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Topological magnonic dislocation modes
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Spin fluctuations in two-dimensional ferromagnets in the presence of crystalline lattice dislocations are inves-
tigated. We show the existence of topologically protected nonpropagative modes that localize at dislocations.
These in-gap states, termed magnonic dislocation modes, are characterized by the Z2 topological invariant
that derives from broken parity symmetry induced by sublattice magnetic anisotropy. We uncover that bulk
topology existing in the perfect crystal is robust under the influence of lattice defects, which is monitored by the
real-space Bott index. It is also revealed that the topology of magnonic dislocation modes remains unaffected
when bulk topology becomes trivial and is remarkably resilient against magnetic disorder. Our findings point to
the intriguing relationship between topological lattice defects and the spectrum of topological spin excitations.
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I. INTRODUCTION

Lattice dislocations, structural defects in ordered solids,
are irregularities that emerge as abrupt changes in the crystal
order. These are characterized by the Burgers vector B that
remains constant over the entire length of the dislocation.
Dislocations in solid-state materials have been the ground
for a broad range of scopes such as melting [1], elastic re-
sponse, and thermal conductivity [2]. A renewed interest in
dislocations promoted it to a central role in the interplay of
real-space topological defects and emergent band topology
[3,4]. Concretely, it was shown in topological insulators and
superconductors [3,5–17], and mechanical [18–21] and light-
based systems [22–25], that a pair of gapless helical modes
appear bound to the line defect, which are determined from
the index of the dislocation modes [3],

Ndis = 1

2π
B · G (mod 2), (1)

where the topology of these modes is protected by the topo-
logical Z2 invariant, G = ν1b1 + ν2b2, where νi and bi are the
weak topological index and reciprocal lattice vectors, respec-
tively. Importantly, these states are robust against disorder that
preserve the nontrivial bulk topology, following from the bulk-
dislocation correspondence [26–28], a remarkable feature that
has been experimentally demonstrated in two-dimensional
(2D) photonic crystals and metamaterials.

Quantum spin fluctuations of ordered magnets, magnons,
inherit fundamental properties from the crystal lattice struc-
ture [29,30]. It is encoded in their band spectrum and
corresponding interactions with phonons, pointlike defects,
and structural disorder. The role of topological lattice de-
fects on the spin-wave fluctuations has been a recurrent issue,
particularly on interference and scattering effects [31–34],
ferromagnetic resonance (FMR) spectra [35–37], relaxation
[38,39] and thermal conductivity [40,41], and recently in he-
lical textures on chiral magnets [42]. Differently, the concept
of topology might emerge in the band structure of magnonic

states with remarkable signatures such as robust helical
edge states and the thermal Hall effect [43,44]. Topological
magnons have been strongly scrutinized in a wide variety of
spin and lattice systems [43–50], which are characterized by
topological invariants that remain unchanged under smooth
deformations and set the ground for the bulk-boundary cor-
respondence [51]. The immunity of topological states to
disorder, deep rooted to topological matter [52,53], has been
tested in collinear magnets [54,55] and glassy skyrmions [56].
However, the influence of crystal lattice defects, such as dis-
locations, on the band topology is an unexplored arena in
magnetic systems with intriguing effects regarding the stabil-
ity and localization of topological magnon states.

In this paper, we show the existence of topological magnon
states bound to the dislocations (see Fig. 1) within the crys-
tal structure of magnetic insulators. Remarkably, it is shown
that magnonic dislocation modes are stabilized when parity
symmetry is broken and persists while the topological bulk
gap is closed. The existing bulk topology is diagnosed by
the evaluation of a real-space topological index, the bosonic
Bott index, which turns out to be stable in the presence of
dislocations. It is shown that dislocation modes and edge
modes have different degrees of robustness against disorder.
The stability of these states is demonstrated for a model that
supports a collinear ferromagnetic phase.

II. SPIN AND LATTICE MODEL

We consider a magnetic system with spins localized on
a two-dimensional honeycomb lattice described by the spin
Hamiltonian,

HS = −
∑
〈rr′〉

{
JSr · Sr′ + F (Sr · err′ )(Sr′ · err′ )

+ [
Kr

(
Sz

r

)2 − BSz
r

]
δrr′

}
, (2)
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FIG. 1. Schematic representation of a pair of dislocations in the
hexagonal lattice with the in-plane Burgers vector B = ±√

3ŷ, at the
left and right sides of the dislocations, respectively. The topological
magnonic dislocation modes, �L (left) and �R (right) states, are
shown localized at the ends of the dislocation. These modes are
gapped due to parity symmetry breaking, and their wave-function
amplitudes are, accordingly, colored differently.

with the nearest-neighbor exchange coupling J and pseu-
dodipolar interaction with strength F . The last coupling
results from the spin-orbit interaction [57,58], where err′ is
the unit vector that connects the r and r′ lattice sites. The
easy-axis anisotropy Kr at the A(B) sublattice is parametrized
as KA(B) = K ± �K , and B is the applied magnetic field along
the z direction. The dislocation is introduced following the
Volterra process [59]. A set of atoms is removed, resulting
in a pentagon-heptagon structure, and thus moving an equal
number of steps around the dislocation sets a nonclosed loop
defining the Burgers vector (see Fig. 1). It is worth stressing
that, although linear dislocations might be more complicated,
e.g., curvilinear or multiples, we choose the displayed linear
straight dislocation for simplicity. For numerical convenience,
we consider a couple of defects that create a pair of disloca-
tions in the bulk of the system. The local lattice deformation
produces a distortion of the spin Hamiltonian, HT = HS +
Hdis, that gives rise to a magnetoelastic interaction Hdis relat-
ing the spin and lattice degrees of freedom. Hereafter, in our
numerical calculations, we consider the relevant magnetic pa-
rameters with a similar order of magnitude, i.e., J ∼ K ∼ �K ,
as typically occurs in van der Waals magnets [60,61].

Quantum spin fluctuations around the ordered ground
state are determined by the Hamiltonian of noninteracting
magnons using Holstein-Primakoff (HP) bosons [62]. Around
the classical magnetic state, z-axis oriented, the HP map-
ping of spin operators reads S+

r = (2S − a†
r ar)1/2ar, S−

r =
(2S − a†

r ar)1/2a†
r , and Sz

r = S − a†
r ar. Thus, expanding the

spin operators as a series in 1/S, the spin Hamiltonian re-
duces to HT ≈ H0 + Hm, where H0 is the classical and
zero-point energy. In real space the magnon Hamiltonian
reads Hm = �†H�, where the 2N-component operator field
� = (ar1 . . . , arN , a†

r1
. . . a†

rN
)T , with ri the lattice position and

H the 2N × 2N matrix Hamiltonian, with N the number of
lattice sites and tight-binding matrix elements given by

Hrr′ =
(

�rr′ �rr′

�∗
rr′ �∗

rr′

)
,

where �rr′ = −SF (e− · err′ )(err′ · e−)δ〈rr′〉/2, �rr′ = −S
[J + F (e+ · err′ )(err′ · e−)]δ〈rr′〉/2 + S	rδrr′ , 	r = ∑

〈rr′〉{JSr

· Sr′ + [Kr(Sz
r )2 − BSz

r ]δrr′ }, and e± = x̂ ± iŷ. The bosonic
Hamiltonian is paradiagonalized by the Bogoliubov
transformation (ar, . . . , a†

r )T = Trr′ (αr′ , . . . , α
†
r′ )T , with T

the paraunitary transformation that satisfies T†ζT = ζ to
guarantee the commutation relation [α,α†] = I ⊗ σz = ζ

for bosonic operators [63] (with σz the Pauli matrix).
Therefore, the diagonalized magnon Hamiltonian is written
as Hm = ∑

n Enα
†
nαn, with En the energy for the nth band.

III. BULK TOPOLOGY

Ferromagnetic honeycomb defect-free lattices, described
by the spin Hamiltonian in Eq. (2), exhibit topological
magnonic phases featured by the Chern number [50,54,58].
The topological gap �b is induced by the pseudodipolar inter-
action F and controlled by the sublattice easy-axis anisotropy
�K . We now determine the bulk topology when dislocations
are present. Since crystalline symmetry is locally broken, we
evaluate the topology of magnonic bands through the bosonic
Bott index [54]. It is a real-space topological invariant that
is equivalent to the Chern number in the thermodynamic
limit and when translational invariance is restored [64–66].
For the set of eigenstates {En}, it is defined as B(En) =
Im{Tr[log(VY VXV †

Y V †
X )]}/2π , where VX and VY are unitary

matrices defined by

Peiπ
P = Tζ

(
0 0
0 V


)
T†ζ , (3)

with 
 = X,Y the position operators, represented by matrices
where the elements are in a normalized lattice position. The
projector P = Tζ�N T†ζ on states {En} and the diagonal ma-
trix [�N ]nn′ = γ δnn′ , with γ = 0 for N < n, and γ = 1 when
1 � n � N [67]. For clean systems, the Bott index of each
band is well defined and is an integer as long as VY VXV †

Y V †
X

is nonsingular. In particular, B = 0 when VX and VY commute
and the corresponding band is topologically trivial.

We now consider the effects of dislocations on the band
structure and topology of magnonic states. First, in the perfect
hexagonal crystal, the two-band spectrum of topologically
trivial and nontrivial magnon excitations are displayed at
Figs. 2(a) and 2(e), respectively. Note that the trivial gap,
induced at the Dirac point, is the result of breaking the par-
ity symmetry by the sublattice anisotropy difference �K . In
the presence of dislocations, two interesting effects are high-
lighted from the magnonic spectrum displayed in Figs. 2(b)
and 2(f). First, the bulk topology prevails since a nonzero
Bott index is found for the top (Bu = −1) and bottom
(Bl = +1) bands, for F > 0 and different dislocation lengths
[see Fig. 2(f)]. In particular, the Bott index vanishes when
F = 0 and the bulk topology becomes trivial as expected [see
Fig. 2(b)]. Second, a pair of gapped magnonic dislocation
modes appear inside the gap, �b, and are bound to the ends
of the dislocation, indicated by the black dots in the inset
of Fig. 2(b). The gap between these states, �dm, is induced
by nonzero values of �K , which is independent of the pseu-
dodipolar coupling, and therefore becomes gapless once the
parity symmetry is restored [see the inset of Fig. 2(f)]. It is
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FIG. 2. Top panel: Magnon spectrum for S = 1, K = 2J , F = 0,
�K = J , and B = 0. Bottom panel: Magnon spectrum for S = 1,
K = 2J , F = J , �K = 0, and B = 0. (a) and (e) Bulk energy spec-
trum without dislocation along high-symmetry points in the Brillouin
zone. The Bott index for the lower and upper bulk bands satisfies
Bu = −Bl = 0 and Bu = −Bl = −1 in (a) and (e), respectively.
(b) and (f) Magnonic energy spectrum with periodic boundary condi-
tions (PBCs) in the presence of a dislocation pair. The energies of the
dislocation modes are within the band gap. (c) and (g) Real spatial
amplitude of the dislocation mode wave function �L,R(r). (d) and (h)
Real-space localization σloc of �L (r) as a function of �K/J and F/J ,
respectively.

worth noting that for a strip geometry, we find that the energy
of dislocation modes coexists with those of topological edge
states in the presence of pseudodipolar energy, where open
boundary conditions (OBCs) along the ê1 axis are assumed,
as is shown in Fig. 2(b).

Magnonic dislocation modes are localized at the ends of
the dislocation. Their spatial localization, displayed in Fig. 2,
is determined from the overlap, �n(r) = |〈GS|arα

†
n |GS〉|2,

between the local excitation and the eigenstates, with |GS〉
the ground state of the magnon Hamiltonian. We denote
�L,R(r) as the magnonic contribution of the left- and right
dislocation mode wave functions, displayed in Figs. 1 and 2.
The magnonic dislocation modes are nonpropagating states,
strongly bound to the lattice dislocation with localization
length σloc. For a strip geometry, assuming finite size along the
ê1 direction, the corresponding eigenstates for the dislocation
modes are displayed in Figs. 2(c) and 2(g). In Fig. 2(d),
we plot the characteristic localization length of the wave
function around the dislocation as a function of �K . It is de-
fined σloc = ∫ |r − rdis||ψ (r)|2 d2r, where we choose ψ (r) =
�L,R(r) for the magnonic wave function and rdis the position of

the dislocation. Interestingly, the magnonic zero-mode wave
function tends to delocalize as �K becomes null, correspond-
ing to the magnonic dislocation modes becoming gapless [see
Figs. 2(d) and 2(h)]. Importantly, we remark that while the
pseudodipolar interactions play a critical role in stabilizing
the bulk topological modes, it is not necessary in a minimal
model to give rise to topological dislocation magnon modes
as long as the sublattice-breaking anisotropy is present [see
Fig. 2(c)]. The pseudodipolar interaction introduces additional
symmetry-breaking terms that strengthen the stability of the
dislocation modes.

IV. WEAK TOPOLOGY AND Z2 INVARIANT

We now establish the topological properties of magnon
modes bound to the lattice dislocations. The topology of the
magnonic dislocation modes is determined by the Z2 topolog-
ical index G which, through Eq. (1), determines the number
of modes appearing at the dislocation. The Z2-invariant and
weak topological indices, ν1 and ν2, are found through the
bulk polarizations, defined as the sum of the Wannier centers,

px(ky) =
∑

j

ν j
x (ky) (mod 1), (4)

py(kx ) =
∑

j

ν j
y (kx ) (mod 1), (5)

which are determined by diagonalizing the Wilson loop ma-
trix, Wk|ν j

k〉 = e2π iν j
x (ky )|ν j

k〉, defined by the product

Wkx = Fkx+(Nx−1)�kx,ky · · · Fkx+�kx,ky Fkx,ky , (6)

where [Fk]mn = 〈um
kx+�kx,ky

| un
kx,ky

〉para are the overlaps
through the discrete path k j = kx + j�kx. The weak
topological nature of the system is determined by the
winding of the Wilson loops along certain reciprocal lattice
directions. The Wilson loop, calculated as the phase evolution
of eigenstates over a closed trajectory in momentum space,
provides a measure of the actual topological invariant. For
dislocation-bound modes, the weak topological invariant,
derived from the Wilson loop, ensures the existence
of states localized at the dislocation. These states arise
because the dislocation cuts through the crystal, exposing a
one-dimensional topological invariant encoded in the bulk.
This mechanism is distinct from strong topology, which
relies on the presence of robust edge states in 2D systems.
Here, we employ this formulation to compute numerically
the Wannier centers ν

j
x,y and therefore the polarizations

px(ky) and py(kx ). In Fig. 3, we show the polarizations
px,y evaluated for two scenarios, K = 2J , �K = 0, F = 1,
B = 0, where bulk topology is nontrivial (F > 0) and parity
symmetry is preserved (�K = 0), and K = 2J , �K = J ,
F = 0, B = 0, where bulk topology is trivial (F = 0)
and parity symmetry is broken (�K > 0). In all plots we
assumed J = 1.

On the other hand, the polarization is related to the Zak
phase as follows. Here, pμ(kx,y) = i

2π

∫ ∑
n An,μ(k)dky,x,

where An,μ(k) = Tr[�n�zT
†

k �z∂kμ
Tk] is the Berry connec-

tion, with �z = σ0 ⊗ σz, and the summation runs over the
lower bands (below the gap). A quantized polarization indi-
cates that the system lies in a topological phase and provides
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FIG. 3. (a) Polarization px (ky ) and (b) polarization py(kx ), for
the cases with trivial bulk topology K = 2J , �K = J , F = 0, B = 0
(blue line), and the bulk topology is nontrivial trivial K = 2J , �K =
0, F = J , B = 0 (red line). In all plots we assumed J = 1.

information about high-order topological magnonic states
[68]. Moreover, the weak Z2 invariants in Eq. (1) can also be
computed through the Zak phase [9],

νμ = i

π

∫
Cμ

∑
n

An(k) · dk, (7)

where the 1-cycles Cx = BZ|kx=π/Lx and Cy = BZ|ky=π/Ly run
along the kx and ky directions in the Brillouin zone, respec-
tively. In particular, we have that νx,y = 2px,y (ky,x = π/Ly,x),
and according to the previous numerical calculations (see
Fig. 3), we deduce that (νx, νy) = (0, 1), and hence the Z2-
weak invariant is G = by = 2π√

3
ŷ. On the other hand, the

Burgers vector is given by B = q(a2 − a1) = q
√

3ŷ, where
q = ±1 is the charge of the dislocation (see Fig. 1). Finally,
we arrive at Ndis = ±1, which is nontrivial. Therefore, there
must be a topologically protected dislocation mode, as we
claimed.

V. ROBUSTNESS AGAINST DISORDER

Thermal fluctuations, noise, and disorder are ubiquitous
and might cause negative effects on the robustness of topo-
logical properties. We now discuss the stability of existing
topologically protected magnon modes at the dislocation
against magnetic disorder. The disorder is modeled by a ran-
dom out-of-plane magnetic field across the sample, Hrandom =∑

i χSz
i , where χ ∈ [−η, η] is a random number and η is

the disorder strength. Although general models for disorder
would provide a more realistic representation of imperfec-
tions, the choice of Hrandom is made for its simplicity and
to capture the robustness effects of topological modes. A
systematic analysis of disorder is left for future studies. A
disorder-averaged magnon spectrum as a function of disorder
strength η is depicted in Fig. 4. The results are averaged over
n = 20 realizations of disorder in the spin lattice, where we set
the anisotropy and the sublattice anisotropy difference at K =
2J and �K = J , respectively. Magnonic dislocation modes
are remarkably robust against the effect of disordered mag-
netic impurities with considerable strength, resulting from
topological protection. The energy of these states remains
isolated within the magnon gap �b, avoiding hybridization
with bulk states. Although translational symmetry is broken
by the presence of disorder, the localization of magnon modes

FIG. 4. The energy spectrum of magnons as a function of disor-
der strength η averaged over 20 realizations with parameters S = 1,
K = 2J , F = 0, �K = J . Energy gaps associated with both bulk and
magnonic dislocation modes are depicted in blue and red lines.

at the dislocation is not disrupted and their spatial distribution
prevail.

VI. DISCUSSION AND CONCLUSIONS

The experimental realization of topological magnonic dis-
location modes might settle in two stages: first, the control
of the geometrical properties of dislocations, and second, on
the actual excitation and local detection of different magnonic
states. Advances in manufacturing and imaging techniques
allow for a feasible control of dislocation densities [69,70]
on the lattice, where various techniques such as X-ray Tomo-
graphic Microscopy, scanning tunneling microscopy (STM),
and antiferromagnetism (AFM) would enable the real-time
observation of dislocations [69–73]. For instance, dislocations
in van der Waals magnets (e.g., CrI3 or Fe3GeTe2) could
be engineered through techniques such as focused ion beam
milling [74] or controlled crystal growth that introduces and
controls topological lattice defects [75,76]. In addition, the
control of dislocation densities over such materials can be
engineered by external strains [77,78]. Magnonic dislocation
modes, as well as other states, can be excited by time-
dependent (rf) magnetic fields, where their detection could be
achieved by quantum metrology techniques [79,80], such as
nitrogen-vacancy (NV) centers, which are spin sensors that
provide local monitoring of the spatial localization of the wave
function near the dislocations. Matching with the frequency of
other magnonic states would allow to detect their coexistence
with topological edge states.

Although some features of the dislocation mode, such as its
localized nature and topological protection, are reminiscent
of phenomena in electronic systems, the magnonic system
exhibits distinct physics due to their bosonic nature. Magnons
are nonconserved quasiparticles whose lifetime and thermal
population depend on external driving and dissipation mecha-
nisms, leading to nonequilibrium dynamics of the topological
modes that are fundamentally different from their electronic
counterparts. Also, the localized nature of the topological
dislocation modes could facilitate potential advantages in
spintronics, as a magnonic emitter where the mode serves as a
controllable source of spin waves. Moreover, the topological
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protection of the mode may allow for robust, low-dissipation
energy transport, which is particularly desirable for magnon-
based devices. Lastly, the magnon spectrum is highly tunable
via external magnetic fields, mechanical strains, and tempera-
ture, enabling versatile control of the topological properties.

In summary, we have shown that bulk topology prevails
in the presence of linear topological defects and dislocations
in 2D hexagonal lattices. In addition, such defects induce
magnonic states bound at the ends of dislocations. These
states are topologically protected and classified by the Z2

invariant, stabilized by the breaking of parity symmetry and
existing even for trivial bulk topology. At the dislocation, the
pair of gapped localized topological modes is determined by

the relation between the Burgers vector and the topological
Z2 invariant. The presented model is general and might be
employed to other forms of magnetic order.
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terplay between electronic topology and crystal symmetry:
Dislocation-line modes in topological band insulators, Phys.
Rev. B 90, 241403 (2014).

[14] M. N. Chernodub and M. A. Zubkov, Chiral anomaly in
Dirac semimetals due to dislocations, Phys. Rev. B 95, 115410
(2017).

[15] A. Panigrahi, R. Moessner, and B. Roy, Non-Hermitian dislo-
cation modes: Stability and melting across exceptional points,
Phys. Rev. B 106, L041302 (2022).

[16] F. Schindler, S. S. Tsirkin, T. Neupert, B. A. Bernevig, and B. J.
Wieder, Topological zero-dimensional defect and flux states in
three-dimensional insulators, Nat. Commun. 13, 5791 (2022).

[17] S. S. Yamada, T. Li, M. Lin, C. W. Peterson, T. L. Hughes, and
G. Bahl, Bound states at partial dislocation defects in multipole
higher-order topological insulators, Nat. Commun. 13, 2035
(2022).

[18] J. Paulose, B. G.-g. Chen, and V. Vitelli, Topological modes
bound to dislocations in mechanical metamaterials, Nat. Phys.
11, 153 (2015).

[19] H. Xue, D. Jia, Y. Ge, Y.-j. Guan, Q. Wang, S.-q. Yuan,
H.-x. Sun, Y. D. Chong, and B. Zhang, Observation of
dislocation-induced topological modes in a three-dimensional
acoustic topological insulator, Phys. Rev. Lett. 127, 214301
(2021).

[20] L. Ye, C. Qiu, M. Xiao, T. Li, J. Du, M. Ke, and Z. Liu,
Topological dislocation modes in three-dimensional acoustic
topological insulators, Nat. Commun. 13, 508 (2022).

[21] Y. Deng, W. A. Benalcazar, Z.-G. Chen, M. Oudich, G. Ma,
and Y. Jing, Observation of degenerate zero-energy topological
states at disclinations in an acoustic lattice, Phys. Rev. Lett. 128,
174301 (2022).

[22] F.-F. Li, H.-X. Wang, Z. Xiong, Q. Lou, P. Chen, R.-X. Wu, Y.
Poo, J.-H. Jiang, and S. John, Topological light-trapping on a
dislocation, Nat. Commun. 9, 2462 (2018).

[23] J. Lu, K. G. Wirth, W. Gao, A. Heßler, B. Sain, T. Taubner, and
T. Zentgraf, Observing 0D subwavelength-localized modes at
∼100 THz protected by weak topology, Sci. Adv. 7, eabl3903
(2021).

[24] B.-Ye Xie, O. You, and S. Zhang, Photonic topological pump
between chiral disclination states, Phys. Rev. A 106, L021502
(2022).

[25] A. Agarwala and V. B. Shenoy, Topological insulators in amor-
phous systems, Phys. Rev. Lett. 118, 236402 (2017).

[26] M. Geier, I. C. Fulga, and A. Lau, Bulk-boundary-defect
correspondence at disclinations in rotation-symmetric topo-
logical insulators and superconductors, SciPost Phys. 10, 092
(2021).

[27] Y. Liu, S. Leung, F.-F. Li, Z.-K. Lin, X. Tao, Y. Poo, and
J.-H. Jiang, Bulk–disclination correspondence in topological
crystalline insulators, Nature (London) 589, 381 (2021).

165146-5

https://doi.org/10.1103/PhysRevB.19.2457
https://doi.org/10.1038/nphys1220
https://doi.org/10.1038/s42254-023-00602-2
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.84.035443
https://doi.org/10.1103/PhysRevB.86.100504
https://doi.org/10.1103/PhysRevB.88.035141
https://doi.org/10.1103/PhysRevLett.111.047006
https://doi.org/10.1103/PhysRevB.89.184424
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.3390/ma7031652
https://doi.org/10.1103/PhysRevB.90.241403
https://doi.org/10.1103/PhysRevB.95.115410
https://doi.org/10.1103/PhysRevB.106.L041302
https://doi.org/10.1038/s41467-022-33471-x
https://doi.org/10.1038/s41467-022-29785-5
https://doi.org/10.1038/nphys3185
https://doi.org/10.1103/PhysRevLett.127.214301
https://doi.org/10.1038/s41467-022-28182-2
https://doi.org/10.1103/PhysRevLett.128.174301
https://doi.org/10.1038/s41467-018-04861-x
https://doi.org/10.1126/sciadv.abl3903
https://doi.org/10.1103/PhysRevA.106.L021502
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.21468/SciPostPhys.10.4.092
https://doi.org/10.1038/s41586-020-03125-3


SAJI, VIDAL-SILVA, NUNEZ, AND TRONCOSO PHYSICAL REVIEW B 111, 165146 (2025)

[28] Y. Kubota, The bulk–dislocation correspondence for weak topo-
logical insulators on screw–dislocated lattices, J. Phys. A: Math.
Theor. 54, 364001 (2021).

[29] W. Brinkman, Magnetic symmetry and spin waves, J. Appl.
Phys. 38, 939 (1967).

[30] R. R. Birss, Symmetry and Magnetism, Series of Monographs on
Selected Topics in Solid State Physics Vol. 3 (North-Holland,
Amsterdam, 1964).

[31] V. L. Pokrovskii, Spin waves on dislocations, Pis’ma Zh. Eksp.
Teor. Fiz. 11, 233 (1970).

[32] A. N. Kuchko and M. V. Chernyshëva, Scattering of spin waves
by a rectilinear edge dislocation, Phys. Solid State 40, 1861
(1998).
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