. However, each phase
has unique features that are different from the isotropic case,
primarily because of a mass gap in the spectrum and the bulk
magnetic order in the present case.

Before discussing the four distinct phases, let us first focus
on the aspect of impurity physics that only depends on the sign
of the impurity coupling. We shall begin by studying the case
where the impurity is integrably coupled to the XXZ chain
with antiferromagnetic coupling.

Antiferromagnetic impurity coupling Ferromagnetic impurity coupling

Kondo:Phase ABM | FBM US Phase
Phase '|Phase
MuItierticIe I
Kondol|effect |
Boundary
| excitation: |
I unscreens
| the impurity |
| M, | — — — —
| 0f— =— — — — — — — —
— — = M| IBoundary No boundary
No boundary | excitation: excitation
exci]ation | . screens
the impurity
E | |
| |
| |
ImpurityJI is screened|in the GS : Impurity i§ unscreened in the GS
imaginary d 1 3
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FIG. 5. Phase diagram for Hamiltonian (17) when the impurity
parameter d takes either purely imaginary or real values. In the
Kondo phase, where d is either purely imaginary or satisfies 0 <
d < 3 (with the gray dashed line in the phase diagram distinguishing
these regimes), the impurity is screened by a multiparticle cloud of
spinons. In the antiferromagnetic bound mode phase (3 < d < ),
the red curve is the energy of the bound mode, which exists in
the ground state and screens the impurity, and the blue line is the
state in which the impurity is unscreened. The dashed line at d = n
represents the impurity coupling to the right of the line, i.e., for
d > n is ferromagnetic where, as for d < n is antiferromagnetic.
In the ferromagnetic bound mode (n < d < 37”) phase, the red line
represents the ground state where the impurity is unscreened, and the
blue curve is the high-energy state containing the bound mode where
the impurity spin is screened. Finally, when d > 37'7, the impurity is
unscreened at every energy scale. The phase diagram is similar to
that of the isotropic model studied in Ref. [37]; however, the detail
of impurity behavior is different in each phase.

A. Antiferromagnetic boundary coupling

When the impurity parameter takes either purely imaginary
values or real values in the range 0 < d < 1, the impurity cou-
pling is antiferromagnetic. In this range, the impurity exhibits
two distinct phases: the Kondo phase and the ABM phase
discussed below.

When d is purely imaginary or when it takes real val-
ues in the range 0 < d < 7, the impurity is screened by the
many-body Kondo effect, and a few particle excitations cannot
unscreen the impurity. Thus, we call it the Kondo phase. When
7 <d < n, the impurity coupling is antiferromagnetic, and
the impurity is screened by a single particle bound mode
exponentially localized at the edge of the chain and hence
the name ABM phase. The single particle bound mode is
described by a purely imaginary root of the Bethe ansatz
equations. In this phase, it is possible to unscreen the impurity
by a single particle excitation by exciting this single particle
bound mode. We shall discuss the difference between the two
phases in much detail later.

In both the Kondo and ABM regime, the impurity cou-
pling is antiferromagnetic, and the impurity is screened in the
ground state. All the excitations above the ground state in the
Kondo phase are bulk excitations constructed by adding an
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even number of spinons, bulk string solutions, quartets, etc.
[92] such that in all of the low-lying excited states, the impu-
rity is always antialigned with the quarter mode. In contrast,
the excitations above the ground state in the ABM phase not
only include bulk excitations but also unique boundary exci-
tations. Boundary excitations involve unoccupying the mode
described by the imaginary solution of the Bethe ansatz equa-
tions, which creates a massive excitation with energy greater
than the maximum energy of the spinon M,. In this state, the
impurity becomes unscreened, and when the effectively free
spin—% spin aligns with the effective quarter mode at the edge,
it forms an effective three-quarter mode, as shown below.

Before discussing the detailed differences between the
Kondo and ABM phases, we shall first focus on the aspects
that are common to both phases, i.e., the aspect of the impurity
physics that depends only on the sign of the impurity coupling
but not on its strength.

When a free spin-% impurity, which initially has an entropy
of In 2 is coupled antiferromagnetically to the XXZ chain in its
gapped antiferromagnetic phase, the entropy of the impurity
reduces to zero in either of the two degenerate vacua as its
spin gets screened. In the language of RG, the impurity is
asymptotically free in the UV, hence it has In 2 entropy. How-
ever, when coupled to the XXZ chain with twofold degenerate
vacua, the defect coupling initiates a boundary RG flow. In the
IR, this flow results in the screening of the impurity, reducing
its entropy to zero as it becomes screened in each of the
two degenerate vacua. The detailed behavior of this process
depends on whether the total number of sites in the chain is
even or odd. To understand this effect fully, let us examine
both cases in detail.

1. Interplay between the edge modes and the
antiferromagnetically coupled impurity

Let us first consider a single impurity coupled to the left
end of the XXZ chain containing an even (E) number of
bulk sites with |GS){y = | & I, F1) with total spin 57 = 0 as
shown in Fig. 3. The full set of Bethe ansatz equations must
be solved for the even number of bulk sites and the impurity.
The results reveal that, due to the antiferromagnetic nature of
the impurity-bulk coupling, the impurity effectively antialigns
with the quarter mode to minimize its energy. As a result, the
impurity effectively flips the direction of the quarter mode,
leading to a twofold degenerate ground state with edge modes
that now point in the same direction, as shown in Fig. 6,
ie., |GS){5R =|F %, :let)’ resulting in states with total spin
S§ = :l:%. It is important to note that the fractional edge mode
initially arises from complex many-body interactions, and
hence, the effective flipping of the edge mode to point in the
opposite direction due to the impurity is also a complex many-
body process, given that the edge mode is an exponentially
localized object.

Let us now consider the case where a single spin-% im-
purity is coupled antiferromagnetically to the XXZ chain in
its gapped antiferromagnetic phase with an odd (O) number
of bulk sites with |GS){y = |+ 1, £1) as shown in Fig. 4.
Again, carrying out a detailed calculation indicates that the
impurity prefers to antialign with the exponentially localized
quarter mode to lower the energy and it forms twofold degen-
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FIG. 6. When a spin—% impurity with entropy In2 is antiferro-
magnetically coupled to an XXZ chain with an even number of
bulk sites, the impurity’s spin and the quarter mode at the edge of
the XXZ chain—arising from many-body interactions—rearrange to
form an effective net quarter mode pointing in the opposite direction,
as shown in the degenerate vacua (a) and (b). This many-body inter-
action, in turn, reduces the impurity’s entropy to zero. The arrow
represents an initially free spin-% impurity that is coupled to the
chain. The quarter mode that was present in the chain before coupling
(depicted in faint color) disappears, and at the same time, due to
the complex many-body interactions between the impurity and the
quarter mode, a new quarter mode (shown in blue) forms, pointing in
the opposite direction.

erate ground state with edge modes pointing in the opposite
direction as shown in Fig. 7, i.e., |GS)10R =|F %, :i:i). As
before, the effect of the impurity is to effectively flip the sign
of the edge mode at the left end of the chain via a many-body
effect. Thus, the asymptotically free impurity with entropy
In2 when coupled to the twofold degenerate ground state
IGS)Jy = | + §, %1), is essentially antialigned with the ex-
ponentially localized edge mode at left edge thereby resulting
in vanishing impurity entropy.

General set up. To study the nature of the edge mode
appearing in the XXZ chain (in contrast to the ones that
appear in topological spin chains) and its interplay with the
impurity, we now briefly discuss the effect of impurity in a
more general setup. Recently, some of us showed that in a
generic antiferromagnetic spin-S chain, there exists fraction-
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FIG. 7. When a spin-% impurity is antiferromagnetically coupled
to an XXZ chain with an odd number of bulk sites, the impurity
effectively antialigns with the exponentially localized quarter spin
accumulation at the left edge of the chain, thereby resulting in a net
quarter mode pointing in the opposite direction via a many-body
process. The arrow represents the spin—% impurity that is initially
free (with In 2 entropy). The faint-colored spin quarter mode, which
was present in the clean chain, disappears, and at the same time, the
impurity, together with the quarter mode, now forms an effective
quarter mode that points in the opposite direction. As a result, the
ground state features quarter modes at the edges that point in opposite
directions in both vacua, as shown in panels (a) and (b), and the
impurity entropy is thus vanishing in each of the two degenerate
vacua.
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alized S/2 edge modes as long as there is U(1) symmetry,
antiferromagnetic order in the bulk due to either spontaneous
or explicit breaking of discrete Z, symmetry and there is finite
energy gap [99]. Now, if we antiferromagnetically couple a
spin—% impurity at the edge of the antiferromagnetic spin-§
chain hosting 3 $ edge mode, then the interaction between the
impurity and the spin chain results in a == S L exponentially lo-
calized edge mode. For example, in a spm—i XXZ chain with
the anisotropy parameter A > 1 and an even number of sites,
there exists fractionalized edge modes :I:%, q:% at the two
edges in its twofold degenerate ground states. When a spin-
% impurity is coupled to the left edge, the resultant ground
state is still twofold with edge modes :t%, :F%. A particularly
interesting case is when the spin-% impurity is antiferromag-
netically coupled to the left edge of a gapped spin-1 XXZ
chain with spin—% exponentially localized edge modes [99]
in its antiferromagnetic phase, i.e., A % 1.185 [102]. In this
case, the half-edge mode at the left of the chain disappears,
and since the half-edge mode at the right edge can point up
or down, the resultant state with edge mode 0, :I:% is twofold
degenerate.

At this point, it is important to understand this edge modes
in spin-1 XXZ chain behave differently compared to the topo-
logical edge mode in the isotropic spin-1 XXX chain (Haldane
chain). In the spin-1 Haldane chain, the spin—% edge modes at
the two ends can independently point up or down such that
the resultant ground state is fourfold degenerate, and when a
single spin-% impurity is attached to its left edge with anti-
ferromagnetic exchange coupling, the spin-% impurity forms
singlet with the spin-% impurity thereby reducing the ground-
state degeneracy of the bulk from four to two. Likewise, if
two spin-% impurities are antiferromagnetically coupled to
the two ends of a spin-1 Haldane chain, then the impurities
at each edge form a singlet state with the effective spin—%
edge modes. This effect removes the fourfold degeneracy of
the Haldane chain, resulting in a unique ground state for
the system. However, the twofold degeneracy inherent in the
spin-1 XXZ chain cannot be lifted by coupling one or two
spin—% impurities to the edges of the chain. In both scenarios,
the resultant ground state remains twofold degenerate. This
shows that the g edge modes discussed in Ref. [99] in case of
spin-S antiferromagnetic chain and therefore the quarter-mode
in spin-1 XXZ chain first found in Ref. [59], are not free
effective ‘% particles as in the case of the topological chain
but rather more complex many-body effective modes. This
was already evident from the fact that unlike in Haldane chain
where the effective spin-% modes can independently point in
either up or down direction for both even and an odd number
of total sites, the two spin-% edge modes at the edges of spin-1
XXZ chain align in the same direction if the total number of
sites is odd and they antialign when the total number of sites
is even thereby only giving size to twofold degenerate vacua.
We shall discuss this difference along with numerical results
in more detail in Appendix E.

So far, we briefly discussed the impurity physics that is
common to both the Kondo and ABM phases; we are now
ready to discuss the impurity behavior that is unique in each
of these two phases. We shall defer the mathematical details

of Bethe ansatz equations to Appendix D and only describe
the results here.

2. Kondo phase

When the impurity parameter d is purely imaginary or
when it takes the real values between 0 < d < g, the impurity
is in the Kondo phase as shown in the phase diagram Fig. 5. In
this phase, the impurity is screened by a multiparticle cloud of
spinons. Thus, the ground state is a twofold degenerate S* = 0
state when N, is odd and S* = :I:% when N,, is even. Unlike
the conventional Kondo setup, where a localized magnetic
impurity interacts with a noninteracting Fermi sea, or the spin
chain Kondo problem in the isotropic and free fermion cases
studied in Refs. [37,43], the present case features bulk mag-
netic order. This makes it harder to identify impurity screening
by analyzing the spectrum. In the isotropic Heisenberg chain,
the total spin in the bulk before attaching the impurity is
§; =0, i.e., the z component of spin identically vanishes in
every site when the number of bulk sites is even, and after
attaching the impurity, the total spin becomes §° = :I:% [37];
however, this total S* is not due to the impurity spin, but it
is rather carried by a spinon induced which could be pointing
up or down. The spin of the impurity is completely quenched
either by the many-body Kondo effect (for small values of
antiferromagnetic impurity couplings), and hence its entropy
decreases from In2 before coupling to O after it is coupled
to the chain with antiferromagnetic coupling. In the present
case, as discussed before, the bulk has magnetic order, i.e.,
Sj # 0, and the ground state is twofold degenerate. When the
magnetic impurity is coupled to this chain with antiferromag-
netic coupling, the impurity spin is screened, but this does not
mean that the magnetization vanishes at the impurity site, as
we shall see later. Before coupling to the bulk, the impurity
has In 2 entropy as it can freely point in either up or down di-
rection, but as it is antiferromagnetically coupled to the XXZ
chain with a twofold degenerate ground state, the impurity
spin is quenched such that its entropy decreases to 0 in each
of the degenerate vacua. The effect of many-body screening is
visible in various ground-state physical quantities. For exam-
ple, the ratio of the impurity spinon density of states (DOS)
to the bulk spinon density R(E) has a characteristic peak as
shown in Fig. 8.

The ratio of the impurity contribution to the density of
states to the bulk contribution to the density is given by

Pobulk (A) |

RO = pjn?(;)
| E'(h) ‘
_ LSO+ 2id) + f(x — 2id), as)
2 F)

where f(1) = % and pf" (%) and py™ (%) are
the ground-state root density in the Kondo phase given in
Eq. (D12) and Eq. (D13), respectively. Using the expression
for the energy of the spinon Eq. (9), we rewrite the above
equation in terms of the spinon energy as

1E(A+2id)+ E(A — 2id)

R(E()) = 3 EG) . (19)
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FIG. 8. The plot offers a visualization of the spectral weight of
the spinons in the Kondo cloud screening impurity throughout the
Kondo phase, i.e., when d is purely imaginary or when 0 < £ < %
This spectral weight, denoted by the function R(E) is the R deﬁned
in Eq. (19) expressed as a function of spinon’s energy, is computed
using the Bethe ansatz method. The spinon DOS peaks at E = m,
when d is imaginary, showing that the spinons screening the impurity
have low energy. When d = 0, the impurity becomes part of the
bulk, and hence the spinon DOS becomes a flat line showing that
the spinons of every energy scale participate in forming the singlet
and finally, when 0 < ¢ < 3, the spinon DOS peaks at E = M,
showing that the high energy spinon participates in the screening of

the impurity.

Notice that the positive spectral weight R(E) in Fig. 8 is not
contributed by a single mode but rather by spinons of various
energies. When d/n is purely imaginary, the maximum spec-
tral weight is towards the low energy spinon with £ — my,
whereas as d becomes real and takes values close tod /n — %,
the spectral weight shifts to spinons with maximum energy
E — M,. As we shall see later in the ABM case, the positive
weight comes only from a single energy mode which shows
that the screening in that case is by a single particle mode
rather than many-body as in this phase.

Likewise, the local magnetization at the impurity site o}
in the presence of a global magnetic field given by adding a
Zeeman term — Z ho; where j (here runs over all the bulk
and impurity sites) to the Hamiltonian Eq. (17) is a dependent
quantity d that does not change when the magnetic field A
is varied from h = 0 and & = M, due to the presence of the
finite mass gap in the model. However, o} increases smoothly
as h increases from the mass gap & = M, and reaches the
maximum value 0.5 at . = 2J(1 + coshn) where the entire
spin chain fully polarizes and hence has the total spin §* = %V
[53,103]. For a representative case of n = 2, the impurity
magnetization is obtained from DMRG implemented in the
ITensors library [84] and shown in Fig. 9. Notice that this
quantity described here is the magnetization at the impurity
site where both the impurity and bulk degrees of freedom con-
tribute, and the nonzero value at 7 — 0 is due to the magnetic
order in the bulk of the XXZ chain. The smooth growth of
this quantity such that it reaches the maximum value of 0.5
exactly at i = h, shows that the screening of the impurity is
due to many-body effects. When the impurity is screened by
a single particle bound mode in the ABM phase, as shown
later in Fig. 13, the local magnetization at the impurity site

0.50 f

0.38 t

FIG. 9. Local impurity magnetization for various values of the
impurity coupling parameter d in the Kondo phase when n =2
and a total number of sites (bulk and impurity) is N = 500. The
impurity magnetization is constant when the external magnetic field
evolves from i = 0 to h = M,. However, when h changes from i =
M, (shown in dashed red vertical line) to & = h, = 2J(1 + cosh(n)
(shown in dashed blue vertical line), the impurity magnetization
smoothly changes from some finite d-dependent value to % The data
is obtained using DMRG, where all the calculations are performed
by setting the truncation cutoff of the singular values at 107!° and
performing 100 sweeps to ensure convergence for every data point.

jumps suddenly at 2 = h* > h.. Notice that the entire chain
polarizes at h = h, except this single particle bound mode, and
hence, this shows that the screening truly has a single particle
effect.

We shall now show some results related to the effect of
the impurity in the Kondo phase on the quarter mode and
also show the validity of ansatz Eq.(16) for various N val-
ues, dg = 0 and various values of d; in the Kondo phase for
the Hamiltonian Eq. (17), as shown in the representation in
Fig. 10, where it fits the data well.

We find that irrespective of the value of d; in the Kondo
phase, the twofold ground state for odd N, contains the frac-
tional edge modes of opposite polarization, i.e., |GS)? =
| + }t, :F%) and for even N, the ground state have the twofold
degenerate ground state with the edge mode that points in the
same direction, i.e., |GS)f = | + %, :I:i).

The excited states in the Kondo phase can be constructed
above the ground state by adding an even number of spinons,
bulk strings, quartets, etc. [92], which forms a single tower
of excited states where the impurity is screened by the Kondo
cloud. The schematic of low-lying excited states and their total
spin in the z direction is shown in Fig. 11.

3. Antiferromagnetic bound mode phase

When the impurity parameter d takes real values in the
range 3 < d < 7, the impurity is in the ABM phase as shown
in the phase diagram Fig. 5. In this phase, the impurity is
screened by a single particle bound mode exponentially lo-
calized at the left edge of the spin chain. Thus, the ground
state is a twofold degenerate S* = O state.

The impurity bound mode is described by a purely imagi-
nary root of the Bethe equation

rg = +i(n — 2d), (20)
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FIG. 10. The exponentially localized +% edge modes at the left
end in one of the two degenerate ground states in the Kondo phase
with impurity at the left end d;, = 0.3 and dg = 0 when n = 1.75.
The inset shows that the variance fits well with our ansatz Eq. (16);
thus, it vanishes in the thermodynamic limit. The right edge (not
shown in the figure) contains Sg = —i edge mode. Moreover, the
other degenerate ground state contains —% edge mode at the left and

the right edge contains ;.

and has an energy given by

oo
E, = J sinh(7) Z e~ 1lsech(nw) cosh(w(2d — 1))
w=—00
J sinh?(n)
sinh(d) sinh(d — )"

21

Such purely imaginary solutions of Bethe ansatz equations are
common in various integrable models and in general, they
describe boundary excitations that describe various novel
boundary phenomena [37-39,43,57,69,104—109].

Low lying excitations in the Kondo phase for odd N,
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FIG. 11. Schematic of low-lying excitation in the Kondo phase
showing the twofold degenerate S* = 0 ground state and a mass gap
of M, for an odd number of total bulk sites N. The data is obtained
from the exact diagonalization of the Hamiltonian with N, = 11 such
that the finite size effect shows the spitting of the energy of the two
vacua, which are degenerate in the thermodynamic limit.
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0.5 0.6 0.7 0.8 0.9

—10M, |

FIG. 12. Energy of the impurity bound mode exponentially lo-
calized at the left end given by Eq. (21) is shown in the units of
maximum energy of the spinon M, for impurity parameter n = 2.
Notice that the maximum value of E, is equal to the negative of the
maximum energy of the spinon and occurs at d = 7.

As shown in Fig. 12, the energy of the exponentially
localized impurity bound mode is negative and ranges be-
tween —oo < E; < —M, in the antiferromagnetic bound
mode regime. Thus, the ground state contains this root of the
Bethe Equation on top of all other real roots and the trivial
boundary string solution of the form

Aps = T £ in, (22)

which has zero energy, i.e., Ep,s = 0 (See Appendix D2 for
details). This solution plays an important role in describing
the edge localized quarter modes as shown in Refs. [59,68].

In this regime, the ratio of the impurity to the bulk density
of states becomes

R4(E) =R(E) + §(E — Ey), (23)

where R(E) given by Eq. (19) is negative in this phase. The
only positive contribution to the spectral weight comes from
the second term, which is due to the impurity boundary string.
This demonstrates that the impurity is screened by a single
particle bound mode with energy E, in this regime.

Now, we shall study the model in the presence of a global
magnetic field term —h ;07 where j runs over all sites,
including the bulk and impurity sites. Unlike in the Kondo
phase, there is a characteristic jump in the local magnetiza-
tion at the impurity site in the antiferromagnetic bound mode
phase. Since the energy of the bound mode is larger than
the energy of the spinons in the bulk, when the magnetic
field reaches /i, where all the bulk degrees of freedom are
fully polarized, the spin at the impurity site is not yet fully
polarized. When the magnetic field matches the energy of
the bound mode in the presence of the field, which differs
from the zero-field energy given in Eq. (21), it disrupts the
singlet formed between the bound mode and the impurity.
This causes the impurity magnetization to abruptly jump to
0.5. However, we do not have an analytic expression for the
bound mode energy in the presence of the magnetic field.
As shown in Fig. 13, the magnetization is some d-dependent
value when # = 0 which does not change when /4 increases
to the mass gap h = M,. However, between h = M, and
h = h, the impurity magnetization increases smoothly, but
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FIG. 13. Local impurity magnetization for various values of im-
purity parameter in the antiferromagnetic bound mode phase when
n = 2 for a total number of sites (bulk and impurity) N = 500. The
impurity magnetization is constant when the external magnetic field
evolves from & = 0 to h = M, due to the presence of the mass gap
in the spectrum. However, when A changes from 4 = M, (shown
by vertical red dashed line) to 4 = h. = 2J(1 + cosh(n)) (marked
by a vertical dashed blue line), the impurity magnetization smoothly
changes from some finite d-dependent value to some other d value
at h = h, where the local magnetization is smaller than 0.5. When h
is further increased, the impurity magnetization remains constant up
until a critical value /*(d), where it abruptly jumps to 0.5. The data
is obtained by using DMRG, where all calculations are performed by
setting truncation cutoff of the singular values at 10~'* and perform-
ing 100 sweeps to ensure convergence for every data point.

it does not reach 0.5 at A like in the Kondo phase. As the
magnetic field is further increased, the local magnetization at
the impurity site remains constant up until 7 = h*(d), at which
point the singlet is polarized, and the magnetization abruptly
jumps to 0.5.

Just like in the Kondo phase, we find that irrespective of the
value of d; within the antiferromagnetic bound mode phase,
the twofold ground state for odd N, contains the fractional
edge modes of opposite polarization, i.e., IGS)? = | + %, :Fi>
and for even N, the ground state is twofold degenerate with
an edge mode that points in the same direction, i.e., |GS)* =
| £+ ;11, i%). A representative case of the spin accumulation in
the left end for n = 1.5 and d = 1.4875 is shown in Fig. 14.

The bulk excitations are constructed as usual by adding an
even number of spinons, bulk strings, quartets, etc. However,
there is a unique boundary excitation which is constructed by
removing the boundary string solution 1;. Removal of the
impurity string costs an energy E; given by Eq. (21), which
is always larger than the maximum energy of a single spinon
M,. The unscreened state (US), denoted |US) obtained by
removing the impurity string is fourfold degenerate in the
thermodynamic limit when the total number of bulk sites N,
is even with spin §* = :I:%. But when the total number of bulk
sites N, is odd, the unscreened state |US) is fourfold degen-
erate with spin S° = %1 and two S* = 0 states. Figure 15
shows a schematic of the twofold degenerate ground state
and low-lying excitations with mass gap M,. The state with
unique boundary excitations where impurities are screened is
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FIG. 14. The exponentially localized +% edge modes at the left
end in one of the two degenerate ground states in the ABM phase
with impurity at the leftend d; = 1.4875 and dg = 0 whenn = 1.75.
The inset shows that the variance vanishes in the thermodynamic
limit as the data fits well with ansatz Eq. (16). The right edge (not
shown in the figure) contains Sp = —i edge mode. Moreover, the
other degenerate ground state contains —i edge mode at the left and
the right edge contains ;.

possible above £ = 2M,, which is not explicitly shown in the
schematic.

B. Ferromagnetic boundary coupling

When the impurity parameter takes real values in the range
d > 1, the impurity coupling becomes ferromagnetic such
that the impurity exhibits two distinct boundary phases: the
FBM phase and the unscreened phase, as shown in the phase
diagram Fig. 5. When the impurity parameter d takes value in
therange | <d < %, the impurity is unscreened in the ground
state, but there exists a high energy single particle bound
mode in the spectrum which screens the impurity; therefore,
we name it ferromagnetic bound mode phase. Finally, when

Low lying excitations in the ABM phase for even N,
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FIG. 15. Schematic of low-lying excitation in the antiferromag-
netic bound mode phase showing the twofold degenerate S° = :I:%
ground state and a mass gap of M, for even number of total bulk
sites N,. The data is obtained from the exact diagonalization of the
Hamiltonian with N, = 10.
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the impurity parameter takes the values in the range d > %,
the impurity can no longer be screened such that we call it
the unscreened phase.

In the ground state of both the ferromagnetic bound mode
phase and unscreened phase, the unscreened impurity at the
edge truly behaves as a free spin. Just like a free spin with
In 2 entropy, the impurity integrably coupled to the antiferro-
magnetic gapped XXZ chain with ferromagnetic coupling also
has In 2 entropy as it could align or antialign with the quarter
mode at the edge as both of them result in the state with equal
energies in the thermodynamic limit. When it antialigns with
the quarter edge mode, it effectively flips the sign of the expo-
nentially localized quarter mode, whereas when it aligns with
the edge mode, it forms an effective three-quarter edge mode
pointing in the same direction. This seemingly surprising re-
sult is proven via Bethe ansatz by explicitly constructing this
fourfold degenerate ground state as discussed in Appendix D,
and here we shall provide an independent numerical proof
of fourfold degeneracy from exact diagonalization as shown
in Figs. 20 and 21 for odd and even number of bulk sites,
respectively.

However, we can easily understand the reason for the four-
fold degeneracy once we notice that this behavior is consistent
with the conventional Kondo problem where the magnetic
defect is coupled ferromagnetically, the perturbative ferro-
magnetic Kondo coupling flows to the trivial IR fixed point
where the impurity is not screened, and hence it has In2
entropy. The existence of the fourfold degenerate ground state
also proves that the physics of the impurity attached to the
XXZ chain is not a simple two-particle physics between the
effective 1/4 mode and the spin-% impurity as a two-particle
Hamiltonian with ferromagnetic coupling would favor only
spin alignment and the state where the two antialign would be
a high energy state.

As before, the distinction between the two phases will be
discussed in much detail later. Here we shall focus on the
aspects of the impurity physics that are common to both the
FBM phase and the unscreened phase.

1. Interplay between the edge modes and the ferromagnetically
coupled impurity

The interplay between the quarter edge mode and un-
bounded free spin-% impurity depends on the parity of the
total number of sites. Let us first consider a single impurity
coupled to the left end of an XXZ chain with an odd number
of bulk sites, where the ground state is denoted as |GS)? =
| £ 4—11, j:%), as illustrated in Fig. 3. The impurity spin can
now align or antialign with the quarter mode, thereby forming
a fourfold degenerate ground state |GS)fy = | & 1, F1) and
| + %, :l:%) as shown in Fig. 16.

As mentioned earlier, the impurity behaves as a completely
free spin-% impurity with In 2 entropy, and hence, it can point
either in an up or down direction without costing any energy.
Let us now consider a single impurity coupled to the left end
of an XXZ chain with an even number of bulk sites, where
the ground state is denoted as |GS)* = | & %, :lel>’ as illus-
trated in Fig. 3. The impurity spin can now align or antialign
with the quarter mode thereby forming a fourfold degenerate
ground state |GS)I?M =|F 4—11, :F%) and | &+ %, :Fi) as shown
in Fig. 17.

(57) (57)
(a) (b)
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FIG. 16. The fourfold degenerate ground state (a), (b) with total
spin §* =0, (c¢) with $* =1, and (d) with total spin §* = —1. In
panels (a) and (b), the impurity antialigns with the impurity, thereby
effectively flipping the sign of the edge mode, just like in the case
of antiferromagnetic boundary coupling explained earlier. In these
cases, the faint white color quarter mode that exists in the UV and the
spin—% impurity at the edge combine to form a new effective quarter
mode pointing in the opposite direction shown in the sky blue color.
However, in panels (c) and (d), the impurity and quarter edge modes
align to form an effective three-quarter mode at the left end of the
chain. In panels (c) and (d), the sky blue colored i edge mode that
exists in the UV combines with the impurity with spin-% shown as
an arrow to form an effective three-quarter mode shown in the dark
blue color.

(5%) (5%)
(a) (b)
S* S
(C)< ) ( d)< )
%
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FIG. 17. The fourfold degenerate ground state (a), (d) with total
spin §* = % and (b), (c) with total spin §* = — % In panels (a) and (b),
the impurity antialigns with the impurity, thereby effectively flipping
the sign of the exponentially localized quarter edge mode, whereas in
panels (c) and (d), the impurity and quarter edge modes align to form
effective three-quarter mode at the left end of the chain. In panels
(c) and (d), the sky blue colored i edge mode that exists in the UV
combines with the impurity with spin-1 shown as an arrow to form

2
an effective three-quarter mode shown in the dark blue color.
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FIG. 18. Energy of the impurity bound mode exponentially lo-
calized at the left end given by Eq. (21) is shown in the units
maximum energy of the spinon M, for impurity parameter n = 2.
Notice that the minimum value of E, is equal to the maximum energy
of the spinon and occurs atd = %’7

2. Ferromagnetic bound mode phase

When the impurity parameter d is greater than the
anisotropy parameter 7, the impurity coupling is ferromag-
netic. Moreover, when d takes the value in the range n <
d < %n, a bound mode exponentially localized at the edge is
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formed, and hence the impurity is in the FBM phase. This
bound mode, just like in the antiferromagnetic bound mode
regime, is described by the purely imaginary solution ;4 of the
Bethe ansatz equations and has energy E; given by Eq. (21).
E, takes positive values in this regime which is always greater
than the maximum energy of the spinon M, as shown in
Fig. 18.

Since the energy of the impurity boundary string is posi-
tive, the bound mode does not exist in the ground state in this
phase. Thus, the ground state contains an unscreened impu-
rity. The ground state is fourfold degenerate with Sz = :t%
when the total number of bulk sites N, is even where the
quarter edge modes on the two ends are pointing in the same
direction, i.e., |GS)f = |:i:i, :l:i). When the total number of
bulk sites N, is odd, the ground state is fourfold degenerate:
two S° = 0 states where the quarter modes at the two edges
are antialigned, i.e., |GS)g = |+1, :lel) and the two states
where S° = £1 where the edge mode combined with the free
impurity to form :I:% edge spin accumulation. Thus, the two
degenerate ground states have spin accumulation |GS)£l =
|+3, :I:i). Some representative plots of the edge spin accu-
mulation for the case of odd N, are shown in Fig. 19.

The highest weight state S° = 1 (and the descendants in
the multiplet §* =0 and S° = —1) is constructed by con-
sidering all real roots of the Bethe ansatz equations as
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FIG. 19. The left fractional spin accumulation on the fourfold degenerate ground state when N, is odd. When the quarter mode at the edge
of the spin chain and the impurity spin antialign, there is an effective quarter mode left at the edges, whereas when the quarter mode and the
impurity spin align, it forms a three-quarter edge localized mode at the edges. The main inset shows the fit of the variance with the ansatz
Eq. (16), and the side inset shows the spin deviation from the bulk antiferromagnetic order o at the left edge for N = 200.
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Low lying excitations in the F BM phase for odd N
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FIG. 20. Schematic of low-lying excitation in the ferromagnetic
bound mode phase showing the fourfold degenerate S° = 41,0, 0
ground state and a mass gap of M, for odd number of total bulk
sites N,. The data is obtained from the exact diagonalization of the
Hamiltonian with N, = 11.

described in Appendix D. Whereas the fourth degenerate so-
lution is constructed by adding the boundary string solution
and higher order boundary string solution on top of the real
solutions, the details construction follows the same way as in
isotropic case detailed in Ref. [37] and briefly mentioned in
Appendix D.

Apart from the usual bulk excitations constructed by
adding an even number of spinons, bulk strings, quartets, etc.
[92], a unique boundary excitation is possible in phase which
is obtained by adding the impurity string solution A,4. It costs
E, energy to create such an excitation and impurity is screened
in such an excited state. Figure 20 shows a schematic of the
fourfold degenerate ground state and low-lying excitations
with mass gap M, when N, is odd.

3. Unscreened phase

When the impurity parameter takes the value in the range
d > %n, the model is in the unscreened phase, as shown in
the phase diagram Fig. 5. In this phase, the impurity boundary
bound string ceases to have finite mass and hence there exists
no bound mode that screens the impurity. Thus, it is not
possible to screen the impurity at any energy scale in this
parametric regime. Since the impurity essentially becomes a
free local moment, we call this the unscreened phase. The
ground state is fourfold degenerate with S* = i% and the
boundary edge modes of the from |:|:}1, j:%) where the total
number of bulk sites N, is even whereas the ground state
is fourfold degenerate with S° = =4 and two S* =0 states
with the edge spin accumulation of the from |:|:}1, j:j—‘) and
|:|:§, :t%) as shown in Fig. 19 when the total number of bulk
sites N, is odd.

The fourfold degenerate ground state with §° = :l:%, and
excited states separated by a mass gap M, is shown in the
schematic Fig. 21 when the total number of bulk sites N, is
even.

Low lying excitations in the unscreened phase for even N
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FIG. 21. Schematic of low lying excitation in the unscreened
phase showing the fourfold degenerate S° = :i:% ground state and
a mass gap of M, for even number of total bulk sites N,,. The data
is obtained from the exact diagonalization of the Hamiltonian with
N, = 10.

We will briefly describe the effect of having two impuri-
ties, one at each edge, in Appendix C. In this scenario, each
impurity at the ends can independently reside in one of four
distinct phases: the Kondo phase, the ABM phase, the FBM
phase, or the US phase. Consequently, the system as a whole
can exhibit a total of 16 possible impurity phase combinations
as shown in the phase diagram Fig. 22.

V. BREAKING BOUNDARY INTEGRABILITY: ONE
NONINTEGRABLE IMPURITY

As described earlier, the integrable Hamiltonian Eq. (1)
has a restricted form where a single variable, the impurity
parameter d, controls both the impurity coupling Jim,, and the
boundary anisotropy parameter Ajyp. Thus, in this section, we
consider the Hamiltonian of the form

Nh—l‘]
_ (AKX Yy Y [
H = § , 2(01' ol +0]0l + Adiafy,)
i=1

+ 7 (o ot + gl Acyol). 24
where a single impurity Ginp is situated at the left end of
the spin chain interacting with the spin chain via anisotropic
Heisenberg coupling. Note that both the bulk and the impurity
have the same anisotropy parameter A, and hence the ratio
of the impurity coupling Jim, to the bulk coupling J is the
single free parameter in the model. As stated earlier, the mo-
tivation for exploring this form of Hamiltonian is to explore
the possibility of novel midgap states that were missing in the
integrable limit. The model described by Hamiltonian Eq. (24)
is no longer integrable, and hence, we do not have exact
analytic means to explore the boundary physics anymore.
However, in this section, using DMRG and exact diagonaliza-
tion calculations, we illustrate that the boundary physics when
the impurity coupling Jiyp is antiferromagnetic is richer than
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FIG. 22. Phase diagram for the Hamiltonian in Eq. (1) with
two impurities, where a total of 16 phases arise due to the four
independent phases possible at each edge of the chain, as shown
in Fig. 5. Here, K, ABM, FBM, and US correspond to the Kondo
phase, the antiferromagnetic bound mode phase, the ferromagnetic
bound mode phase, and the unscreened phase, respectively. A phase
labeled (X, Y) indicates that the left impurity is in phase X, and the
right impurity is in phase Y, where X and Y independently belong
to {K, ABM, FBM, US}. Phases with the same color are related by
spatial reflection symmetry L <> R.

the integrable case. We shall also discuss very briefly about
the nonintegrable ferromagnetic coupling.

A. Antiferromagnetic boundary coupling

As we learned from the integrable case, one of the signa-
tures of the existence of the bound mode is the characteristic
jump in the local magnetization at the impurity site. Since this
quantity is the easiest to compute numerically via DMRG, we
shall first explore the impurity phase diagram by computing
the local magnetization at the impurity site. The local impurity
magnetization (o ) for an odd number of total bulk site
Np = 499 (equivalently, the total number of sites N = 500)
and the crossing parameter n = 2, computed via DMRG is
shown in Fig. 23.

The local magnetization curve at the impurity site shows
that for smaller values of the ratio of the boundary to the bulk
coupling, the magnetization jumps when 0 < h = hi(n) <
M, which shows that there exists midgap state in the spec-
trum. For intermediate values of the boundary coupling, the
impurity is screened by a multiparticle cloud of bulk spinon
excitations, and hence, the magnetization curve does not jump
for h < M, as there are midgap states. Moreover, between
h = Mg and h = h. = 2J(1 + cosh(n), the local magnetiza-
tion grows smoothly, and exactly at & = h,, it becomes 0.5,
at which point every spin in the chain is fully polarized.
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FIG. 23. Local impurity magnetization for various values of the
ratio of ]‘;“’ for Hamiltonian Eq. (24) for antiferromagnetic boundary

and bulk couplings computed for n = 2 and total number of sites
(bulk and impurity) N = 500. For a small value of the ratio of bulk to
boundary couplings 0 < J‘“% <« 1, the impurity magnetization jumps
when 0 < hj(n) < M, which shows the existence of midgap state.
Likewise, for intermediate values of the ratio of boundary to bulk
couplings Ji;“’ ~ 1, magnetization is constant when the external mag-
netic field evolves from 7 = 0 to h = M, due to the absence of mid
gap states in the spectrum. However, when & changes from 7 = M,
to h = h, = 2(1 4 cosh(#n))J, the impurity magnetization smoothly
changes from some finite d-dependent value to some other d value
at h = h, where the local magnetization of every site becomes 0.5.
Finally, for a large value of the ratio of the boundary to bulk cou-

pling J“Jﬂ >> 1, impurity magnetization is constant when the external
magnetic field evolves from 4 = 0 to h = M, due to the presence
of the mass gap in the spectrum. However, when & changes from
h =M, to h = h,, the impurity magnetization smoothly changes
from some finite value to some other finite value at 4 = h. where the
local magnetization is smaller than 0.5. When £ is further increased,
the impurity magnetization remains constant up until a critical value
h%(n), where it abruptly jumps to 0.5 because of the existence of
the bound mode, which has energy higher than the maximum value
of spinon energy M,. The data is obtained by using DMRG, where
all calculations are performed by setting the truncation cutoff of
the singular values at 10~'° and performing 100 sweeps to ensure
convergence for every data points.

Finally, for larger values of the ratio of the boundary to bulk
couplings, the impurity magnetization does not jump when
h < M, due to the absence of midgap states. Moreover, be-
tween h = M, and h = h,, the impurity magnetization curve
smoothly grows, however, it does not reach 0.5 exactly at
h = h, because there is a localized bound mode in the spec-
trum which has energy E(h) > M, the maximum value of the
energy of a single spinon. Thus, when 4 is further increased
from h = h., the magnetization is again a constant up until
h = E(h), where it abruptly jumps to 0.5 exactly since the
last remaining mode polarizes when its energy in the presence
of the magnetic field is equal to the strength of the magnetic
field. Notice that just as in the integrable case, E(h) is the
energy of the bound mode in the presence of magnetic field
which is different from the energy of the bound mode when
h=0.
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FIG. 24. Three boundary phases exhibited by Hamiltonian
Eq. (24). For small values of the ratio of the boundary to bulk
coupling 0 < Jinp/J < J7 (1), there is a midgap state whose energy
is shown in the orange dash-dot line. For the ratio of the couplings
between J; () < Jimp/J < J7, (1), the impurity is screened by mul-
tiparticle Kondo effect and finally, for Jip,/J > J:Z(n), there exists
a bound mode in the ground state whose energy is always higher
than the maximum energy of the spinon. The two critical values
of the ratio of the coupling depend on the crossing parameter 7.
The numerically obtained values of these two critical couplings as
a function of 5 are shown in Fig. 25. The red line is the ground state
of the model which depends on the ratio of the bulk and boundary
couplings, the anisotropy parameter, and the system size. Likewise,
the blue line is the energy of the two spinons excitation above the
ground state, which in the thermodynamic limit is independent of
the ratio of the couplings but depends on the crossing parameter 7.

Since the model is no longer integrable, it is extremely
difficult to analytically compute the exact locations of the
boundary phases. Thus, based on the magnetization curve,
we sketch a schematic phase diagram of the model given by
Eq. (24) in Fig. 24. The phase boundary for small values of
crossing parameter 1 is computed numerically and shown in
Fig. 25. Here J7 () is the value of the impurity coupling Jim
at which the impurity phase changes from the midgap phase
where a midgap state appears in the spectrum to the Kondo
phase where the impurity is screened by a multiparticle Kondo
cloud. Likewise, J (1) is the value of the impurity coupling
Jimp at which point the impurity changes from being screened
by the Kondo cloud to being screened by the single particle
bound mode as shown in the phase diagram Fig. 24.

We shall now show the existence of the midgap state by
explicitly computing the spectrum of the model for small sys-
tem sizes using the exact diagonalization method. Taking the
model parameter % =0.3,7 =2 and N, = 11, we compute
the eigenvalues and the spin in each state and show the result
for states with the 50 lowest energies in Fig. 26. The low-lying
excitations in the Kondo and antiferromagnetic bound mode
phase have a similar structure as those of the integrable cases
shown in Figs. 11 and 15, respectively.

Using DMRG, we compute the spin profile for the entire
parametric range when the impurity coupling is antiferro-

1.1¢

1.0 _Jc; () Kondo phase
o=, (n)
0.9t ?
0.8y Midgap phase
0.7t . . . .
2.00 2.25 2.50 2.75 3.00
n

FIG. 25. The phase boundary differentiating the three impurity
phases shown in the phase diagram Fig. 24 is computed for various
values of the crossing parameter n. There exists midgap state in
the spectrum when 0 < Jinp/J < Jg] (n). When Jg] ) < Jimp/J <
Ji, (), the impurity is in the Kondo phase where it is screened by
many-body Kondo cloud. Finally, when Ji,,/J > J:z(n), the impu-
rity is screened by a single particle bound mode formed at the edge
of the chain. These phase boundaries are obtained numerically via
DMRG.

magnetic and find that in all three phases, there are quarter
modes at the edges of the spin chain. For odd N,, the quarter
modes in the ground-state point in opposite direction, i.e.,
IGS)? = |+1, :Fi) and when N,, is even, the quarter modes
in the ground-state point in opposite direction, i.e., |GS)f =
I:l:i, :I:i) such that the total §° of the twofold degenerate
ground state is O for the former case and :I:% for the latter
case. There is a twofold degenerate midgap state state with
S§¢ = +1 with edge spin accumulation |:|:§, i%) when N, is

Jiwy/J = 0.3and N, = 13

imp/

_20 L
_21 L
o —22f
* * *
_23 L
_24 L
—25L, ‘ * ‘ g
-1.0 -0.5 0.0 0.5 1.0
Sz

FIG. 26. Fifty lowest lying excitations of Hamiltonian Eq. (24)
in the midgap phase with model parameters N, = 13,7 =2 and
Jimp/J = 0.3. The twofold degenerate ground state with §* =0 is
shown in red color, the twofold degenerate S° = 1 midgap states
are shown in orange color, fourfold 2-spinon excitations, which form
degenerate singlet and triplet states are shown in the blue colors, and
all other higher excited states are shown in olive color.
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FIG. 27. Left localized % mode in one of the twofold degenerate
midgap states when N, is even and Jin,/J = 0.5. The right spin

accumulation is —i in this state such that the total spin is $* = %

odd and S° = :I:% with edge spin antialigned, i.e., |:t§, :Fi>
when N}, is even. The left edge spin accumulation in one of
the twofold degenerate S° = :I:% is shown in Fig. 27.

B. Ferromagnetic boundary coupling

As we saw in both integrable and nonintegrable cases,
when the impurity coupling is antiferromagnetic, bound
modes with negative energies appear in the ground state.
In contrast, for ferromagnetic coupling, bound modes at the
edges have positive energies and exist in higher energy states.
Studying these high-energy bound modes with DMRG is
challenging, and hence, the detailed phases in the case of
nonintegrable impurity ferromagnetically coupled to the XXZ
chain will be addressed in future work. Here, we briefly
highlight that the ferromagnetic nonintegrable case is signifi-
cantly different from the integrable case. In integrable cases,
irrespective of the value of ferromagnetic boundary coupling
strength, the ground state is always fourfold degenerate, which
shows that the impurity is essentially free, and hence, it can
align or antialign with the edge mode that it is coupled to.
However, this is not the case when the impurity is coupled
nonintegrably. With nonintegrable coupling, the impurity can
only align with the edge mode, thereby forming a three-
quarter effective edge mode, as antialigning to form a quarter
mode in the opposite direction costs energy.

We show the representative spectrum of Hamiltonian
Eq. (24) for Jinp/J = —3.0, and n = 2.0 for the total number
of bulk sites N, = 13 in Fig. 28. Notice that unlike in the
case of the integrable coupling, the ground state is no longer
fourfold degenerate rather, it is a twofold degenerate S° = £1
state with edges modes :I:é, :I:}—w i.e., the state in which the
quarter edge modes at the left edge of the chain align with
the spin—% impurity when the total number of sites is even.
Likewise, the ground state is twofold degenerate state with
§t = :t% with edge modes :I:%, :F% when the total number of
sites is odd.

Complete impurity screening at low temperatures for non-
integrable coupling is suggested by the twofold degenerate
ground state, observed regardless of whether the impurity
coupling is ferromagnetic or antiferromagnetic. This low-
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FIG. 28. 50 lowest lying excitations of Hamiltonian Eq. (24)
in the midgap phase with model parameters N, = 11,7 =2 and
Jimp/J = —3. The ground state is twofold degenerate which shows
that the impurity is not completely free as in the integrable case.

temperature behavior is not unexpected for antiferromagnetic
coupling, as the Kondo term becomes strongly coupled in
the IR limit. The surprising finding is that, in contrast to the
fine-tuned integrable ferromagnetic case, nonintegrable fer-
romagnetic coupling also seems to drive the system towards
impurity screening. To prove this, we employ the purification
method to calculate the impurity entropy by subtracting the
entropy of the impurity-free chain from the entropy of the
chain containing the impurity. The subsequent decrease of im-
purity entropy from In(2) in the UV to O in the IR, irrespective
of the impurity coupling as shown in Fig. 29, demonstrates
impurity screening at low temperatures.

The temperature dependence of the impurity entropy, as
depicted in Fig. 29, is monotonic when the impurity resides
in the midgap or Kondo phase. In contrast, the antiferromag-
netic bound mode phase shows a nonmonotonic temperature
dependence. Significantly, the ferromagnetic coupling regime
is characterized by the impurity entropy tending to O at low
temperatures. This is in stark contrast to the integrable ferro-
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FIG. 29. The impurity entropy is In(2) in the UV and 0 in the IR
irrespective of the sign of the impurity coupling.
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magnetic coupling case (Fig. 1), where the low-temperature
impurity entropy is In(2).

VI. CONCLUSION AND OUTLOOK

We considered the spin—% anisotropic Heisenberg chain

with integrable and nonintegrable boundary impurities and an-
alyzed them using a combination of Bethe ansatz and DMRG.
We found that the system exhibits different phases depending
on the impurity shift parameters d;, which relates the bulk
and boundary couplings as shown in Eq. (2), in the case
of integrable impurities and the ratio of boundary and bulk
couplings in the case of nonintegrable impurities.

In the case of one integrable impurity interacting antiferro-
magnetically, there exist two phases, namely the Kondo phase
and the antiferromagnetic bound mode phase. The Kondo
phase occurs when the ratio of the impurity parameter d is
either purely imaginary or when it takes real values between
0<d< % The impurity is screened in the ground state due
to the Kondo effect where the ratio of the impurity and the
bulk density of states R(E) has a characteristic peak near
my = E (%), the minimum possible value of single spinon
energy, for imaginary values of d and a peak near M, = E(0),
the maximum possible value of single spinon energy, for real
values of d < 3. The energy of the spinon E(6) is given by
Eq. (9). Eventually, as d is increased, one enters the antifer-
romagnetic bound mode phase, which exists in the parametric
range 7 < d < n as shown in the phase diagram Fig. 5. The
ground state in this phase contains an exponentially localized
bound mode which screens the impurity. This mode can be
removed, and thereby, the impurity can be unscreened. This
process costs energy greater than M,, the maximum energy of
the spinon. In the Kondo phase, excitations can be built on top
of the ground state and one finds that these excitations form
a single tower. In the antiferromagnetic bound mode phase,
excitations in the bulk can be built on top of the ground state
in which the impurity is screened and also on top of the state
in which the impurity is unscreened, and hence one obtains
two distinct towers of excited states.

Similarly, when the integrable impurity interacts ferromag-
netically, the system exhibits two phases: the ferromagnetic
bound mode phase and the unscreened phase. These ghases
correspond to the impurity parameter ranges n < d < 7” and
d > 37" respectively. In both the ferromagnetic bound mode
and unscreened phases, the impurity remains unscreened in
the ground state. However, unlike the unscreened phase, the
ferromagnetic bound mode phase allows the impurity to be
screened by introducing an exponentially localized bound
mode at the cost of E; given by Eq. (21), the energy of the
impurity boundary string solution. In the ferromagnetic bound
mode phase, excitations can be constructed in the bulk on
top of the ground state where the impurity is unscreened.
Similarly, excitations can also be built on top of the state
where the impurity is screened, leading to two towers of ex-
cited states. In contrast, the unscreened phase features a single
tower corresponding to the ground state where the impurity is
unscreened. The Hilbert space in the antiferromagnetic bound
mode and ferromagnetic bound mode phases, characterized by
the presence of multiple towers, undergoes what is known as
“Hilbert space fragmentation” [37,110].

When two integrable impurities are considered, they are
independent in the thermodynamic limit, especially due to the
presence of the mass gap in the bulk, which makes all the
correlations in the model fall off exponentially. Each impurity
can be in any of the four phases corresponding to the one-
impurity case. Thus, the model with two boundary impurities
exhibits a total of 16 possible phases.

Finally, we consider a case where a single nonintegrable
impurity interacts with the chain antiferromagnetically. In this
scenario, we observe, in addition to the Kondo and antifer-
romagnetic bound mode phases, a novel phase characterized
by midgap states in the spectrum. Surprisingly, in contrast
to the expectation that ferromagnetic coupling typically leads
to unscreened impurities (as seen in the integrable case), we
find that even with nonintegrable ferromagnetic coupling, the
impurity also becomes screened.

There are some interesting questions to ask about how
these quarter edge modes, midgap states, and high energy
bound states affect the dynamics and nonequilibrium aspects
of the model. We shall leave these questions for future work.
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APPENDIX

The Appendices serve to complement the main text by
providing detailed discussions and derivations of concepts and
results that could not be fully explored within the main body.

In Appendix A, we introduce and define the Jacobi elliptic
0 functions, which play a key role in the expression for the
energy of the spinon presented in Eq. (9).

Appendix B is dedicated to establishing the integrability of
the Hamiltonian given in Eq. (1). Here, we rigorously derive
the Bethe ansatz equations, which are central to solving the
model and exploring its rich physics.

In Appendix C, we delve into a comprehensive descrip-
tion of the 16 distinct boundary phases exhibited by the
Hamiltonian in Eq. (1). This Appendix provides a detailed
phase-by-phase characterization, offering deeper insight into
the interplay between boundary impurities and bulk interac-
tions.

Appendix D focuses on the solutions of the Bethe ansatz
equations across different phases. This includes a meticulous
examination of the solutions of the Bethe ansatz equations in
various parametric regimes, shedding light on the intricate
phase structure of the model.

Finally, in Appendix E, we clarify the distinction between
the edge modes associated with topological phases, such as
those in the Haldane phase of the bilinear-biquadratic spin-
1 model, and the edge modes found in the XXZ chain. To
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provide further context, we briefly study the effects of impu-

oo
rities at the Haldane point of the bilinear-biquadratic model, Da(u, ) = 2¢"* Z ¢"" Y cos((2n + Du), (A2)
highlighting the unique physics that emerges in this regime. =0
Together, these Appendices enrich the understanding of the ©
model, offering a comprehensive supplement to the main text. U3(u,q) =142 Z q" cos(2nu), (A3)

n=I

APPENDIX A: JACOBI ELLIPTIC @ F TION >
N JACO C 0 FUNCTIONS 94, q) = 1+2) (=1)"q" cos(2nu), (A4)

The Jacobi elliptic 8 functions are defined as n=1

oo
D1 (u, q) = 2q"* Z(—l)”q”(”“) sin((2n + Du), (Al and v’ denotes the derivative with respect to the variable u.
n=0
|

APPENDIX B: HAMILTONIAN AND BETHE ANSATZ EQUATIONS

Consider the trigonometric six vertex R matrix

inh(-+u)
S:mhnm) _ 0 0 0
0 b 0
Rw=| o "7 w4 | (BI)
sinth() sinh(n+u)
0 0 0 sinh(n)
which is a solution of the Yang-Baxter equation
Rix(u — v)R13(u)R23(v) = Ry (v)R13(u)R12(u — v). (B2)

Notice that the Yang-Baxter equation remains satisfied if we shift #; — u; — 6; where 6; are arbitrary inhomogeneous parameters.
The R matrix satisfies the following properties:

Initial condition : R, 2(0) = Py », (B3)

Unitary relation : Ry »(1)Rs 1 (—ut) = — S0 +S;7n)hs2i?7h(” = S id = (1 — esch®(y) sinh(w) x id, (B4)
Crossing relation : Ry »(u) = —aiVRtl‘yz(—u —n)oj, (BS)

Fusion condition : Ry (—n) = —2P7, (B6)

PT symmetry : Ry »(u) = Ry, 1(u) = Rtl'g(u), B7)

Z, symmetry : o{'05 Ry 2(u) = Ry 2(w)o'oy, fora =ux,y,z. (B8)

Let us consider the following two single-row transfer matrices:
To(u) = Ro..(u — b — 6)Ro.n, (1 — O, )Ro.n,—1 (4 — On,—1) - - - Ro2(u — 02)Ro,1 (u — 61)Ro.r(u — d — 6p),
To(u) = Ror(u +d + Og)Ro.1(u + 01)Ro2(u + 65) - - - Ry n,—1 (u + On,—1)Ro.n, (u + O, )Ro.L ( + b+ 6L).
Now, we define the monodromy matrix
Ew) = Ty)To(u). (BY)
The trace of the monodromy matrix over the auxiliary space is defined as the double-row transfer matrix
t(u) = trg E(u). (B10)

Now, we construct a Hamiltonian as

" ]Sinh(n)di 10020101 0 — JNp cosh(n) — ..]Sllzlhz(U)C.OShz(ﬂ) 3 {sn;hz(n)c?shz(n) ’ B11)
A sinh“(n) — sinh“(d)  sinh“(n) — sinh“(b)
which gives
Ny—1
H="7 J(o}0} +00,, + Aofof,)
i=1
+Jr(07'0 ) + 070y + Aroiofyy) + (00l + 07 0),, + Arofa), (B12)
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where we introduced

A = cosh(n), (B13)
inh? h(d
.s1n2 (n)co.s (2 ) ’ (B14)
sinh“(n) — sinh“(d)
inh? h(b
S () eosh® (B1S)
sinh“(n) — sinh“(b)
cosh(n)
= — " B16
k cosh(d) (B16)
cosh(n)
A = . B17
L7 cosh(b) (B17)
The eigenvalues A (u) of the transfer matrix matrix ¢ () satisfy Baxter’s T-Q relation [90,111,112]
O(u—1n) O(u+n)
A(u) = a(u) +du)— , (B13)
Ou) Q(u)
where
al) = M COsz(u)sin(u —b+ .n)zsin(u +b+n)sin(u—d+ .17)Zsin(u +d+n) (B19)
sin(2u + n) sin”(n) sin”“(n)
and
d(u) = a(—u —n), (B20)
and the trigonometric Q function is given by
_ ﬁ sin(u — ue).sizn(u —up + 77). (B21)
- sin“(n)
Imposing the regularity condition on the 7-Q relation, we obtain the Bethe equation
cos?(u) [ sin(u; 4+ )\ sin(u; + b+ n) sin(u; — b+ n) sin(u; +d + 1) sin(u; —d + 1)
cos®(u + 1) sin(u;) sin(u; + b) sin(u; — b) sin(u; +d) sin(u; — d)
M sin(u; — ue + 1) sin(u; +u, +2n)
= H : . . (B22)
e sin(uj —ug —n)  sin(u; + ug)
To write the equation more symmetrically, we introduce a new variable via relation u; =i '\7’ — 3, such that the Bethe ansatz

equation becomes

2
sin 3(A; — in) " cos? T +in)sin $(A; — 2ib — in) sin $(A; + 2ib — in) sin $(A; — 2id — in) sin $(A; + 2id — in)
sind(h;+in)) cos® 1(h; —in)sin 1(A; — 2ib+ in) sin 1(h; + 2ib + in) sin 1(A; — 2id + in) sin $(A; + 2id + in)

M sin L — ag = 2in)sin LGy + Ay — 2in)

=[] = s —, (B23)
i1 S0 3(Aj = Ag + 2im) sin 5 (X + A + 2in)
and the energy is given by
sinh n J sinh? J sinh?
= 2J sinh Ny — 1)J + + cosh 7. B24
g Z cosl; —coshp |:( b ) (sinh? n — sinh?b)  (sinh® 5y — sinh® d) 7 (B24)
[
APPENDIX C: TWO-IMPURITIES CASE follows similar to the case of the isotropic chase studied

in Ref. [37] with the only major difference being that the
model under consideration in this work is gapped, and hence
the two impurities do not affect one another in the ther-
modynamic limit because all correlation in the model falls
exponentially.

Let us now briefly return to the Hamiltonian Eq. (1) and
discuss the phase diagram when there are two impurities.
As shown in the phase diagram Fig. 22, there are now 16
total boundary phases, as there are four independent boundary
phases on the two edges of the spin chain. The construction
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We provide a detailed construction of these 16 phases in
Appendix D, while this section offers only a brief overview,
with progressively fewer details. As illustrated in the phase
diagram in Fig. 5, a single impurity coupled integrably to the
edge of the XXZ-% chain can reside in one of four phases:
Kondo phase (K), ABM phase, FBM phase, or US phase.

When two impurities are coupled integrably at opposite
edges of the chain, each impurity can independently occupy
any of these four phases. Consequently, the system can exist
in one of 16 possible configurations, as shown in the phase
diagram in Fig. 22. In this diagram, the labels K, ABM, FBM,
and US refer to the four phases, and a phase labeled (X,Y)
indicates that the left impurity is in phase X, while the right
impurity is in phase Y, where X and Y can independently be
any of the four phases.

1. Kondo-Kondo phase

When both left (d;) and right (dg) impurity parameters,
that either purely imaginary values or real values between
0 < d; < %, both impurities are screened by the Kondo effect.
The ground state for even N, is twofold degenerate where the
fractional spin accumulations on the two ends are polarized
in opposite direction, i.e., |GS) = |+, :F%) whereas when
N, is odd, the twofold degenerate ground state has total spin
N :I:% where the fractional edge spin accumulation polarize
in the same direction, i.e., |GS) = |+£1, +1).

All the excited states can be constructed by adding even
numbers of spinons, bulk string solutions, quartets, etc. [92].
There is no boundary excitation in the low energy in this
phase.

2. Kondo-ABM and ABM-Kondo phases

The Kondo-ABM phase occurs when the left impurity
parameter d;, takes either imaginary values or real values be-
tween 0 < dg < 7 and the right impurity parameter d takes
real values between % < dg < n. In the ground of the Kondo-
ABM phase, the impurity coupled to the left edge is screened
by the Kondo effect, whereas the impurity coupled to the right
edge is screened by an exponentially localized bound state.
The ground state for even N, is twofold degenerate where the
fractional spin accumulations on the two ends are polarized
in opposite direction, i.e., |GS) = ExS :F%> whereas when
N, is odd, the twofold degenerate ground state has total spin
S = :l:% where the fractional edge spin accumulation polarize
in the same direction, i.e., |GS) = |£1, +1).

The relationship between the ABM-Kondo phase and the
Kondo-ABM phase is established via a space parity transfor-
mation. Exchanging L and R upholds the described results,
i.e., in the ABM-Kondo phase, the impurity at the left edge is
screened by an exponentially localized bound mode formed at
the edge, whereas the right impurity is screened by multipar-
ticle Kondo effect.

Apart from the usual bulk excitation constructed by adding
an even number of spinons, bulk strings, quartets, etc., unique
boundary excitations where impurities are unscreened are
possible in this phase. The impurity boundary string so-
Iution describing the bound mode state screening the left
or right impurity in the phases ABM-Kondo or Kondo-

ABM phases, respectively, can be removed at the expense
of energy

[e ]
E, = Jsinh(n) Z e~ Mlsech(nw) cosh(w(2d; — 1))
w=—00
J sinhz(n)
sinh(d;) sinh(d; — 1)’

(ChH

and thereby unscreen the respective impurities creating a
fourfold degenerate excited state with boundary excitation.
Here, i = {L, R} for ABM-Kondo and Kondo-ABM phases,
respectively.

3. Kondo-FBM and FBM-Kondo phases

The Kondo-FBM phase occurs when the left impurity
parameter d; takes either imaginary values or real values
1

between 0 < dg < 5 and the right impurity parameter dg

resides in the range n < dg < 37" In the ground state of the
Kondo-ABM phase, the impurity coupled to the left edge is
screened by the Kondo effect, while the impurity coupled
to the right edge remains unscreened. The ground state is
fourfold degenerate with S° = :I:% where the edge fractional
modes point in the same direction, i.e., |:I:%, :t%) where N,
is odd. Likewise, the ground state is fourfold degenerate wit
S$% = 0, =1 when N, is even where for the two S¢ = 0O states,
the edge modes polarize in the opposite direction |:|:}1, q:%)
and for S* = % state, the edge modes polarize in the same
direction |2, £1).

The impurity in the right end can be screened by the bound
mode at the expense of E;, energy. Such a state would be
twofold degenerate with S° = 0 if N, is even and §° = :t%
if N}, is odd.

The FBM-Kondo phase is related to the above-described
Kondo-FBM phase by space parity transformation (L <> R).
In this case, the ground state contains an unscreened left im-
purity while the right impurity is screened by an exponentially
localized edge mode formed at the right edge of the spin chain.
Similarly, all other results about the excited state follow by
applying transformation L <> R.

4. Kondo-US and US-Kondo phases

The Kondo-US phase occurs when the left impurity pa-
rameter d; takes either purely imaginary values or real values
in the range 0 < d; < 7 and the right impurity parameter dg
resides in the range dg > %n. The ground state in this phase
is a fourfold degenerate state when the impurity in the left
edge is screened by the Kondo effect and the right impurity
is unscreened. The fourfold degenerate ground state has total
spin S° = :I:% when N, is even where the fractional edge
modes align in the same direction, i.e., |:|:}1) , j:j—‘ whereas the
two out of the fourfold degenerate ground state has total spin
S§% = 0 where the fractional edge spin antialign, i.e., |:|:%) , q:%
and in the remaining two state S° = &+ where the unscreened
impurity combines with the quarter spin edge modes to form
i% edge spin accumulation such that the spin accumulation

are of the from |+1) , F3.
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No boundary excitations are possible in this phase because
bound mode no longer exists in this phase. Thus, all the
excited states on top of the fourfold degenerate ground states
are constructed by adding an even number of spinons, bulk
string solutions, quartets, etc. Moreover, the impurity coupled
to the right end of the spin chain cannot be screened in this
phase. The US-Kondo phase is related to the Kondo-US phase
by the space parity transformation.

5. ABM-ABM phase

When both left and right impurity parameters take real
values in the range % < d; < n where i = {L, R}, the model
is in the ABM-ABM phase. The ground state in this phase
is characterized by the screening of both impurities by expo-
nentially localized bound mode formed at the two edges of
the spin chain. The ground state is twofold degenerate with
§% =0 when N, is even where edge quarter modes point in
the opposite direction and it is §¢ = :I:% state when N, is odd
where the edge quarter modes align in the same direction.

Apart from the usual bulk excitation constructed by
adding an even number of spinons, bulk string solution,
quartets, etc., unique boundary excitations are possible in
this phase. For example, the bound mode solution screen-
ing left (right) impurities can be removed at the expense
of energy E; (Eg4) to unscreen the left (right) impuri-
ties. One can also remove both the bound mode solu-
tion, thereby unscreening both the impurities at the cost
of E4, + E4, energy.

6. FBM-FBM phase

When both left and right impurity parameters take real
values in the range n < d; < 37" where i = {L, R}, the model
is in the FBM-FBM phase. The ground state in this phase has
both of the impurities unscreened. The ground state is thus
eightfold degenerate for both even and odd number of bulk
sites V.

Apart from the usual bulk excitation constructed by adding
an even number of spinons, bulk strings, quartets, etc., unique
boundary excitations where impurities are screened are pos-
sible in this phase. The bound mode solution screening left
(right) impurities can be added at the expense of energy E,,
(Eq4,) to unscreen the left (right) impurities. One can also add
both the bound mode solution, thereby unscreening both the
impurities at the cost of E;, + E,4, energy.

7. ABM-FBM and FBM-ABM phases

The ABM-FBM phase occurs when the left impurity pa-
rameter d;, takes real values in the range g < dy, < n and the
right impurity parameter dg resides in the range n < dg < %n.
The ground state in this phase is a fourfold degenerate state
where the impurity in the left edge is screened by an exponen-
tially localized bound mode formed at the left edge, and the
right impurity is unscreened.

The impurity at the left edge can be unscreened by re-
moving the bound mode solution at the expense of energy
E,, . Similarly, the impurity at the right edge can be screened
by adding the bound mode solution which costs energy Eg,.
Moreover, One can simultaneously unscreen the left impu-
rity and screen the right impurity at the expense of energy
Eq + Eg,.

The FBM-ABM phase is related to the ABM-FBM phase
by space parity transformation. The above-described results
follow through by applying the transformation L <> R.

8. ABM-US and US-ABM phases

The ABM-US phase occurs when the left impurity param-

eter d; takes real values in the range % < dp < n and the

right impurity parameter dg resides in the range dg > %n. The
ground state in this phase is a fourfold degenerate state where
the impurity in the left edge is screened by an exponentially
localized bound mode formed at the left edge, and the right
impurity is unscreened.

The impurity at the right edge cannot be screened in this
phase. However, the impurity at the left edge can be un-
screened by removing the bound mode solution A4, which
costs energy Ey, .

The US-ABM phase is related to the ABM-US phase by
space parity transformation.

9. FBM-US and US-FBM phases

The FBM-US phase occurs when the left impurity pa-
rameter dj takes values in the range n < d; < % and the
right impurity parameter dg resides in the range dg > %n. The
ground state in this phase is an eightfold degenerate state for
both even and odd N, where both impurities are unscreened.

The impurity at the right edge cannot be screened in
this phase. However, the impurity at the left edge can be
screened by adding the bound mode solution A4, , which costs
energy £y, .

The US-FBM phase is related to the FBM-US phase by
space parity transformation.

10. US-US phase

The US-US phase occurs when both left impurity parame-
ter d;. and right impurity parameter dy take values in the range
d; > %'7 where i = {L, R}. The ground state in this phase is
an eightfold degenerate state for both even and odd N, where
both impurities are unscreened.

The impurities cannot be screened in this phase. Thus,
all the excited states are the bulk excitations constructed by
adding an even number of spinons, bulk string solutions, quar-
tets, etc.
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APPENDIX D: DETAILED SOLUTION OF BETHE ANSATZ EQUATION

We shall describe the full solution of the Bethe ansatz equations Eq. (B23) in this section for the case where N, is even. As
shown in the phase diagram Fig. 22, the model described by Hamiltonian Eq. (1) with two impurity exhibits total of 16 impurity
phases. We shall gradually decrease the amount of detail for each phase. There are 16 phases because each impurity at the
two ends of the chain can independently reside in one of four possible phases: the Kondo phase, the antiferromagnetic bound
mode phase, the ferromagnetic bound mode phase, or the unscreened phase. This independence leads to 4 x 4 = 16 possible
combinations of impurity phases.

1. Kondo-Kondo regime

The Kondo-Kondo regime exists when the impurity parameters b and d take either purely imaginary values or real values
between 0 and 7.
In this regime, Bethe equation takes the form

2N,
sin L —in)\ " cos? L(a; +in) sin L (A; — i2b + n)) sin L (&, — i(n — 2b))
sin 3 (A + in) cos? 1(h; — in) sin 2(h; +i(2b + n)) sin §(A; + i(n + 2b))

M

sin 5 (A; — i(2d +n)) sin 50 — i(n —2d)) sin 1(A; — A — 2in) sin 3(0j + Ay — 2in)

sinf(A; +i2d +n)) sini(A; +i(n —2d)) 1_[ in LA, — Ax + 2in)sin L0 + Ap 4+ 2in)” ©h
5 (A n 5(A; n k=1()) sm2( j k m)sm2 j & in
Taking In on both sides, we write
=il + Y [P + i 20) + $(hj — Ae, 20)]. (D2)
k
Differentiating and removing the solutions A = 0 and A = m, we obtain
2Ny + Da(r, n) —2a(h —m,n)+a(h, n+2b)+ar,n—2b)+a(A,n+2d)+ar,n—2d)+a(A —m,n)
=2mp(A)+ / pM)ar — ', 2n) +a(h + A/, 2m)]dA + 278(h — 1) + 278 (M). (D3)
The solution is immediate in the Fourier space
~ (2N, + De Mol (=1)2e el — 2(—1)2e~Mel 4 g=nlol(e=2blol | p2blol 4 o=2dlo] 4 S2dloly _ (] 4 (—1)@)
Py (@) = - . (D4
2 47 (1 + e~ 2nlol)
The total number of Bethe roots is given by
T 5 2N, +2  Ny+1
M = /_n ,Olé)()\.)d)\, = 271,0‘%)(0) == =5 (D5)

Since the total number of roots is not an integer when N, is even, thus, we need to add the complex solution Ays.
Adding the complex solution Aps = 7 % in, we obtain

2Ny + Da(r, n) —2a(h —m,n)+a(r, n+2b)+ar,n—2b)+a(A,n+2d)+a(l,n—2d)+a(rA —m,n)
=2mp(L) + / pM)a(h — N, 2n) +a(h + A, 2mIdN +a(h — 7, n) +a(h —7,3n) + 278(h — ) + 278(1).  (D6)

The solution in Fourier space becomes

(2N, + De el 4 (—1)@e el — 2(—1)2e=el 4 g=nel(e=2blol 4 G2blo] 4 p=2dlo] 4 2dloly _ (1 4 (—1)®)
47 (1 + e~ 2nlol)

Doy, (@) =

(—1)® e7Mel 4 g=3nlel

A (14 e 2nlely * (D7)
The total number of Bethe roots is given by
My, =1+ [ ’ P10y (AR = 1+ 27 pioy(0) = Nb; 2 (D8)
Hence, the spin of this state is
U Nb; = — M), = 0. (D9)
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The change induced in the density due to the string solution is

(—=1)® g7l 4 g=3nlol

AD =— . D10
p(w) I (15 el (D10)
As shown above, the energy of this string solution vanishes.
Hence, the energy of this state is
E v, -1+ —2 sichy __ Jsinh®y h (D11)
= Lar - N . A A COos .
(Ohes b (sinh® n —sinh?b)  (sinh? 5 — sinh®>d) "

Notice that this is the ground state in this phase, and it is twofold degenerate as one could add either the left or right boundary
string 7w %+ in to construct it.

Thus, the impurities in this phase are screened by the multiparticle Kondo effect. All the excitations in this phase are bulk
excitations which are constructed by adding an even number of spinons, bulk strings, and quartets. There is a single tower of
excitations in this phase.

Here, the bulk contribution to the root density is

Nhe*n|w|
bulk
e D12
Py (@) 27 (1 + e~ 2nlely .
and the single impurity contribution is

i g*'l|w|(e’2d\w\+62d\m\)
e (D13)

4 (1 4 e~2nlel)

2. Kondo-ABM and ABM-Kondo phases

Let us consider the case when 0 < b < 3, 3 < d < n, and N, is even. The case where 0 < d < % and § < b < 7 can then be

obtained by applying the transformation L <> R. In this regime, the Bethe equation takes the form

2N,
sin 3(A; — in) ’ cos? 3O+ in) sin 3(A; — i(n — 2b)) sin 3(A; — i(2b + 7))
sin 3 (A + in) cos? 2(A; — in) sin 3 (A, + i(n — 2b)) sin 3 (A; + i(2b + 1))

sin $(A; —i(2d +n)) sin 1 (A; 4+ i(2d — 1)) B ﬁ sin 2(A; — Ax — 2in)sin 2(&; + Ax — 2in) D14
sin 1 +i2d +n))sin 2(n; —i2d —n)) o1z, S0 T = A+ 2in)sin (4 + A + 2in)
Taking In on both sides, we write
2Ny + Do j, ) =29 (Aj, n) + ¢(hj, n +20) + ¢(hj, n — 2b) + ¢(Aj, n +2d) — ¢(A;,2d —n) + ¥ (X, 1)
= mil; + Y _[$(h; + he 20) + $(hj — A 21)]. (D15)
k
Differentiating and removing the solutions A = 0 and A = 7, we obtain
2Ny + Da(r, n) —2a(h — 7, n)+ah, n+2b)+a(r,n—2b)+a(r,n+2d)—ar,2d —n)+a(hA —m,n)
=2mp(A) + / oM)la(h — A, 2n) +a(n + A, 2p)]d) + 27 8(L) + 278 (% — 7). (D16)
Solving the above integral equation, we write the solution density in Fourier space
) (2N, + De "1l 4 (=1)%e 10! — 2(=1)%e "1l — (1 + (=1)*)
piy(@) = -
47 (1 + e~ 2nlol)
—(n—2b)|w| —(n+2b)|w| —+2d)w| _ ,—Q2d—n)lw]|
e +e +e e (D17
47 (1 + e 2nlel)
The total number of Bethe roots is given by
b B Nb

My = | pny)da =27y (0) = —. (D18)

Thus, the total spin of the state is

. Ny +2

Sy = 5 - My =1. (D19)
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The energy of this state is

Ey=Ey + |ty 28men  Jsinh’y cosh (D20)
= R ’ (sinh> 7 — sinh?b) ' (sinh® 5 — sinh> d) o
where the energy of all real roots is given by
oo
Ean, = —4mJ sinhn Y pioy(@)a(e, ). (D21)

w=—00

Because of the Z, symmetry there is a state |—1) which is degenerate to state |1).
However, this state described by all real roots is not the ground state. Adding the complex root Ay and the purely imaginary
root 14, we obtain Bethe equation of the form

@Np + D@ jm) =29 (k) + ¢(hj. n +2b) + ¢(hj.n = 2b) + d(hj, n + 2d) — ¢(A;,2d —n) + ¥ (A, n)
=mil; + Z[Qﬁ(kj + A, 20) + d(hj — A, 2] + ¢(Aj, 2d + 1) + ¢(Xj, 3n — 2d). (D22)
k

Differentiating and removing the solutions A = 0 and A = 7, we obtain
(2Np + Da(x, n) = 2a(h — 7, n) + a(r, n + 2b) + a(r, n — 2b) + a(r, n +2d) — a(X, 2d —n) + a(h — 7, 1)
=2mrp(A) + / pM)a(h — A", 2n) +a(h + A/, 2mIdA + 278(X) + 2x8(A — ) + a(X, 2d + n) + a(r, 3n — 2d)
+a(h—m,n)+a(A —m,3n). (D23)
Solving the above integral equation, we write the solution density in Fourier space

_ (2Np, + De el 4 (—1)@e el — 2(—1)®e~Mel — (1 4 (=1)®) B (=1)@ el 4 g=3nlel

P10}y, 4 (@)

47 (1 + e~ 2nloly 4 (1 + e=2nlel)
i I e e i D24
4 (1 + e~ 21lel) 47 (1 + e2nlel)
The total number of roots is
4 . Ny +2
My, =2+ | poy.,A) =1+27pp), ,0) = 7 (D25)
Thus, the spin of this state is
Ny +2
S‘O)b&d = - M|0>bs,zl =0. (D26)
We have already shown that the energy of the string solution Ay is zero, and the energy of the string solution A, is
J sinh?(n) =,
E; = J sinh ~2nlelgach cosh(w(2d — n)), D27
1= Sh@ysmh@—m (n)w;of () cosh(w(2d — 1)) (D27)
which is negative. Hence, the total energy of this state is
E By | Ny — 17 4 — 7S J sinb” h (D28)
= Lar - . . A . Ccos .
1Ohtsa W b (sinh® n — sinh?b)  (sinh? 5 — sinh® d) "

This is the ground state where the left impurity is screened by multiparticle screening (Kondo physics), and the right impurity is
screened by a single particle bound mode.

We could remove the Aps solution from the above state and add a hole propagating with rapidity 6 such that the root density
satisfies an integral equation of the form

2Ny + Da(r, n) —2a(A —m,n) +a(r, n+2b) +a(r,n —2b) +a(A,n+2d) —a(r,2d —n) +a(A —m,n)
=2mp(A) + / p(M)la(h — A, 2n) +a(h + A/, 2m)]dN +278(A) + 278(A — ) + a(X, 2d + 1) + a(r, 3n — 2d)

+ 275 —0)+2n8(X 4 6). (D29)
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Solving for the root density in the Fourier space, we obtain

QN+ De 4 (= 1)2e el — 2(—1)ee el — (14 (=1)) 2 cos(w)

Pi1y,q (@) 47 (1 + e~ 2nlel) A (1 + e 2nlol)
e~ (=20l 4 = 42D)0l 4 p=H2D)0] _ o=Qd—llo]  p=Qd+nlel 4 p=Gn-2d)0]
_ ) D30
47 (1 + e~ 2nlel) 4 (1 4 e~ 2ol (D30)
The total number of roots is
b
. N
M|1>H’d = 1+/ ,Omevd()»): 1+27T,0‘1>01d(0)= 7 (D31)
Thus, the spin of this state is
Ny +2
Siea = —5— —Mn,, =1, (D32)
and the energy of the state is
J sinh? J sinh?
E =E;+E;, +|(Ny—1J + coshn + Ey. D33
IDoa = =d R [( b= 1) (sinh® ) — sin?b) = (sinh? 7 — sinh? d) e (D33)

Since the lowest energy of spinon is nonzero, this is an excited state where both the impurities are still screened.

Thus, in this phase, the ground state involves multiparticle screening of the left impurity and the right impurity is screened
by an exponentially localized bound formed at the right end of the impurity. There are unique boundary excitations in this
regime which involves the unscreening of the right impurity by removing the impurity boundary string solution. Thus, there are
two distinct towers of excited states: one where both impurities are screened (one by multiparticle Kondo effect and another
by exponentially localized bound mode), whereas another tower includes the excited states where one impurity is screened by
multiparticle Kondo effect but the other impurity is unscreened.

3. Kondo-FBM and FBM-Kondo Phase

Let us consider the case when 0 < b < %, n<d< 37", and N, is even. The case where 0 < d < g andn <b < 31 can then

2
be obtained by applying the transformation L <> R.
In this regime, the Bethe equation takes the form

sin 2(A; — in) ™ cos? L +in)sin (A —i(n — 2b)) sin S (A; — i(2b + 1))
sin 2(A; + in) cos? 1(A; —in) sin 2(A; + i(n — 2b)) sin 1 (A; 4+ i(2b + 1))

sin 3(A; — i(2d + n)) sin 3 (A, + i(2d — ) ﬁ sin 3(A; — A — 2in)sin 3(A; + A — 2in) O3

X = .

sin 5 (A; +iQd + ) sin 3(; —i2d =) 5% sin 3 — A+ 2in) sin 3 (4 + Ae + 2in)

Taking In on both sides, we write
@CNp + Do, m) =29 (A, m) + ¢(hj, n +20) + ¢(hj, n — 2b) + ¢(hj, n+2d) — (A, 2d — ) + Y (A, )
= il; + Y [¢Ghj + da. 20) + B — . 20)]. (D35)
k
Differentiating and removing the solutions A = 0 and A = 7, we obtain
2Ny + Da(r,n) —2a(h —m,n)+ar,n+2b)+ar,n —2b)+a(r,n+2d) —a(r,2d —n)+a(h —m,n)
=2rp(A)+ / oM)a(k — ', 2n) +a(r + A, 2p)]1d) + 27 8(L) + 278 (A — 7). (D36)
Solving the above integral equation, we write the solution density in Fourier space
3 (2N, + De ! 4 (—1)ee el — 2(—1)ve 11! — (1 4 (=1)°)
pny(w) = -
47 (1 + e~2nlel)
—(n-2b)|w| —(n+2b)|w| —(2d)|w| _ ,—Q2d—n)|o|
e +e +e e (D37)
47t (1 + e~ 2nlel)
The total number of Bethe roots is given by
T 5 Nb

Mpy = oy (A)dA = 27 51, (0) = 5 (D38)
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Thus, the total spin of the state is

Ny + 2
Sy = — —-Mp =1 (D39)
The energy of this state is
J sinh? J sinh?
Eyw=E;, +| Ny —1)J 4+ — - - — - cosh n, D40
" W |:( b= 1) (sinh? n — sinh?b)  (sinh®>d — sinh? ) 7 (D40)
where the energy of all real roots is given by
Eur, = —4mJsinhn Y~ ppy(@)a(w, n). (D41)

w=—00

Because of the Z, symmetry there is a state |[—1) state which is degenerate to state |1).

Adding the boundary string and a higher order boundary string (see detail construction in the isotropic case in Ref. [37]), we
obtain another S = 0 state with the same energy in the thermodynamic limit as the energy of the fundamental boundary string
and the higher order boundary string exactly cancel in the thermodynamic limit.

Since the bound mode has positive energy, this fourfold degenerate state is the ground state in this regime. Here, the left
impurity is screened by multiple particles, and the right impurity is unscreened.

Adding the complex root Aps and the purely imaginary root A,, we obtain Bethe equation of the form

@Np + Do j, ) =29 (A, m) + (A, n +2b) + ¢(Aj, n — 2b) + ¢(hj, n +2d) — ¢(A;,2d —n) + ¥ (A;, )

= JTin + Z[(f)()»j + )\.k, 27’]) + ¢()\j - )\.k, 277)] + ¢(}\.j, 2d + 77) + (f)()\j, 377 — 2d) (D42)
k

Differentiating and removing the solutions A = 0 and A = m, we obtain
2Ny + Da(x, n) —2a(r —m,n) +a(r, n +2b) +a(r,n —2b) + a(r, n +2d) — a(r,2d — n) +a(A — 7w, 1)
=2wp(L) + / p(M)la(h — A, 2n) +a(h + A/, 2m)[dA +278(L) + 278(A — ) + a(X, 2d + n) + a(r, 3n — 2d)
+a(A —m,n)+a(rA —m,3n). (D43)
Solving the above integral equation, we write the solution density in Fourier space

_ (2Np, + De el 4 (—1)@e el — 2(—1)2e~Mel — (1 4 (=1)®) B (=)@ g7l 4 g=3nlel

P10)ps 4 (w) 47_[(1 T e*zﬂ\w\) 4o (1 n e*zﬂ\w\)
e~ (=20l 4 = +2D)w| 4 —(+2d)lw] _ p—C2d—n)|e| B e~ @d+nlol 4 p=Gn=2d)lo| . (Dad)
4 (1 + e~ 21lel) 47 (1 + e2nlel)
The total number of roots is
T - Ny +2
M), =2+ / Py (A =142 pyoy,, ,(0) = ——. (D45)
—IT
Thus, the spin of this state is
Ny +2
S\O)bsu = - M|0>bs,d =0. (D46)
We have already shown that the energy of the string solution Ay is zero, and the energy of the string solution A is
J sinh?(n) ind )
E; = — - + J sinh e M@lsech cosh(w(2d — 1)), D47
1= Sabdsn@ =) (n)w;w (nw) cosh(w(2d — 1)) (D47)
which is positive. Hence, the total energy of this state is
E Ey+Ey + | Ny — 1 + —2 sinh? J sinh” h (D48)
= ar - N ; - = ; coshn.
Oheva ¢ W b (sinh®n —sinh?b)  (sinh®d — sinh? ) 7

This is an excited state where the left impurity is screened by multiparticle screening (Kondo physics), and the right impurity is
screened by a single particle bound mode.
Because of the Z, symmetry there is a state |—1)s ; which is degenerate to state |1) 4.
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We could remove the A, solution from the above state and add a hole propagating with rapidity 6 such that the root density
satisfies an integral equation of the form

2Ny + Da(r, n) —2a(h — 7, n) + a(A, n +2b) + a(r, n — 2b) + a(r, n + 2d) —a(A,2d —n) +a(k — 7w, 1)
=27p() + / p(Mlah — X, 20) + a(h + A, 21dA + 278(0) + 278 (h — ) + a(r, 2d + n) + a(x, 35 — 2d)
+ 27800 — 0) + 278(A + 6). (D49)

Solving for the root density in the Fourier space, we obtain

2Ny + De el 4 (=1)@e el — 2(—1)2e el — (1 + (=1)®) 2 cos(wb)

oy, (@) = 47 (1 + e~ 2nlel) B 47 (1 + e 2nlel)
=m0l =20l 4 =142kl _ = Cd-Dlol g4l 4 o~ Gr-2Dlol D30)
47 (1 + e 2ol 47 (1 4 e~2nlel)
The total number of roots is
b
. N
M|1>H’d = 1+/ ,Omevd()»): 1+27T,0‘1>01d(0)= 7 (DS])
Thus, the spin of this state is
Ny +2
Siea = —5— =M, = 1. (D52)
and the energy of the state is
E Ey+Ey 4| Ny — 1)+ — sinh? J sinh” hy+E (D53)
= T - . . - . . Cos :
Mo 4 7 Fany b (sinh? n — sinh?b)  (sinh® d — sinh? ) ot
There exists another state [—1), ; degenerate to the above state.
4. Kondo-Unscreened
Consider the case when 0 < b < % d > 37" and N, is even. In this regime, the Bethe equation takes the form
. l s 2Ny 2 l . . . l L _ . l L
sin 3 (A; —in) cos” 5(A; +in) sin 5(A; — i(n — 2b)) sin 3 (A; — (2D + 1))
sin $(A; + in) cos 2(A; — in) sin 2 (A, + i(n — 2b)) sin 3 (A; + i(2b + 1))
sin $(A; —i(2d +n)) sin 1 (A; 4+ i(2d — 1)) B ﬁ sin 2(A; — Ax — 2in)sin 2(&; + Ax — 2in) Ds4)
sin 1(A; +i(2d +n)) sin $(A; — i(2d — 1)) o1z, S0 T = hi 4 2in) sin (0 + A + 2in)
Taking In on both sides, we write
CNp+ Dp(hj,m) =29 (Aj,m) + d(hj, n+2b) + ¢(Aj, n — 2b) + p(Xj, n + 2d) — (X, 2d — n) + ¥ (A, n)
= il + Y [phj + de. 20) + P — de, 20)]. (D55)
k
Differentiating and removing the solutions A = 0 and A = , we obtain
2Ny + Da(r,n) —2a(r —m,n)+a(r,n+2b)+a(r,n—2b)+a(r,n+2d)—a(r,2d —n)+al —m,n)
=2mp(L) + / oM)la(h — A, 2n) +a(h + A, 2m)]d) + 278(X) + 2w 8(A — 7). (D56)
Solving the above integral equation, we write the solution density in Fourier space
) (2N, + De el 4 (= 1)Ze el — 2(=1)?e el — (1 4 (=1)?)
oy (w) = —
47 (1 4 e~ 2l
—(—-2b)|w| —(n+2b)n|o| —(+2d)lw| _ ,—Q2d—n)lo]
e +e +e e (D57)
47 (1 + e~ 2nlol)
The total number of Bethe roots is given by
b 5 Nb
Mpy = oy (A)dA = 27 51, (0) = 5 (D58)
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Thus, the total spin of the state is

Ny +2
Sy = —5— —Mpn =1 (D59)
The energy of this state is
J sinh? 5 J sinh? 5
Eny=E,, +|N,—1J+ — coshn, D60
M I [( b= D 7 —sinh®b)  (sinh?d — sinh® ) 7 (D60)
where the energy of all real roots is given by
oo
Eqny, = —4mJ sinhn Z Py (w)a(w, n). (D61)

w=—00

Because of the Z, symmetry, there is a state |—1) which is degenerate to state |1).
We can add the purely imaginary solution A; = %i(n — 2d) on top of all real root solution such that the Bethe equation be-
comes

QCNy + DA, n) =29 (Xj,n) +d(hj, n +2b) + d(Ahj,n —2b) + d(Aj, n+2d) — dp(Xj, 2d —n) + Y (A;, n)

=mil; + ZM’(M + A, 20) + d(hj — A, 2] + oA, 2d + ) — ¢4, 2d — 3n). (D62)
k

Differentiating and removing the solutions A = 0 and A = 7, we obtain

2Ny + Da(r,n) —2a(r —m,n)+alr,n+2b)+a(r,n—2b)+a(r,n+2d) —a(r,2d —n)+al —m,n)
=2mp(L) + / oM)la(h — 1, 2n) +a(h + A, 2m)]d) + 278(A) + 278(A — ) + a(, 2d + n) — a(X, 2d — 3n). (D63)

Solving the above integral equation, we write the solution density in Fourier space

(2N, 4 De el 4 (—1)@e=el — 2(—1)0eMel — (1 4 (—1)®)

Py, (@) = 4 (1 + e 210e)
e~ 1=2D)0] | p=42)|0] 4 o=(H2d)0] _ o=Cd=mlo]  ~Qd+mle] _ ,~(2d=3no]
— (D64)
4 (1 + e~ 2nlel) 47 (1 + e~ 2lel)
[
The total number of Bethe roots is Thus, the total energy of the wide boundary string is
Mo, =1+ [ AWdr = 1+ 277 (0)—N”Jr2
0 = 27 | POl =T AP0, = Eq = Evuea + Eapy = 0. (D70)
(D65)
Thus, the spin of this state is Thus, the energy of this state is
Ny +2
0, = — My, = 0. (D66)
J sinh?
.Now, we need to compute the energy of the wide boundary E), = Eany + | Ny — DJ + (sinh® 1) + sin’ B)
string. o
The bare energy of the string solution is - ~2’ sinh '77 . ] cosh . (D71)
sinh? 5 (sinh” d — sinh” n)
Ebare,d = (D67)

sinh d sinh(d — n)’
and the energy associated with the change in density due to
the string solution

Thus, in this phase, the ground state involves multipar-
ticle screening of the left impurity, and the right impurity
is unscreened. There are unique boundary excitations in
this phase which involves the screening of the right im-
purity by an exponentially localized bound mode formed
at the right end of the chain. Thus, there are two dis-
tinct towers of excited states: one where both impurities
are screened (one by multiparticle Kondo effect and another
by exponentially localized bound mode) whereas another
tower includes the excited states where one impurity is
J sinh?(1) screened by multiparticle Kondo effect but the other impurity

=—= : . D69) .
sinh(d) sinh(d — 1) is unscreened.

e~ Qdtnlel _ ,—2d=3nol

47 (1 + e~ 2nlel)

Apg = — (D68)
is
oo
Enp, = —4mJ sinh Z Ap(w)a(w, n)

w=—00
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5. Kondo-US and US-Kondo phases

Let us consider the case when 0 < b < %, d > 37”, and N,

is even. The case where 0 < d < %, b > 37” can be obtained
by applying the transformation L <> R.

In this regime, the impurity boundary string solution A4
has zero energy, and hence the addition of such a solution can
no longer screen the impurity. Thus, the ground state in these
phases is similar to the Kondo-FBM and FBM-Kondo phases.
The only difference is the structure in the excited state, as the
impurity can no longer be screened in this phase at any energy
scale.

6. Other phases
a. ABM-ABM phase

When both impurity parameters take values between /2
and n, the model is in the ABM-ABM phase.

The ground state is constructed by adding the boundary
strings solution A; and X, on top of all the real roots of
Bethe equations and the complex boundary solution Ays. Both
impurities are screened by the exponentially localized bound
mode formed at the edges of the chain.

Since the impurity boundary string solutions can be re-
moved, boundary excitations where impurities are unscreened
at the edges can be constructed at the expense of the energy of
the bound mode, which is always higher than the maximum
possible energy of a single kink excitation M,.

The impurity string solutions could be removed just from
the left or right, thereby unscreening only one of the impu-
rities, or simultaneously from left and right such that both
impurities are unscreened. All other excited states can be
formed by adding an even number of spinons, bulk strings,
quartets, etc., to each of these four kinds of states. Each of the
four types of states is manyfold degenerate. For example, the
state where both impurities are screened is twofold degenerate
(both §* = 0 states when N, is even and $° = j:% when N, is
odd), the state where only the left or right impurity is screened
is each fourfold degenerate (two S* = % states and two % =

—% state when N, is odd and two S* =0, one S* =1, and
one §° = —1 state when N, is even), and finally, the state
where both impurities are unscreened is eightfold degenerate
(three S¢ = % states, three S° = —% states, one S = % state
and one S = —% states when N,, is odd and four §* = O states,
two §¢ = —1 states, and two S° = 1 states when N,, is even).
Adding an even number of spinons, bulk strings, quarters, etc.,
to each of these 18 distinct states, all the excitations in this
phase can be sorted into four unique towers containing excited
states with the following properties: one tower where both im-
purities are screened, one where the left impurity is screened
and the right is unscreened, one where the left impurity is
unscreened and the right impurity is screened, and finally, one
where both left and right impurities are unscreened.

b. FBM-FBM phase

When both impurity parameters take values between 1 and
3n/2, the model is in the FBM-FBM phase.

The energy of the impurity boundary strings solutions A,
and A, are positive in this region. Thus, these solutions are
not included in the ground-state root distribution.

The ground state is constructed by considering all real roots
of Bethe equations and the complex boundary solution Aps.
Both impurities are unscreened in the ground state, thereby
making the degeneracy of the ground state eightfold.

Since the impurity boundary string solutions can be added,
boundary excitations where impurities are screened at the
edges can be constructed at the expense of the energy of
the bound mode, which is always higher than the maximum
possible energy of a single kink excitation M,.

The impurity string solutions could be added just from the
left or right, thereby screening only one of the impurities or si-
multaneously from left and right such that both impurities are
screened. All other excited states can be formed by adding an
even number of spinons, bulk strings, quartets, etc., to each of
these four kinds of (manyfold degenerate) states where either
both impurities are screened or unscreened or only one of the
impurities is screened thereby creating four distinct towers of
excited states. Thus, the four towers have excited states with
the following properties: one tower where both impurities are
unscreened, one where the left impurity is screened and the
right is unscreened, one where the left impurity is unscreened
and the right impurity is screened, and finally one where both
left and right impurities are screened.

¢. ABM-FBM and FBM-ABM phases

When one of the impurity parameters take values between
n and 37n/2, and another impurity parameters take values
between 1/2 and 5 the model is in the ABM-FBM phase. Con-
sider the case where n/2 <b <n and n <d < 3/2n such
that the left impurity is in the ABM phase and the right one
is in the FBM phase. The FBM-ABM case can be constructed
by applying L < R transformation.

In this case, the impurity string solution A, has negative
energy but the string solution A; has positive energy. Thus,
the ground state contains only the A; root. In the ground state,
the left impurity is screened by an exponentially localized
bound mode formed at the left edge of the spin chain, whereas
the right impurity is unscreened, thereby making it fourfold
degenerate.

In this regime, the spin chain can have boundary excitations
on both ends. The boundary excitation in the left end involves
removing the impurity string solution, thereby unscreening
the left impurity, whereas the boundary excitation in the right
end involves adding the impurity string solution such that the
impurity is screened.

As before, there are a total of four towers that have ex-
cited states with the following properties: one tower where
both impurities are unscreened, one where the left impurity
is screened and the right is unscreened, one where the left
impurity is unscreened and the right impurity is screened, and
finally one where both left and right impurities are screened.

d. ABM-US and US-ABM phases

When one of the impurity parameters take values greater
that 3n/2, and another impurity parameters take the values
between 7/2 and n the model is in the US-ABM phase. Con-
sider the case where n/2 < b < n and d > 3/2n such that the
left impurity is in the ABM phase and the right one is in the
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US phase. The US-ABM case can be constructed by applying
L < R transformation.

In this case, the impurity string solution X, has negative en-
ergy but the string solution A, has zero energy. In the ground
state, the left impurity is screened by an exponentially local-
ized bound mode formed at the left edge of the spin chain,
whereas the right impurity is unscreened, thereby making it
fourfold degenerate.

In this regime, the spin chain can have boundary excitations
only at the left end where impurity is screened in the ground
state by an exponentially localized bound mode. The bound-
ary excitation involves removing the impurity string solution,
thereby unscreening the left impurity.

The two towers have excited states that have the following
properties: one tower where both impurities are unscreened,
one where the left impurity is screened and the right is un-
screened.

e. FBM-US and US-FBM phases

When one of the impurity parameters take values greater
that 3n/2, and another impurity parameters take the values
between 1 and 3n/2, the model is in the US-FBM phase.
Consider the case where n < b < 3/2n and d > 3/2n such
that the left impurity is in the FBM phase and the right one
is in the US phase. The US-FBM case can be constructed by
applying L < R transformation.

In this case, the impurity string solution A, has positive
energy but the string solution A; has zero energy. In the
ground state, both impurities are unscreened thereby making
it eightfold degenerate.

In this regime, the spin chain can have boundary excitations
only at the left end where the impurity is. The boundary exci-
tation involves adding the impurity string solution A, thereby
screening the left impurity.

The two towers of excitations in this phase have excited
states with the following properties: one tower where both
impurities are unscreened, one where the left impurity is
screened and the right is unscreened.

f. US-US phase

When both impurity parameters take real values greater
than 35/2, the model is in the US-US phase.

The energy of the impurity boundary strings solutions A,
and A, vanish in this regime. Thus, the impurities cannot be
screened in this phase.

Thus, the ground state is an eightfold state where both
impurities are unscreened. There are no boundary excitations
in this phase, and hence, the excitations form a single tower of
excited states, which can be constructed by an even number
of spinons, bulk string solutions, quartets, etc., to each of the
eightfold degenerate vacua.

APPENDIX E: IMPURITY AT THE EDGE OF HALDANE
CHAIN AND SPIN-1 XXZ CHAIN

In the main text in Sec. IV A 1, we briefly discussed the
impurity effect in the gapped phase of spin-S XXZ chain and
mentioned that it is different from the impurity physics in the
topological phase of the bilinear-biquadratic chain. Here, we
shall discuss those differences in more detail. Let us consider
the bilinear-biquadratic spin-1 chain

Ny
H() = Zcos(@)gj-ng +sin6(S; - §j11)%, (ED)

J=1

in the Haldane phase, i.e., between the two integrable
points & = —7, the Takhtajan-Babujian model and 6 = 7,
the SU (3) symmetric Sutherland-Lai model. In the Haldane
phase (—% < 6 < 7), the model is gapped, has exponentially
decaying correlation function, and a nonvanishing nonlocal
string order parameter. Furthermore, the entire entangle-
ment spectrum has exact double (or higher even) degeneracy
in the Haldane phase. For example, at the AKLT point
(6 = arctan %, the entanglement spectrum features only two
nonzero degenerate values.

Moreover, for finite open boundary conditions, the Hal-
dane phase has a fourfold degenerate ground state in the
thermodynamic limit and features fractionalized spin—% edge
excitations. The two effectively free edge spins could form
singlet or triplet, giving rise to the degenerate fourfold ground
state as in Fig. 30 at the Haldane point 8 = 0.

We shall now antiferromagnetically couple a single spin-%
spin to the left of the Haldane chain H(0). This spin-% im-
purity forms singlet with the effective spin-% edge mode and

hence reduces the degeneracy of the ground state to twofold
as shown in Fig. 31.

()

1 50 10,0 150 200 1 50 1[30 150 200 1 50 1070 150 200 1(30 150 200

FIG. 30. The ground state of the Haldane chain with open boundary conditions is fourfold degenerate, with each of the two fractionalized

% edge modes acting as free spin-% particles that can independently point up or down. In panel (a), the two spin-% edge modes both point up,

resulting in a total spin of $° = 1 in the ground state. In panel (b), both edge modes point down, giving a total spin of S* = —1. Panels (c) and

(d) depict the two ground states with S° = 0, where the edge modes at the two ends of the chain are antialigned: in panel (c), the left edge

mode points up while the right edge mode points down, and in panel (d), the left edge mode points down while the right edge mode points up.
The data shown is for the Haldane chain H(0) with 200 sites.
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FIG. 31. A single spin-% impurity coupled to the Haldane with antiferromagnetic exchange coupling at its left edge forms a singlet with
the edge mode at the left edge. The unbounded right edge mode can free point either up or down (as shown in the left and right panels,
respectively), thereby giving rise to a twofold degenerate ground state. Here, site L is the impurity site left of site 1 in the chain, and there are

200 sites in the bulk of the chain.

Furthermore, adding two spin—% impurities at the two edges
of the Haldane chain H(0) with antiferromagnetic exchange
coupling gives rise to a unique ground state in the Haldane
chain with open boundary conditions The two impurities
form singlets with the free spln— edge modes situated, re-
spectively, at the edge they are attached to. Thus, the spin
profile S identically vanishes throughout the chain, as shown
in Fig. 32.

Now we shall look at the edge modes in the spin-1 XXZ
chain in the antiferromagnetic phase given by Hamiltonian

Ny—1

H(A) = Z

where we consider A Z 1.185 such that the model is in a
gapped antiferromagnetic phase. As shown in Ref. [99], this
model hosts fractionalized edge modes. It is important to note
that this edge modes are not topological edge modes. We shall
now discuss how both the bulk and boundary are different
compared to the topological edge modes in the Haldane chain.

Tt Sy S+ ASSS (E2)

J+P

0.50 |
0.25}
% 0.00
~0.25¢
—030 50 100 150 R
J

FIG. 32. Unique ground state in Haldane chain with two impuri-
ties are the edges that are coupled antiferromagnetically to the chain.
The impurities form singlets with the edge modes, and hence, the
spin S5 is vanishing in each site, including the sites near the boundary.

Unlike in the Haldane chain, the half-cut entanglement spectra
are not doubly degenerate in the spin-1 XXZ chain, as shown
in Fig. 33.

Unlike in the topological Haldane phase, there is spon-
taneous symmetry breaking of the discrete Z, spin flip
symmetry, which leads to twofold degenerate ground states.
The twofold degenerate ground state has a magnetic order.
The spin profile is of the form

S = (=Do + A(S5) () + A(SE) ().

where o is the staggered magnetization in bulk and A(S7 )(j)
and A(S5)(j), are the deviation at the left and right edges,
respectively, as shown below.

In the main text, we constructed the edge modes by using
prescription 85 = lim,_.o limy_ « 21};1 ¢™*/S%. The expec-
tation value of this edge mode can also be computed by adding
half of the bulk staggered magnetization to the sum of the edge
deviation A(Sfl) for ¢ = {L, R} in half of the chain. Defining

(E3)

N
7 N

AS; =) A(S;) and ASi= > A(S). (B4
Jj=1 i=%+q

the eigenvalues of the edge mode operator can simply be
obtained as

Sy = AS; +sign(AS)3 where q=(L.R).  (ES)

As shown in Fig. 34, the sum of the half chain edge de-
viations |8 | ~ 0.0712 ~ |S}|. Thus, we obtain that in one of
the degenerate vacua shown in Fig. 34(a), the left edge hosts
spin—% edge mode that point in up direction, i.e., S = % and
the right edge hosts spin—% edge mode that point in down
direction, i.e., S; = —%. Likewise, in the other degenerate
vacua shown in Fig. 34(b), the left edge hosts spin—l edge
mode that point in down direction, i.e., §7 = —% and the right

edge hosts spin-% edge mode that point in up direction, i.e.,
S5 =1,

We shall now attach a spin-% impurity to the left edge of
the spin-1 XXZ chain. The spin-% impurity antialigns with
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FIG. 33. The 50 low-lying entanglement spectra EE = —2In(A,) where A2 are the eigenvalues of the reduced density matrix obtained
by tracing out half of the system (a) has even degeneracy throughout the spectra in the Haldane chain (b) has no double degeneracy in the
spectrum for the spin-1 XXZ chain with A = 2. These data are obtained using DMRG for 200 site chains.
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FIG. 34. The spin profile in the twofold degenerate ground state of spin-1 XXZ chain, both of which have bulk staggered magnetization of

o ~ 0.8576. The insets show deviation A(S}) and A(Sy) at the edges.
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FIG. 35. The spin profile in twofold degenerate spin-1 XXZ chain with spin-% impurity coupled antiferromagnetically at its left edge.
Each of the twofold degenerate vacua has bulk staggered magnetization of ¢ &~ 0.8576 and edge deviations as shown in panels (a) and (b),
respectively. The insets show that the edge mode at the left edge is S, = O as the edge spin deviation is exactly canceled by the half of the bulk

staggered magnetization and the right edge hosts spin-% spin accumulation that points respectively up and down in panels (a) and (b) as shown
in the inset.
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respectively. The insets show that the edge mode at both the left and right edges are vanishing, i.e., S, = 0 = Sy as the edge spin deviations

are exactly canceled by half of the bulk staggered magnetization.

100
J

150

hence there is no longer edge mode at the edge of the chain.
However, notice that unlike in the Haldane case, the degener-
acy of the chain is not lifted by the presence of the impurity,

and the degeneracy is due to the spontaneous breaking of the

0.00 0.01 0.02 0.03 0.04 0.05
FIG. 36. The spin profile in twofold degenerate spin-1 XXZ chain with spin—% impurity coupled antiferromagnetically at its left edge.
spin-flip Z, symmetry, which remains spontaneously broken

50
Each of the twofold degenerate vacua has bulk staggered magnetization of o &~ 0.8576 and edge deviations as shown in panels (a) and (b),
the edge mode at the left edge of the spin-1 XXZ chain, and

in the presence of the impurity. Thus, we now obtain a twofold
Sg = % as shown in Fig. 35.
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