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Valence, charge transfer, and orbital-dependent correlation in bilayer nickelates Nd3Ni2O7
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We examine the bulk electronic structure of Nd3Ni2O7 using Ni 2p core-level hard x-ray photoemission
spectroscopy combined with density functional theory + dynamical mean-field theory. Our results reveal a
large deviation of the Ni 3d occupation from the formal Ni2.5+ valency, highlighting the importance of the
charge transfer from oxygen ligands. We find that the dominant d8 configuration is accompanied by nearly equal
contributions from d7 and d9 states, exhibiting an unusual valence state among Ni-based oxides. Finally, we
discuss the Ni dx2−y2 and dz2 orbital-dependent hybridization, correlation and local spin dynamics.
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I. INTRODUCTION

Nickel-based complex oxides—nickelates—have drawn
considerable attention due to their rich phase diagrams of
strongly correlated behavior including metal-to-insulator tran-
sitions [1–5], density waves [6–8], magnetism [9–11], and
superconductivity [12–16]. The Ruddlesden-Popper nicke-
lates Rn+1NinO3n+1 in particular also provide a platform for
exploring the interplay between structural distortions, elec-
tronic correlations, and charge-transfer physics [17,18]. The
recent discoveries of superconductivity in the bi- and trilayer
compounds (n = 2, 3) [14–16,19] have reinvigorated efforts
to understand their electronic structure while introducing a
new fundamental challenge: the valency of Ni.

In square-planar nickelates, such as prototypical NdNiO2,
the low formal valency of Ni1+ accommodates self-doping of
holes from the rare-earth 5d states to the Ni ions, introducing
additional complexities in low-energy excitations that are ab-
sent in high-Tc cuprates superconductors [20–23]. The bilayer
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Ruddlesden-Popper R3Ni2O7, by comparison, has a formal
valency of Ni2.5+. The higher Ni valency, i.e., lower Ni 3d
levels, avoids self-doping from the rare-earth while a stronger
charge transfer from the O 2p bands may be present [24,25],
as is often observed in RNiO3 with a formal Ni3+ valency
[4,26,27]. Furthermore, the noninteger Ni2.5+ valency poses
a fundamental question in modeling the electronic structure,
particularly regarding the appropriate starting point for the Ni
valency and whether it aligns more closely with Ni2+ (d8) or
Ni3+ (d7). It is worth stressing that these two electronic con-
figurations exhibit different atomic multiplet structures and
effective hybridization with ligands when forming covalent
bonds. Thus, this detail represents a fundamental issue that
underpins various open questions, including, for example, the
importance of multiorbital physics, the origin of the strong or-
bital dependence in the mass renormalization, and the absence
of a static charge order or disproportionation in the quest to
understand superconductivity in the bilayer compounds.

One of the most well-established tools for investigating the
electronic states of such complex transition metal systems is
core-level photoemission spectroscopy (PES) [28,29]. The Ni
2p core-level PES measures the dynamical charge response of
low-lying valence electrons to the sudden creation of a highly
localized core hole at the excited Ni ion, leading to distinct
peaks in the spectrum caused by the charge-transfer (CT)
from O 2p and Ni metallic electrons. These are traditionally
referred to as local and nonlocal screening, respectively. By
analyzing these peaks, we determine the CT energy parameter
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that governs valency and effective hybridization with oxygens
in CT-type Ni oxides [30,31]. Core-level PES is particularly
suited for such studies due to its high sensitivity to CT ef-
fects, unlike charge-neutral methods such as x-ray absorption
spectroscopy [29]. This approach, complementary to the low-
energy studies about the details at the Fermi level, moves
beyond limitations of formal electron counting to extract crit-
ical information on Ni 3d configuration, correlation effects,
and orbital hybridization.

Here, we address this key question by performing core-
level hard x-ray photoemission spectroscopy (HAXPES)
experiments combined with local density approximation
(LDA) + dynamical mean-field theory (DMFT) simulations.
By making use of the higher probing depth provided by HAX-
PES, we are able to study the bulk electronic structure of
the bilayer nickelates. Measuring the intrinsic Ni 2p core-
level spectrum in La3Ni2O7, however, is impossible due to
severe overlap between the Ni 2p3/2 and La 3d core levels
[32–34], as shown in Fig. S3 and discussed more in detail in
the Supplemental Material (SM) [35] (see also Refs. [36–40]
therein). This overlap has led to conflicting interpretations of
the Ni charge state in previous experimental studies [34,41],
preventing the extraction of a reliable spectrum for theoretical
modeling of the R3Ni2O7 system. To overcome this issue, we
synthesized Nd3Ni2O7 thin films [42,43] which enable direct
access to the intrinsic Ni 2p spectrum as input for theoreti-
cal modeling using the LDA+DMFT method. We show that
the system presents a dominant d8 configuration, with nearly
equal contributions from d7 and d9, differing from typical
Ni3+ and Ni2+ oxides and requiring all configurations to
be considered in theoretical models. We furthermore explore
the distinct hybridization and correlation behaviors in the Ni
dx2−y2 and dz2 orbitals, highlighting the orbital-dependent na-
ture of the electronic structure.

II. METHODS

A ∼30 nm thin film of Nd3Ni2O7 was grown by ozone-
assisted molecular-beam epitaxy (MBE) on a stabilizing
LaAlO3 substrate, similarly to previous descriptions [42,43]
[44]. Comparison of the nominal in-plane bulk and sub-
strate lattice constants indicates a resulting compressive strain
of ε = (abulk − asubstrate )/asubstrate ≈ −0.9% [42,43], smaller
than that reported in thin films of La3Ni2O7 which ex-
hibit superconductivity [16,19]. Annular dark-field scanning
transmission electron microscopy (ADF-STEM) investigation
of the film structure shows good adherence to the bilayer
Ruddlesden-Popper structure [35]. HAXPES measurements
were performed at the Max-Planck-NSRRC HAXPES end
station with the MB Scientific A-1 HE analyzer, Taiwan un-
dulator beamline BL12XU of SPring-8 [45]. Photon energies
of hν = 6.5 keV and 10 keV with resolutions of around
270 meV and 320 meV, respectively, were used. Soft x-ray
photoelectron spectroscopy experiments were performed at
the NSRRC-MPI TPS 45A submicron soft x-ray spectroscopy
beamline at the Taiwan Photon Source in Taiwan [46]. The
photon energy was set to 1.2 keV, with a resolution of around
150 meV. All measurements were performed at 80 K.

LDA+DMFT calculations were performed with the imple-
mentation in Refs. [30,31,47] for a lattice model spanning
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FIG. 1. Ni 2p core level spectra measured with photon energies
of 10 keV (blue dotted line), 6.5 keV (black line), and 1.2 keV
(orange dotted line).

Ni 3d and O 2p bands derived from the LDA calculations
[48–50]. Based on previous DMFT studies for La3Ni2O7

[51–53], we used Hubbard U and Hund’s J values of (6.0 eV,
0.95 eV) within the Ni 3d shell. These values give the
configuration-averaged Coulomb interaction of Udd = U −
4/9J = 5.57 eV [31]. After obtaining a converged DMFT
solution with the continuous-time quantum Monte Carlo
solver for the Anderson impurity model (AIM), we calculated
valence-band spectra and hybridization densities �(ε) on the
real frequency axis, followed by analytical continuation of
the self-energy using the maximum entropy method [54]. Fi-
nally, we computed the Ni 2p core-level PES spectrum from
the AIM, incorporating �(ε) and 2p core orbitals [30,31].
Computational details and the robustness of our results with
the model parameters are provided in the SM [35] (see also
Refs. [55–57] therein).

In LDA+X methods, a double-counting correction μdc

needs to be introduced to account for dd interaction effects
present in the LDA results. Though a universally accepted
form for μdc is unavailable [58–60], it controls Ni 3d lev-
els relative to O 2p bands, thus the CT energy. Following
Ref. [30], we use the linear function �d p = (εd − μdc) +
7.5 × Udd − εp, mimicking the CT energy in a cluster model
analysis. Here, εd and εp refer to the LDA orbital energies
of Ni 3d and O 2p, and Udd is the averaged d–d interaction.
Realistic �d p values are obtained by comparing simulated Ni
2p core-level results to the experimental HAXPES spectrum.

III. RESULTS

Figure 1 shows the Ni 2p core-level photoemission spec-
tra obtained using 10, 6.5, and 1.2 keV photons. Overall,
the Ni 2p core level displays a set of structures commonly
seen in other nickelates [34,61,62]. The main Ni 2p3/2 peak
shows two distinct features corresponding to the local (α) and
nonlocal metallic (β) screening processes, and a CT satellite
at around 861.5 eV. Around 17 eV above the Ni 2p3/2, we
observe a similar structure for the Ni 2p1/2, albeit broader
due to the shorter core-hole lifetime. Depending on the pho-
ton energy, we observe some differences in the spectra. In
the 10 keV data, there is a weak double peak at 833 and
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838 eV, as well as one peak at 850 eV next to the Ni 2p3/2,
matching the double peak structures of La 3d commonly seen
in La-containing perovskite oxides [38], with the La 3d3/2

partially overlapping with the Ni 2p3/2 [34]. These peaks are
contributions from the LaAlO3 substrate below the Nd3Ni2O7,
which appear when using high photon energies with larger
probing depth [63]. Indeed, at 6.5 keV, the La 3d features
are reduced almost completely despite the relative increase of
the La 3d cross sections compared to those of Ni 2p [64],
indicating that the probing depth using 6.5 keV is barely
enough to reach the substrate. This thus confirms the bulk
sensitivity of the measurements and that the collected Ni 2p
spectra are well representative of the whole Nd3Ni2O7 film
depth, as evidenced by good agreement in the Ni 2p derived
features for 10 keV and 6.5 keV despite their different probing
depths.

The surface-sensitive 1.2 keV spectrum, on the other hand,
shows noticeable differences compared to the higher probing
energy data. The electronic structure at the vicinity of the
surface is thus clearly distinct from that of the bulk, with
the significant reduction of the peak β indicating a suppres-
sion of the nonlocal metallic screening at the surface layers.
Differences between the bulk and surface electronic structure
are often known to occur in strongly correlated transition
metal oxides [65–71], with phenomena like polar surfaces,
relaxation, or reconstructions in the surface, etc., leading to
significantly different properties and band structure near the
surface, thus making bulk sensitivity crucial to ensure that
the experimental results are intrinsic and representative of the
bulk of the material. It is important to note the observation of
these differences at 1.2 keV, i.e., Ni 2p core level photoelec-
trons with 300–350 eV kinetic energy, which are expected to
have higher probing depths than common vacuum ultraviolet
(VUV) valence band ARPES experiments.

Having established that the 6.5 keV HAXPES measure-
ments best represent the bulk Nd3Ni2O7 thin film, we use
these measurements to determine the �d p parameter by com-
parison to LDA+DMFT calculations. In Figs. 2(a) and 2(b),
the Ni 2p3/2 spectra are computed for selected �d p values.
With increasing �d p, the ligand levels shift deeper relative to
the Fermi level, leading to a larger energy splitting between
the local screening α (mainly from nearest-neighboring oxy-
gens) and the nonlocal metallic screening β features. In the
close-up shown in Fig. 2(b), we observe that the experimental
splitting and α − β ratio is best reproduced by �d p = 3.5 eV,
with 4.5 eV also yielding a reasonable agreement. Next, we
observe in Fig. 2(a) that the weight ratio between the main
peak and the satellite is also highly sensitive to the �d p

value, with the satellite spectral weight decreasing with in-
creasing �d p. Here, the best agreement is obtained between
�d p = 3.5 eV and 2.5 eV. These two observations allow us to
constrain its realistic value of around �d p = 3.5 eV. In the SM
[35], we computed the Ni 2p spectrum for not only different
values of �d p but also for different values of U . We found that
the experimental spectrum is best reproduced by the chosen
U , although the sensitivity to the precise value of U is not
very large.

The �d p, which measures energy splitting of the Ni 3d and
O 2p levels, is a key parameter for the d-electron charge states
in CT-type systems according to the Zaanen-Sawatzky-Allen
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FIG. 2. (a) LDA+DMFT fit together with the experimental Ni
2p3/2 HAXPES spectrum. (b) Close-up of the Ni 2p3/2 α and β

features. (c) Atomic configuration histogram of the Ni 3d states
in Nd3Ni2O7, computed with the selected �d p values. (d) Atomic
configuration histograms for reference Ni oxides: metallic LuNiO3

(cyan) [72] and NiO (gray) [35].

(ZSA) diagram [73]. In Fig. 2(c), the Ni 3d charge state is
quantified by computing an atomic histogram at the Ni site
in DMFT solutions for various �d p values. Regardless of
�d p, the d8 configuration exhibits a dominant peak in the
histogram, with a large distribution toward the d7 and d9

configurations which depend on the �d p value: a smaller �d p

increases the d9 weight, and vice versa. At the optimal value
determined above, the d7 and d9 weights are nearly identical.
As shown in Fig. S6 of the SM [35], the d-configuration
distribution in the atomic histogram is predominantly deter-
mined by �d p, with negligible influence from the Coulomb
interaction U , as expected for a system in the CT-type regime
of the ZSA diagram.

The charge state contrasts with that of divalent or trivalent
Ni oxides. In Fig. 2(d), the histograms for NiO and metallic
LuNiO3, which are prototype systems of formally Ni2+ and
Ni3+ oxides, respectively, are shown. The reference data are
taken from Ref. [72,74] and an additional DMFT simulation

165101-3



DAISUKE TAKEGAMI et al. PHYSICAL REVIEW B 111, 165101 (2025)

based on Ref. [47]. NiO exhibits a predominant d8 peak
with a distribution toward the d9 state. In the high-valency
LuNiO3, with deeper Ni 3d levels, the CT energy is, as in
other formally Ni3+ oxides [4,75,76], small or even negative,
facilitating CT from O 2p states and resulting in a dominant
d8 state. The larger weight of the d7 state compared to that
of d9 reflects its high formal valency. For an optimal �d p of
3.5 eV, the charge state of Nd3Ni2O7, with formally Ni+2.5,
is qualitatively different from these reference Ni oxides, and
all the d7–d9 electronic configurations need to be considered
when modeling its electronic structure. The mean Ni occu-
pation of nearly d8, deviating from the expected d∼7.5 for
a formal Ni+2.5 valency, suggests that charge-transfer from
O 2p states is significant in Nd3Ni2O7. Note as �d p is re-
duced (increased), the d configuration shifts to more closely
resemble either divalent (trivalent) case. The d occupation in
LuNiO3 [72] is 7.84, exhibiting a larger deviation from its
formal valency than that in Nd3Ni2O7, which is consistent
with �d p of 3.5 eV in Nd3Ni2O7 being moderate.

IV. DISCUSSION

Our results are consistent with the recent study [34] which
indicated the absence of charge disproportionation (CD) sig-
natures in La3Ni2O7. Our LDA+DMFT calculations do not
indicate any instability toward a CD [77]. Its absence would
be unsurprising, given that the Ni d charge states [Figs. 2(b)
and 2(c)] as well as the crystal structure of R3Ni2O7 differ
from those of RNiO3, where CD is widely observed. The
standard picture of CD in RNiO3 depends on a delicate bal-
ance between the three-dimensional tilting pattern of NiO6

octahedra and the correlated Ni 3d charge states [1,78–82],
while the bilayer Ruddlesden-Popper compounds should host
distinct octahedral distortions due to their reduced structural
dimensionality. Theoretical models suggest these distortions
are likely tied to the emergence of superconductivity under
suitable pressure conditions [83], particularly in relation to
orbital anisotropy, which we return to below.

The clarification of the Ni d state has implications for
understanding low-energy excitations. Although the Ni d8

valence configuration weight remains almost unchanged over
a wide range of �d p, as shown in Fig. 2(c), this does not
necessarily imply that low-energy excitations are unaffected.
In Fig. 3(a), the quasiparticle mass enhancement m∗/m of
the Ni dx2−y2 and dz2 states was calculated from the con-
verged DMFT self-energies �(iωn), as m∗/m = Z−1 = [1 −
∂Im�(iω)/∂ω]ω→0+ , where the m is noninteracting band
mass and Z is the renormalization factor. In addition to strong
orbital dependence, the m∗/m of the two orbitals exhibits a
pronounced dependence on the �d p value, as the O 2p states
are present near the Fermi energy EF in this CT-type oxide
and thus directly influence the degree of the localization of
the Ni 3d electrons, see the SM [35] for the �d p dependence
of the DMFT valence-band spectra. A recent ARPES study
on La3Ni2O7 estimated m∗/m to be in the range of 1–3 for
the dx2−y2 state and 5–8 for the dz2 state by rescaling DFT
and DFT+U bands to match ARPES results in part of the
Brillouin zone [84]. The calculated m∗/m values for the �d p

range that reproduces the Ni 2p data in Fig. 2, highlighted in
gray in Fig. 3(a), are comparable to the reported values.

FIG. 3. (a) The mass enhancement m∗/m of the Ni dx2−y2 and
dz2 states as a function of the �d p parameters. The region in gray
shadow indicates the realistic values estimated by the Ni 2p XPS
analysis in Fig. 2. (b) The orbital-diagonal component of the local
spin correlation function χspin(τ ) with �d p = 3.5 eV, where τ rep-
resents the imaginary time. The Ni hybridization densities Vγ (ω)
for (c) the dx2−y2 state and (d) the dz2 state, calculated with the
different �d p values. All results in the panels are calculated using
the LDA+DMFT method at T = 300 K.

Orbital dependence has been at the center of discussions
in the bilayer nickelates [51,84–88]. To gain an insight into
it, in Figs. 3(c) and 3(d), we compare the Ni hybridization
densities Vγ (ω) (γ = x2 − y2, z2), which represent the ex-
change amplitude of an electron between the local dγ state
and lattice. The sharp evolution near EF in Vγ (ω) as a function
of �d p accounts for the sensitivity of the metallic screen-
ing feature β in Ni 2p core-level PES to the �d p values
in Fig. 2(a). Overall, the Ni dx2−y2 state exhibits stronger
hybridization with the low-energy states compared to the Ni
dz2 state, which is likely responsible for the weaker m∗/m
for the former orbital than the latter one. This observation is
consistent with the orbital-dependent spin screening encoded
in the time-dependent local spin correlation function χspin(τ ),
calculated for the LDA+DMFT result with the optimal �d p in
Fig. 3(b). χspin(τ ) characterizes the dynamics of the local spin,
influenced by hybridization with the crystal and many-body
correlations [39,89,90]. We find a finite and nearly identi-
cal response at τ = 0+ for both orbitals, indicating that an
instantaneous spin of approximately S = 1/2 is present in
each. However, the Ni dx2−y2 electron undergoes faster spin
screening than the dz2 orbital over time, reflecting the orbital-
dependent hybridization. In the Appendix, we demonstrate
through additional LDA+DMFT AIM calculations that the
orbital-dependent hybridization near EF is also important for
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the formation of the β feature observed in the experimental Ni
2p core-level spectrum in Fig. 2(a).

The m∗/m values obtained for the ambient pressure phase
in this study differ from those calculated for the high-pressure
phase in several theoretical studies of La3Ni2O7 [51,87], e.g.,
m∗/m ∼ 3 and 2.3 for the dx2−y2 and dz2 states, respectively, in
Ref. [51]. As expected, m∗/m is reduced in the high-pressure
phase due to the increased bandwidth of the Ni 3d states
compared to the ambient pressure, while the orbital-dependent
localization behavior persists in the high pressure phase. In
the future, extending the approach described here to epitax-
ially strained thin films could provide further insight to the
evolution of such parameters with structural tuning.

V. CONCLUSIONS

In summary, we have characterized the bulk electronic
structure of a bilayer nickelate Nd3Ni2O7 thin film using Ni
2p core-level hard x-ray photoemission spectroscopy (HAX-
PES) combined with LDA+DMFT simulations. Comparison
of the surface-sensitive PES and bulk-sensitive HAXPES
measurements show significant differences between the sur-
face and bulk electronic structures in this compound. We
experimentally observed both local and nonlocal screening
features in the Ni 2p3/2 core-level spectrum, which was not
feasible in La-based samples studied so far due to overlapping
La 3d and Ni 2p core levels. Guided by the observed core-
level features, we performed parameter optimization in the
LDA+DMFT calculations and determined the charge-transfer
energy, a key parameter for the Ni valency and the hybridiza-
tion with the oxygen ligands in this charge-transfer-type
system. Our results show a dominant d8 (Ni2+) configuration
(∼70%), with nearly equal contributions from d7 (Ni3+) and
d9 (Ni1+) ones. This charge distribution differs from typical
Ni3+ oxides like RNiO3 and Ni2+ oxides like NiO, requir-
ing all configurations to be considered in theoretical models.
Moreover, the Ni dx2−y2 orbital exhibited stronger hybridiza-
tion compared to the dz2 orbital, leading to distinct correlation
(mass renormalization) and spin dynamic behaviors in the two
orbitals. This highlights the orbital-dependent nature of the
electronic structure and correlations in this system.
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APPENDIX: ORBITAL DEPENDENT HYBRIDIZATION
EFFECT IN Ni 2p SPECTRUM

In Fig. 4, we calculate the PES spectra using the
LDA+DMFT AIM with modified Vγ (ω), where the hy-
bridization densities within the [−1.0 eV, 1.0 eV] window in
Figs. 3(c) and 3(d) are manually set to zero when simulating
the PES final states, meaning that CT screening from the
metallic states near EF does not appear in the simulated spec-
tra. The spectra exhibit intensity modulations of the metallic
screening feature β, with the large suppression of β being
more closely related to the hybridization of the Ni dx2−y2 state
rather than the dz2 state. This additional piece of evidence
derived from the Ni 2p core-level PES spectra further con-
firms that there is an orbital-dependent hybridization, with the
Ni dx2−y2 state exhibiting a stronger hybridization with the
low-energy states compared to the Ni dz2 .
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