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Recently, band-off-diagonal superconductivity has been proposed [Nat. Commun. 14, 7134 (2023)] as a
candidate pairing state for twisted graphene systems. Based on mean-field theory, it was shown that it not
only naturally emerges from both intervalley electron-phonon coupling and fluctuations of the nearby correlated
insulator, but also exhibits nodal and gapped regimes as indicated by scanning tunneling microscopy experi-
ments. Here, we study band-off-diagonal pairing within Eliashberg theory. We show that despite the additional
frequency dependence, the leading-order description of both intervalley coherent fluctuations and intervalley
phonons exhibits a symmetry prohibiting the admixture of an intraband component to the interband pairing
state. It is found that even- and odd-frequency pairing mix, which originates from the reduced number of flavor
degrees of freedom in the normal state, and that the thermal phase transition into the superconductor can become
a first-order transition. From analytic continuation, we obtain the electronic spectral function, showing that, also
within Eliashberg theory, the interband nature leads to an enhanced spectral weight below the order-parameter
energy compared to band-diagonal pairing. Finally, we also study the superfluid stiffness of band-off-diagonal
pairing, taking into account multiband and quantum geometry effects. It is shown that for s-wave and chiral
momentum dependencies, conventionally leading to fully gapped phases, an interband structure reduces the
temperature scale below which the stiffness saturates. Depending on parameters, for the chiral state, this scale
can even be suppressed all the way to zero temperature, leading to a complex competition of multiple dispersive
and geometrical contributions. Our results show that interband pairing might also be able to explain more recent
stiffness measurements in the superconducting state of twisted multilayer graphene.
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I. INTRODUCTION

As a result of the rich physics displayed by twisted layers
of graphene [1–3], there have been enormous research activ-
ities studying their properties in the last few years. Although
experiments have been able to clarify certain aspects of their
phase diagram, superconductivity, both concerning the form
and symmetry of the order parameter and the underlying
pairing mechanism, is still under debate. In this regard, lo-
cal tunneling conductance measurements [4,5] have provided
strong constraints by revealing a V-shaped tunnel density of
states, which—depending on filling and samples—can be-
come more U-shaped. Apart from fluctuations as the origin
[6], this points to nodal to fully gapped transitions inside
the superconducting phase [5,7,8]. Taking into account the
flavor polarization in the normal state in the relevant fill-
ing fraction between ν = 2 and 3 [9–27], Ref. [7] proposed
band-off-diagonal (BOD) pairing as a possibility to naturally
capture both gapped and nodal regimes. To describe this form
of pairing, it is important to keep both quasi-flat low-energy
bands (index α) in each valley (for the respective active spin
flavor). The superconducting order parameter, which is now a
matrix �α,α′ (k) in band space, for the BOD pairing state has
the form �(k) = χkσy where χk ∈ C captures the momentum
(k) dependence. It couples, as usual, electronic states in op-
posite valleys and of opposite momenta but in distinct bands;
since these bands are not related by time-reversal symmetry,
they are not exactly degenerate, which crucially alters the

spectral function. This can lead to transitions from nodal to
fully gapped pairing states as a function of system parameters
such as filling, pairing strength, and band splitting.

To understand why such a state can be favored energet-
ically, consider the scenario where the dominant interaction
is attractive in the intervalley Cooper channel—this will, in
fact, be the case if phonons [28–33] that couple the two
valleys, which have recently been experimentally identified as
dominant [34,35], provide the pairing glue or if fluctuations
of the nearby correlated insulator, a time-reversal symmetric
intervalley coherent phase [36], stabilize the superconductor.
In that case, the leading-order parameter will have the same
sign in both valleys (at opposite momenta) and, by virtue of
being totally antisymmetric, must obey �(k) = −�T (k); this
immediately leads to the form stated above. We emphasize
that, as discussed in Ref. [7], a purely BOD pairing state is
still well defined if there is additional T-IVC order in the
normal state [36]. In that case, the two bands α = ± refer
to admixtures of the two valleys. Also, as before, the super-
conductor will be stabilized by intervalley phonons and can
be fully gapped or nodal depending on parameters. The main
difference from the case only with spin polarization and no
intervalley coherence in the normal state is that, now, all other
intraband order parameters necessarily have nodal lines, as a
result of Fermi-Dirac statistics.

In this paper, we generalize the mean-field analysis in
Ref. [7] of BOD pairing to the Eliashberg framework, where
the order parameter �α,α′ (k) is promoted to φα,α′ (iωn, k),
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which also depends on Matsubara frequency ωn. Recall-
ing the abovementioned mechanism for BOD pairing, it is
natural to ask whether the ωn dependence might change
the mean-field findings noticeably: the analogous property
for attractive intervalley Cooper-channel interactions reads
as φ(iωn, k) = −φT (−iωn, k) and now not only allows for
BOD pairing but also for the admixture of a band-diagonal
(odd-frequency) component. We show that there is an addi-
tional symmetry—exact in the limit where the bosonic modes
mediating the interactions couple only with the leading,
momentum-independent term to the fermions—that prohibits
mixing of band-diagonal and off-diagonal components in φ.
In agreement with the mean-field study of Ref. [7], we thus
find purely BOD pairing for these types of interactions. In-
terestingly, we also reveal that the reduced flavor degrees of
freedom do allow for admixture of even (∝ σy) and odd (∝ σx)
frequency pairing; the admixed odd-frequency component in-
creases with the splitting t of the flat bands and vanishes when
we take them to be degenerate, t = 0. In line with Ref. [7],
the key property of the BOD pairing state, setting it apart
from the typical (mainly) band-diagonal superconductor, is
that the gap energy scale is significantly reduced compared
to the order parameter. We find the same within Eliashberg
theory: upon solving the nonlinear Eliashberg equations and
performing a numerical analytic continuation to the real axis,
the resultant spectral function and density of states of an ap-
proximately k-independent order parameter look significantly
more V-shaped than that of a band-diagonal order parameter
of the same strength; this confirms that BOD pairing can
provide an explanation of the tunneling data [4,5].

In another more recent experiment [37], the temperature
dependence of the superfluid stiffness Ds(T ) [38–43] was
probed and found to lack the exponential saturation behavior
setting in below around 30% of Tc (see, e.g., Ref. [39]) in
typical fully gapped superconductors. We derive an expres-
sion for the superfluid stiffness for a BOD pairing state that
also takes into account the quantum geometry of the Bloch
states [44]. We find that, even for a k-independent order
parameter, the BOD nature can reduce the saturation tem-
perature significantly and induce a nonmonotonic behavior of
∂T Ds(T ), reminiscent of experiment [37]. A chiral BOD order
parameter, which would generically be gapped in the band-
diagonal scenario, can be nodal or fully gapped, depending
on parameters [7]. We show that, in that case, the exponen-
tial saturation temperature of Ds(T ) can be suppressed all
the way to the lowest temperature. We present a detailed
low-T analysis revealing a complex competition of multiple
terms.

The remainder of the paper is organized as follows. In
Sec. II, we define the model we are studying, the Eliashberg
framework, and study the symmetries of the superconducting
gap equation. The numerical results, including the electronic
spectral function, are presented and discussed in Sec. III.
Section IV is about the superfluid stiffness of BOD super-
conductors. Finally, the findings are summarized in Sec. V
and the appendixes contain more details on the Gor’kov
Green’s function (Appendix A), a discussion of other, more
exotic, multiband superconducting states (Appendix B), and
more details on the superfluid stiffness (Appendixes C
and D).

II. MULTIBAND ELIASHBERG FORMALISM

A. General theory

We start by defining the interacting model for supercon-
ductivity that we study in this work. In the range of flat-band
fillings ν with 2 < |ν| < 3, we assume that the normal state
is already flavor-polarized. While additional coexistence with
intervalley coherent order [36] might be realized at least in
some samples and/or doping regimes, we here focus for sim-
plicity on a spin-polarized normal state [14,17,18] and refer
to [7] for a discussion of BOD pairing in the presence of
intervalley coherence. With spin polarization, the effective
low-energy model can be formulated using spinless electrons,
with creation operators c†

k,η,α
in one of the two valleys η = ±

(coming from the valleys of the single-layer graphene), in one
of the two bands α = ± (related to the two bands forming the
Dirac cones of the graphene layers), and at momentum k in
the 2D moiré Brillouin zone (MBZ). We consider scattering
between all these electronic degrees of freedom mediated by
bosonic modes with creation operators b†

q,l for branch l and of
momentum q ∈ MBZ. As we will detail below, these bosons
will primarily refer to optical phonon modes but the model
can also be viewed as some effective description of an un-
conventional pairing mechanism where superconductivity is
mediated by fluctuations of an order parameter of a correlated
insulator [7]. This leads to the Hamiltonian

H = He + Hb + He−b, (1a)

where

He =
∑
k,η,α

ξk,η,αc†
k,η,α

ck,η,α
, (1b)

Hb =
∑
q,l

ωl
qb†

q,l bq,l, (1c)

account for the bare electronic and bosonic energetics, with
band energies ξk,η,α and ωl

q, respectively. For now, we will
keep the coupling between the electrons and bosons general
and parametrize it with the form factors gl

k,k′ as follows:

He−b =
∑

k,k′,l,α,α′,η,η′
c†

k,η,α

(
gl

k,k′
)η,η′

α,α′ck′,η′,α′ [bk−k′,l + b†
k′−k,l

].

(1d)

To respect the symmetries of alternating-twist-angle multi-
layer graphene, we consider D6 as the system’s point group,
which will be further reduced to C6 by the application of a
displacement field. The group elements of D6, together with
spinless time-reversal (�), valley U(1) symmetry [U (1)v], and
chiral symmetry (C), and how they act on the electronic field
operators and on the couplings gl

k,k′ are given in Table I.
In spite of the spin polarization in the normal state, there is

still a spinless time-reversal symmetry �, which we encode in
the electronic dispersion by combining momentum and valley
indices as ξk,η,α = ξη·k,α; this also automatically ensures C2z

symmetry. Additionally, we parametrize the dispersion via

ξk,α=± = ±δk + εk − μ (2)

144513-2



ELIASHBERG THEORY AND SUPERFLUID STIFFNESS OF … PHYSICAL REVIEW B 111, 144513 (2025)

TABLE I. Action of the symmetry-group elements g on the
fermionic operators and on the coupling matrix elements in Eq. (1d).
The last column shows what the respective symmetries imply for the
electronic dispersion in Eq. (1b). Cnn̂ denotes n-fold rotation along
the n̂ axis. Except for the anti-unitary time-reversal symmetry, �,
all representations are unitary; as usual, chiral symmetry refers to
the fact that the noninteracting Hamiltonian anticommutes with C.
We use σ j and η j to denote Pauli matrices in band and valley space,
respectively.

g ck gl
k,k′ ξk,η,α

C2z ηxc−k ηxgl
−k,−k′ηx ξk,η,α = ξ−k,−η,α

� ηxc−k ηx (gl
−k,−k′ )∗ηx ξk,η,α = ξ−k,−η,α

C2x σzc(kx ,−ky ) σzgl
C2xk,C2xk′σz ξk,η,α = ξC2xk,η,α

C3z cC3zk gl
C3zk,C3zk′ ξC3zk,η,α = ξC3zk,η,α

U (1)v eiϕηz ck e−iϕηz gl
k,k′ eiϕηz

C ηzσyck ηzσygl
k,k′ηzσy ξk,η,α = −ξk,η,−α

where the δk term represents the band splitting and εk is in-
troduced to capture the fact that the interaction-induced band
renormalizations—related to the flavor-symmetry breaking in
the normal state for 2 < |ν| < 3—break the chiral symmetry
C significantly. Both terms are constrained by C3z symmetry
to obey δC3zk = δk and εC3zk = εk. Since the C2z� symmetry
protecting the Dirac cones of single-layer graphene is not
broken, neither by the moiré lattice nor by spin polariza-
tion, we still have Dirac cones now located at the K and
K’ points of the MBZ, leading to δK = δK′ = 0. To capture
all of these properties in a minimal setting, we take δk =
t |1 + ea1·k + e−a2·k| and εk = t ′ ∑

j cos (a j · k) with t, t ′ ∈ R

and a j = C j−1
3z (

√
3, 0)T , j = 1, 2, 3. The resulting dispersion

along a one-dimensional cut through the MBZ is shown in
Fig. 1(a). As discussed in Ref. [7], a value of t ′ � t , with
sgn(t ′) = − sgn(ν) captures the qualitative features of the
Hartree-Fock bands well. We note that the nontrivial topolog-
ical character of the band structure is reflected by the different
eigenvalues in the bands α = ± under the valley-preserving
C2x symmetry [45], see Table I.

Since the bosons will describe either optical phonons or
gapped fluctuations of an uncondensed order parameter, we
choose fully gapped dispersions, ωl

q > 0. More specifically,
to respect rotational symmetry, we take

ωl
q = ω′ + ω0

∑
j

cos (a j · q), (3)

but we do not expect any of the main features of our results
to depend crucially on the form of ωl

q. Throughout, we take
ω0/t ′ = 4 and ω′/t ′ = 6.

In order to describe superconductivity within Eliashberg
theory, we define the full normal and anomalous Green’s
functions as

Gα,α′ (k, η) = −
∫ β

0
dτeiωnτ 〈Tτ ck,η,α (τ )c†

k,η,α′ (0)〉, (4a)

Fα,α′ (k, η) = −
∫ β

0
dτeiωnτ 〈Tτ ck,η,α (τ )c−k,−η,α′ (0)〉, (4b)

FIG. 1. (a) Plot of the electronic band structure (2) along the
� − K − M path through the hexagonal Brillouin zone. The used pa-
rameters are t/t ′ = 0.8 and μ/t ′ = 0.4. An example of a noncrossed
(b) and a crossed (c) one-particle irreducible diagram.

where β = 1/T denotes inverse temperature and the integral
over imaginary time τ leads to the Matsubara frequency do-
main iωn = i(2n + 1)πT , n ∈ Z. Further, k = (iωn, k) is a
2 + 1-component vector containing Matsubara frequency in
the first and momentum in the remaining two spatial com-
ponents. The anomalous propagator in Eq. (4b) has already
been restricted to Cooper pairing with zero center-of-mass
momentum, that is, between electrons of opposite valleys and
momentum. This form of pairing is generally favored by the
time-reversal symmetry � as electrons with (k, η) have the
same energy as (−k,−η). Furthermore, intravalley pairing
and/or pairing between k and k′ 
= −k are expected to be
more fragile against impurities. In contrast, we do not assume
anything about the coupling in band space, thus the propa-
gators show a 2 × 2 structure in band space as a result of
coupling inside as well as between the two electronic bands.

The propagator of the bosonic field is given by

Dl (q) = −
∫ β

0
dτei�mτ 〈Tτ aq,l (τ )a†

q,l (0)〉, (5)

where aq,l = b†
−q,l + bq,l . The bosonic Matsubara frequencies

i�m = i2mπT with m ∈ Z are hidden in the first component
of the 2 + 1-component compound vector q = (i�m, q).

The full electronic propagators in Eq. (4) are related to
their bare counterparts by self-energy and vertex corrections.
In Figs. 1(b) and 1(c), we show two such corrections that are
fourth order in the fermion-boson coupling (1d). We follow
standard Eliashberg techniques [46,47] and neglect vertex cor-
rections. This corresponds to neglecting the crossed diagram
in Fig. 1(c) while keeping the one shown in part (b). The
remaining rainbow diagrams can be summed up and captured
conveniently in the normal and anomalous self energies,

�α,α′ (k, η) = T
∑

k,η′,β,β ′,l

(
gl

k,k′
)η,η′

α,β
Gβ,β ′ (k′, η′)

× (
gl

k′,k

)η′,η
β ′,α′Dl (k − k′), (6)
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�α,α′ (k, η) = T
∑

k,η′,β,β ′,l

(
gl

k,k′
)η,η′

α,β
Fβ,β ′ (k′, η′)

× (
gl

−k,−k′
)−η,−η′

α′,β ′ Dl (k − k′). (7)

In simpler one-band models, a common [48] simplification
is to focus on the vicinity of the Fermi surface and to in-
troduce a momentum-space-average at this point. However,
since our main focus here is on the study of multiband effects,
such that it is a priori unclear how the order parameter will
behave in momentum space, we will keep the degrees of
freedom in the entire MBZ and allow for full momentum
dependence alongside all other indices. We further assume
that the central interaction-induced band renormalizations are
already accounted for in ξη·k,α and, thus, set � = 0 in Eq. (6);
instead, we focus on the superconducting instability described
by the anomalous self energy �. Following the steps explicitly
shown in Appendix A, we find the anomalous propagator

Fα,α′ (k, η = +) = 1

θ (k)
[(iωn − ξk,−α )(iωn + ξk,−α′ )�α,α′

+ αα′�∗
−α,−α′ (�+,+�−,− − �+,−�−,+)],

(8)

with θ (k) denoting the determinant of the inverse Green’s
function in Nambu space given by Eq. (A5). For brevity,
we further suppressed the argument of �, i.e., �α,α′ →
�α,α′ (k,+) in Eq. (8). Together with Eq. (7), this leads to a
self-consistency equation for �, which can be regarded as the
frequency-dependent generalization of the mean-field super-
conductor order parameter. This is the generalized Eliashberg
equation that we solve to study multiband superconductivity.
It always has trivial solutions i.e., � = 0 corresponding to the
normal phase, and the superconducting regime is character-
ized by � 
= 0.

B. Intervalley phonons and T-IVC fluctuations

So far, we have not specified the concrete physical meaning
of the bosonic modes bq,l and what their coupling gl

k,k′ is.
Motivated by experiments that reveal a particularly strong
coupling of the flat-band electrons to intervalley phonon
modes [34,35], our main focus will be on these phonon
modes, which transform under A1 and B1. This is also in
line with previous theoretical studies on single-layer graphene
[49] showing that intervalley phonons are enhanced compared
to intravalley optical phonons. Focusing on the leading, k-
independent, contribution to gl

k,k′ and assuming that the Bloch
states obey chiral symmetry C, one can show [7] by imposing
the symmetries in Table I (and noting that their microscopic
coupling matrices are odd under C) that there is a unique
coupling for each mode,

gA1

k,k′ = λA1ηxσ0 and gB1

k,k′ = λB1ηyσ0. (9)

Here, η0,x,y,z (σ0,x,y,z) denote the Pauli matrices in val-
ley (band) space and λA1 , λB1 ∈ R parametrize the coupling
strengths.

Since it is currently not known whether the pairing mech-
anism is driven by phonons or fluctuations of an electronic
order parameter, we will also consider the latter possibility.

Local probes [36] have revealed that the order parameter for
the nearby correlated insulator is a �-preserving intervalley
coherent state (also known as T-IVC). Since the condensation
of this order parameter breaks the U (1)v symmetry, it has
two components. It turns out [7] that the coupling of these
two components is again to leading order given by Eq. (9)
and, hence, we can discuss intervalley phonons and T-IVC
fluctuations simultaneously.

For both of these pairing mechanisms, the two compo-
nents, l = 1, 2, have to have an equal dispersion relation,
ωl=1

q = ωl=2
q ≡ ωq (and coupling constant), which follows

from U (1)v symmetry. This simplifies the superconducting
gap equation (7) to

�α,α′ (k, η) = −T
∑

k′
λ2Fα′,α (k′, η)D(k + k′), (10)

where we have introduced the effective coupling constant
λ2 ≡ λ2

A1
+ λ2

B1
and the phonon-mode-independent propaga-

tor D(q) ≡ DA1 (q) = DB1 (q), which reads as

D(q) = 1

i�m − ωq
− 1

i�m + ωq
< 0. (11)

C. Symmetries of gap equation

Applying the fermionic commutator relation to the anoma-
lous propagator (4b) reveals the symmetry Fα,α′ (k, η) =
−Fα′,α (−k,−η), which is directly inherited by the order pa-
rameter as

�α,α′ (k, η) = −�α′,α (−k,−η). (12)

As this relation follows directly from the operator algebra it
does not depend on any of the microscopic details. It proves
especially useful in the numerics as it implies that �(η = +)
and �(η = −) are not independent. Therefore, we are able to
only work with η = + and drop the additional index from now
on; we define φα,α′ (k) ≡ �α,α′ (k, η = +).

More symmetries can be revealed by analyzing the self-
consistency equation itself. A common approach towards
solving it is to linearize it in φ, which is typically valid around
the critical temperature: as long as the phase transition is
continuous, the order parameter becomes arbitrarily small in
the vicinity of this point and the linearization is well justified.
Up to first order in φ, Eq. (10) can be written as

φα,α′ (k) =
∑

k′,β,β ′
M(k,α,α′ ),(k′,β,β ′ )φβ,β ′ (k′), (13)

where we absorbed all φ-independent factors in the multi-
index-space (k, α, α′) matrix M. Upon linearization, the
self-consistency equation boils down to an eigenvalue equa-
tion, and we can analyze the symmetries by means of linear
representation theory. For the intervalley phonons the matrix
elements are given by

M(k,α,α′ )(k′,β,β ′ ) = −T λ2δα,β ′δα′,βD(k + k′)
(iωn′ − ξk′,β )(iωn′ + ξk′,β ′ )

. (14)

To discuss the symmetries of this matrix, we start by
noting that M is invariant under consecutive Matsubara
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frequency inversion and transposition in band space.
i.e., M(ωn,k,α,α′ ),(ωn′ ,k′,β,β ′ ) = M(−ωn,k,α′,α),(−ωn′ ,k′,β ′,β ). The
operator associated with the joint Matsubara-inversion and
band-transposition symmetry squares to unity such that the
order parameter must fulfill φα,α′ (iωn, k) = ±φα′,α (−iωn, k).
The physical origin of this symmetry is invariance of the
system under C2z, which acts as φ(iωn, k) = �(iωn, k,+) →
�(iωn,−k,−) = −�T (−iωn, k,+) = −φT (−iωn, k),
where we used the fermionic antisymmetry constraint in
Eq. (12). In the numerics below, we will find that

φα,α′ (iωn, k) = −φα′,α (−iωn, k) (15)

is energetically favored, i.e., the order parameter is even under
C2z; this is intuitively expected, since the effective electron-
electron interactions associated with the couplings in Eq. (9)
are an attractive intervalley coupling in the Cooper channel,
such that the superconductor order parameter is expected to
have the same sign for opposite valleys (and opposite k).

It is common to have either even- or odd-frequency pairing,
which we also recover in certain limits: if the band splitting
is much larger than any superconducting energy scale, the
order parameter will become entirely band diagonal, such
that Eq. (15) implies odd-frequency pairing (while the corre-
sponding C2z-odd pairing would have even Matsubara parity).
Furthermore, if the bands were degenerate (e.g., if α was
spin and we had spin rotation invariance), ξk,+ = ξk,−, M in
Eq. (14) would be invariant under ωn → −ωn, leading to or-
der parameters with definite Matsubara-frequency parity. It is
only in the intermediate regime, where the bands are split yet
sufficiently flat to allow for BOD components, where even-
and odd-frequency pairing mixes, as determined by Eq. (15).

Besides the above-mentioned C2z symmetry, M addition-
ally possesses all of the remaining point symmetries of D6.
The solutions of the linear equation (13) are eigenvectors of M
and thus either inherit the symmetries or occur in degenerate
groups with the respective symmetry operation translating
between the degenerate eigenvectors. More formally, the so-
lutions will necessarily transform under one of the irreducible
representations (IRs) of D6; as a result of Eq. (15), this will be
one of the C2z-even IRs, A1, A2, or E2.

Furthermore, as each Matsubara frequency in Eq. (14) is
accompanied by a factor of i, inverting its sign is equivalent
to complex conjugation. This antilinear symmetry implies
φα,α′ (iωn, k) = −eiϕφ∗

α,α′ (−iωn, k) with an arbitrary phase
that can be gauged away by substituting φ → e−iϕ/2φ. The
extra minus sign was chosen such that a combination with
Eq. (15) leads to

φα,α′ (iωn, k) = φ∗
α′,α (iωn, k), (16)

which can be identified as time-reversal symmetry on the level
of the order parameter.

Finally, there is another symmetry,

M(k,α,α′ )(k′,β,β ′ ) = αα′ββ ′M(k,α,α′ )(k′,β,β ′ ), (17)

which implies

σzφ(iωn, k)σz = ±φ(iωn, k). (18)

Expanding φ in the Pauli basis, i.e., φ(iωn, k) =∑
μ fμ(iωn, k)σμ, where μ = 0, x, y, z, we immediately see

that there cannot be any mixing of diagonal and off-diagonal
components. A positive (negative) sign in Eq. (17) implies a
strictly (off)-diagonal order parameter. In the numerics, we
find a negative sign and thus off-diagonal solutions, and only
fx,y 
= 0 while f0,z = 0.

D. Numerical procedure

We solve the linearized equation (13) by analyzing the
spectrum of the matrix M given by Eq. (14). This is done
via explicitly constructing the matrix using a grid of Nk =
7 × 7 points in the Brillouin zone and Nm = 38 Matsubara
frequencies chosen symmetrically around zero. For small
temperatures, we ensure a sufficient range of Matsubara fre-
quencies by interpolating linearly spaced frequencies up to a
certain cutoff �. This strategy was inspired by Ref. [30]. The
critical temperature Tc is given by the highest temperature
for which the spectrum of M contains unity. We find it via
a bisection method. At the critical temperature, the leading
eigenvector solves the linear equation (13).

This provides a good starting point for solving the full
nonlinear gap equation in Eq. (10). This is done via iteratively
substituting the linear solution into the full equation. Explic-
itly, this means

φ(i+1) = RHS(φ(i) ) (19)

with RHS(·) denoting the right-hand side of Eq. (10). This
approach works well in most temperature regimes and the
trial-function converges towards a solution within ∼20 it-
erations. However, near the continuous phase transition, the
order parameter becomes small and the convergence process
very slow. For this reason, we modify the algorithm such that
the candidate functions get rescaled with an optimized factor
x ∈ [0.5, 1.5] every ∼30 iterations. With this modification,
the solutions converge well, and we solve the equation on a
grid of 51 band splittings (t) × 625 temperatures (T ). We
adjust the chemical potential μ such that the filling fraction
stays constant for every value of t . In our convention, ν̃ = 1
corresponds to both bands being filled. Furthermore we fix
the values t ′ = 1/2 and λ/t ′ = 2

√
15 throughout the entire

calculation.

III. RESULTS FOR BOD PAIRING

A. Solutions on imaginary axis

In the studied parameter regime, two candidate solutions
were found from the leading eigenstates of the linearized
multiband Eliashberg equation in Eq. (13)—a band-diagonal
and a BOD solution, corresponding to the two different signs
in Eq. (18). When iterating them in the nonlinear equation in
Eq. (10), only the latter BOD solutions remain, while band-
diagonal candidates converge towards the trivial solution φ =
0. As already anticipated above, the nontrivial solutions we
obtain are even under C2z, thus obeying Eq. (15). Taken to-
gether, we therefore have

φ(iωn, k) = f e
k (iωn)σy + f o

k (iωn)σx, (20)
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FIG. 2. Solutions of the multiband Eliashberg equation (10) for
the intervalley phonons. (a) shows the (+,−) component of the order
parameter at fixed Matsubara frequency iωn = iπT as a function of
k in the MBZ. The panels (b)–(d) show the frequency dependence
of the even and odd components of φ, defined in Eq. (20), at fixed
momentum k = � for different values of the band splitting t/t ′.

where f e(o)
k is a real, even (odd) function in Matsubara space.

This result closely connects to the σy states found in Ref. [7]
on the mean-field level. We here go beyond mean-field and
allow for Matsubara frequency dependence in the order pa-
rameter, which in turn leads to the admixture of an ωn-odd σx

contribution in (20) to the σy term. Importantly, though, the
symmetry in Eq. (17) still guarantees that no band-diagonal
contribution can be admixed.

To discuss the solutions more quantitatively, we start by
analyzing the band-degenerate case t = 0. Figure 2(a) shows
the momentum dependence of the order parameter at fixed
Matsubara frequency. It has no sign changes and transforms
trivially under C3z. In Fig. 2(b), we plot the Matsubara-
frequency dependence of the two terms in Eq. (20) at fixed
momenta. We observe that only one of them is finite, the ωn-
even, σy term. This was expected since, as explained above,
M in Eq. (14) becomes even in Matsubara frequency in the
band degenerate case, such that the solutions have to have
definite Matsubara parity. Then, the even-ωn σy state is nat-
urally favored over the odd-ωn alternative in the presence of
an attractive interaction.

As σy anticommutes with the representation of C2x in
Table I, we conclude from Fig. 2(a) that the order parameter
is odd under C2x and, thus, transforms under the IR A2. As
already pointed out in Ref. [7], the remarkable conclusion that
electron-phonon coupling can induce a superconducting state
transforming under a nontrivial IR [50,51] is a result of the
combination of broken spin-full time-reversal symmetry, the
resultant interband pairing, and the topology-related represen-
tation of C2x in band space. The lower two panels of Fig. 2

FIG. 3. (a) Relative oddness, defined in Eq. (21), of the con-
verged solutions as a function of band splitting for different
temperatures. T 0

c denotes the critical temperature of the zero splitting
t = 0 case. The different curves end at different values of t/t ′ as
a bigger band splitting generally suppresses the superconducting
phase. The averaged absolute value of the order parameter as a
function of band splitting and temperature is shown in (b). The black-
dashed line is the critical temperature found in the linearized gap
equation. As the phase transition becomes first order above a critical
value of t ′, it does not align with the actual critical temperature in
that regime. The nodal region is indicated in red.

show the frequency dependence of the solutions for nonzero
band splitting, t 
= 0. As the Matsubara-parity constraint is re-
moved, the finite ωn-odd contribution in Eq. (20) is admixed,
f o
k 
= 0. To quantify the strength of the admixture, we define

the relative oddness as

or[φ] =
〈∣∣ f o

k (iωn)
∣∣〉

ωn,k〈∣∣ f e
k (iωn)

∣∣+ ∣∣ f o
k (iωn)

∣∣〉
ωn,k

(21)

and plot it as a function of band splitting and temperature
in Fig. 3(a). This representation shows that the odd contri-
butions increase monotonously as function of band splitting.
Additionally, we note that away from t = 0 the relative
oddness increases as the temperature gets lowered. In the
band-degenerate case, the solutions have a well-defined even
parity for all temperatures (or = 0).

To obtain a measure, � for the strength of the order pa-
rameter, we evaluate φ at the lowest Matsubara frequency
and average the absolute value over all other indices. This
specific way of reducing the multicomponent order parameter
to a single number will prove useful in the analysis of the
excitation spectrum in the next section. We plot the absolute
value, |�|, in Fig. 3(b). For small band splittings, the order
parameter clearly goes to zero in a continuous way. However,
it is rather remarkable that this transition becomes discon-
tinuous towards the right-hand side of the plot (t/t ′ � 0.81)
as the band splitting gets bigger. This means that the order
parameter is never infinitesimally small in this regime, and
one needs to be especially careful when working with the
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linearized equation. To emphasize this, the dashed-black line
in Fig. 3(b) represents the critical temperature obtained by
solving the linearized gap equation. We can see that, in the
strong-splitting regime, nontrivial solutions of the full, self-
consistent Eliashberg equation exist way beyond the dashed
line and undergo a first-order transition to the trivial solu-
tion (normal state) at a significantly higher temperature. This
feature clearly distinguishes the investigated strong-coupling
model from more conventional BCS superconductors.

B. Excitation spectrum

A prominent feature of the superconducting phase is the
gapped excitation spectrum of the quasiparticles. On the
mean-field level, a sharp spectrum is obtained by diagonal-
izing the Bogoliubov de Gennes (BdG) Hamiltonian. This
requires a static-order parameter, which can be recovered
from the frequency-dependent dynamic order parameter φ by
evaluating it at ω = 0. As we are dealing with fermionic Mat-
subara frequencies, we approximate this by using the lowest
positive frequency and find the almost static mean-field order
parameter

�(k) = φ(iω0 = iπT, k), (22)

which then shares the off-diagonal structure in band space
with φ. This leads to rather unusual physical effects, and an
extensive analysis at the mean-field level can be found in
Ref. [7]. The resulting BdG spectrum is given by the four
bands ±Ek,± with

Ek,± = ±|δk| +
√

(εk − μ)2 + |�k|2. (23)

The expression differs from the usual
√

ξ 2 + |�|2 spectrum
found in a simpler one-band model. A prominent feature is the
relative minus sign between the two positive terms in Eq. (23).
This means that |�k| 
= 0 does not necessarily imply a gapped
excitation spectrum. This nodal region is indicated in red in
Fig. 3(b). While this region is small, and the superconductor’s
BdG spectrum is technically fully gapped in a large part of
the phase diagram, the off-diagonal nature still has important
consequences for the spectral function in the gapped BdG
regime, since the excitation gap is much smaller than the order
parameter.

To see this, we next compute the spectral function, tak-
ing into account the full frequency dependence of φ. We
construct the interacting electronic Green’s function (4a) and
numerically perform an analytic continuation back to the real
axis. We use a maximum entropy method implemented by
Ref. [52]. The resulting spectral functions i.e., the imaginary
part of the retarded Green’s functions, are represented as a
waterfall plot along the K − � − M path in Fig. 4(a). The
four colored curves are the BdG bands. The bands clearly
trace out the peaks of the spectral functions, showing that
the mean-field picture based on Eq. (22) and the numerical
analytical continuation yield compatible results. The height
and width of the peaks carry additional information about
the quasiparticle weight and lifetime. Note, however, that the
analytic continuation is performed on the basis of finitely
many Matsubara frequencies, so the interpretation of the exact
shapes of the curves is limited. In Fig. 4(b), we show the
normalized DOS, again comparing the results of the analytic

FIG. 4. Waterfall plots consisting of the analytically continued
spectral functions with offset corresponding to different momenta
along the � − K − M path for the BOD (a) and band-diagonal (c) or-
der parameter. The blue, orange, green and red lines are the four
bands of the BdG spectrum. The density of states is calculated using
three different methods and shown in (b) for the BOD and in (d) for
the band-diagonal order parameter. The blue bars show a histogram
(with 200 bins) of the BdG spectrum. The orange curve accounts
for the finite lifetime by approximating the DOS as a momentum
sum over Lorentzians centered around the BdG spectrum. The green
curve is calculated by summing the analytically continued spectral
functions over all momenta. The DOS plots are normalized such that
the total area under the curves is equal to 1. The temperature and band
splitting are T = 0.95Tc and t/t ′ = 0.61, respectively, in all plots.

continuation (green) with BdG-theory by representing the lat-
ter as a simple histogram (blue) as well as a superposition
of Lorentzians (orange) to account for a finite quasiparticle
lifetime. We note that the qualitative behavior of all methods
is consistent.

Before investigating the features of the computed spec-
tral functions deeper in the next paragraph, we perform a
consistency check and establish a reference state by consid-
ering the pairing states resulting from a bosonic mode with
coupling function g = λσxη0, λ ∈ R, in Eq. (1d). Solving the
self-consistency equation results in a band-diagonal [+ sign
in Eq. (18)] order parameter, which is even in ωn [and, thus,
C2z-odd, see discussion above Eq. (15)]. There are further no
sign changes as a function of momentum k, such that the
pairing state transforms under the IR B1. This behavior was
expected because the boson mediates an attractive intravalley
interaction, which favors a constant, band-diagonal order pa-
rameter that changes sign between the two valleys [because of
the Fermi Dirac constraint in Eq. (12)].

We apply the same numerical procedures as above to the
B1 state and show the resultant waterfall plot and the DOS in
Figs. 4(c) and 4(d). As all parameters, as well as the numerical
methods, are the same for both interactions, we can directly
compare the plots. This allows us to eliminate possible effects
of the uncontrolled analytic continuation and isolate the ef-
fects originating in the BOD nature of the order parameter.
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We see that the band-diagonal order parameter clearly
opens an excitation gap, while the BOD order parameter al-
lows, e.g., the two ±Ek,− bands to get close between the �

and K point. This results in an excitation gap that is smaller
than |�k| even before entering the nodal region. Additionally,
the BOD nature of the band repulsion preserved the overall
features of the band structure significantly better than the
more conventional band-diagonal pairing. As a result, the
Dirac cone at the K (and K ′) point is well visible in Fig. 4(a)
while it almost completely lost in the bands accumulating just
outside the gapped region in panel (c) [53]. This preservation
leads to the emergence of a characteristic dip-hump feature
in the DOS, as shown in Fig. 4(b). A similar feature has
been identified in Ref. [5] and interpreted as a consequence of
collective bosonic modes. In our case, however, this dip-hump
structure can be clearly attributed to the BOD nature of the
pairing.

Finally, to generalize our analysis, we also looked into
different forms of the coupling vertices gl

k,k′ in Eq. (1d) of
the bosonic modes. We observed particularly exotic behavior
when allowing both inter- and intraband scattering for in-
travalley modes, gl

k,k′ ∝ (σ0 + σx )η0. Solving the Eliashberg
equations in such a system reveals an order parameter that
combines band-diagonal and BOD components. As a result,
each particle-like band tends to avoid crossings with all hole-
like bands, and vice versa. This creates multiple, opposing
repulsive “forces” between the bands that, depending on the
parameters, lead to intriguing behavior when analyzing the
excitation gap as a function of the magnitude of the order
parameter. A detailed analysis is provided in Appendix B.

IV. SUPERFLUID STIFFNESS

In this section, we analyze the superfluid stiffness of a
superconductor with BOD order parameter, accounting for
quantum geometric effects. To this end, we follow the deriva-
tion presented in Ref. [54], which is valid for multiband
systems, within mean-field theory. To apply this formalism
and to transparently encode the geometry of the normal-state
Bloch bands, we work in a different basis than in the other
sections. We choose a single-particle basis where the super-
conducting order parameter is diagonal in the internal degrees
of freedom (again represented by Pauli matrices σ j), which
can be thought of as two sublattices giving rise to the two
bands we study pairing in. The mean-field BdG Hamiltonian
in this basis reads as

HBdG =
(

ξkσ0 + δ
(1)
k σ1+δ

(2)
k σ2 �kσ0

�∗
kσ0 −ξkσ0 + δ

(1)
k σ1 + δ

(2)
k σ2

)
.

(24)

It is straightforward to verify that the superconducting or-
der parameter is completely off-diagonal when transforming
Eq. (24) to the band basis. Furthermore, when writing δ

(1)
k +

iδ(2)
k = δkeiθk , with δk > 0, one easily verifies that the spec-

trum of Eq. (24) is precisely Eq. (23). Additionally, we
account for the potential momentum dependence of the order
parameter, giving rise to terms involving momentum deriva-
tives of �k = |�k|eiϕk , which will become relevant later in
this section. We find the superfluid stiffness as

Di j
s =

∑
k,±

[(∂iξk)(∂ jξk) − (∂iδk)(∂ jδk) + (∂i|�k|)(∂ j |�k|)] |�k|2
ξ 2

k + |�k|2

⎡⎢⎣ 1√
ξ 2

k + |�k|2
tanh

(
β

2
Ek,±

)
− β

2

1

cosh2
(

β

2 Ek,±
)
⎤⎥⎦

+ (∂iθk)(∂ jθk)
|�k|2

ξ 2
k + |�k|2

[
±δktanh

(
β

2
Ek,±

)
− δ2

k

tanh
(

β

2 Ek,±
)

Ek,±

]

− [(∂i|�k|)(∂ j |�k|) + |�k|2(∂iϕk)(∂ jϕk)]
1√

ξ 2
k + |�k|2

tanh

(
β

2
Ek,±

)
, (25)

where ∂i ≡ ∂/∂ki. The first term includes derivatives of the
dispersions and is independent of the phase angles θk and ϕk.
The second term is proportional to derivatives of θk, which
accounts for how the eigenstates of the Hamiltonian change
as a function of the orientation of (δ(1)

k , δ
(2)
k )T and, as such,

encodes the quantum geometry of the normal state. In the
band-degenerate limit, δk → 0, these geometric contributions
naturally vanish in our model, and the BdG dispersion sim-
plifies to the familiar form Ek,± = ±|δk| +

√
ξ 2

k + |�k|2 →
Ek =

√
ξ 2

k + |�k|2 . In this edge case, the sum over ± in
Eq. (25) simply yields an extra factor of two, and the re-
sult resembles a single-band system. The last term involves
derivatives of ϕk and therefore describes how a potentially
momentum-dependent superconducting order parameter in-

duces additional variations of the BdG Bloch states across the
Brillouin zone.

We start the discussion by modeling the entries
of the BOD A2 order parameter as �k = �s =
1.764Tc�0 tanh(1.74

√
Tc
T − 1) with critical temperature

Tc and �0 ∈ R. The superscript emphasizes the momentum-
independent s-wave nature of the order parameter. Here,
all terms involving momentum derivatives of �k vanish.
Figure 5(a) shows the superfluid stiffness as a function of
temperature for different values of �0. When �0 = 1, we
recover the BCS relation �(T = 0)/Tc = πe−γ � 1.764,
with the Euler–Mascheroni constant γ . First, we note
that the scale of the order parameter, �0, and the band
splitting t influence the shape of the curves. For smaller
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FIG. 5. Panel (a) shows the superfluid stiffness as a function
of temperature calculated for an A2 BOD pairing state with k-
independent order parameter of different overall strength �0 [�0 = 1
corresponds to the BCS relation �(T = 0) = 1.764Tc]. Here, the
chemical potential is set to μ = 2.5t . In the inset we fix �0 = 1
and vary t/t ′. For the gapped/nodal nature of the BdG excitation
spectrum the value of μ is of no relevance for the k-independent
order parameter. In panel (b) we plot the same quantity for a chi-
ral order parameter in the fully gapped regime, at μ = −2.16t . At
μ = 2.5t the system is in the nodal regime and we plot the superfluid
stiffness in panel (c). The inset shows a low-temperature zoom of the
nonsaturating behavior close to T = 0. The remaining parameters are
Tc = 2.5t , t ′ = −2.2t , t > 0 in all plots.

order parameter magnitudes or larger splitting (see inset),
we obtain an inflection point—not unlike in experiment
[37]. Second, since the superconductors for all curves in
Fig. 5(a) are fully gapped at low temperatures, one would
expect that Ds(T ) − Ds(T = 0) is exponentially suppressed
at low T . This is indeed visible, however, compared to
conventional band-diagonal superconductivity (the t = 0
limit of our theory), the temperature at which the saturation
sets in is reduced with increased band splitting [see inset of
Fig. 5(a)].

There is an additional term beyond Eq. (25) arising from
the multiband nature of the system that needs to be discussed:
As pointed out in [55], while the (constant) order parameter
in a single-band system can always be chosen real, even at
nonzero Cooper-pair momentum q, this does not hold for
systems with multiple bands. By a global phase shift, only one
of the two components of the order parameter can be chosen
real. In Appendix C, we discuss the resulting additional terms
[see Eq. (C1)] as well as how the terms can be computed for an
s-wave order parameter. A numerical evaluation shows that,
in our case, the terms stated in Eq. (25) are dominant and the
remaining terms yield corrections at most of the order of 10−4

compared to the main contributions in our results. We will
therefore neglect this term in the following.

Besides k-independent A2 BOD pairing, we also discuss
the stiffness for chiral BOD superconductivity. While a (pre-
dominantly) band-diagonal chiral order parameter is known
to give rise to a fully developed gap (except for possible
isolated points in parameter space), it was shown in Ref. [7]
that chiral BOD pairing yields extended nodal regimes; in
fact, even for just a fixed order parameter, one finds gapped to
nodal transitions as a function of filling, which could explain
the tunneling data [4,5]. This is our motivation to study the
stiffness of such a state as well.

We model it as �c
k(T ) = �s(T )χk. The momentum-

dependent part, χk = Xk + i Yk is constructed as Xk = X o
k +

ηX e
k , Yk = −2/

√
3(Xk + XC−1

3z k) with odd and even basis func-
tions [7]

X o
k = − 4

3 [sin (a1k) − sin (a2k)],

X e
k = − 4

3 [cos (a1k) + cos (a2k) − 2 cos ((a1 + a2)k)],

respectively. We set η = 0.2 for concreteness. To ensure that
�s and �c are directly comparable, we additionally rescale
χk such that the the Brillouin zone average is 〈|χk|〉k∈BZ = 1.
As opposed to the k-independent case above, the momentum
derivatives of the order parameter are now nonzero, introduc-
ing additional quantum geometric effects, originating from the
order parameter [last term in Eq. (25)]. Although the spectrum
of Eq. (24) is independent of ϕk, the eigenstates change with
the orientation of (Xk,Yk)T , adding another layer of quantum
geometric contributions.

Another important difference is that, unlike A2 BOD pair-
ing where the presence or absence of a gap depends on the
magnitude of the order parameter, the chiral BOD state can
have BdG Fermi surfaces at arbitrary strength of the order
parameter. The criterion for such surfaces to appear is sim-
ply the existence of a point k j ∈ BZ such that �k j = 0 and
|δk j | > |ξk j |. As long as δk features Dirac cones, the opposite
inequality will be fulfilled at those points, i.e., |δk| � |ξk| <√

ξ 2
k + |�k|2 for any �k 
= 0. By continuity, this implies that

there must exist a point k∗ ∈ BZ where |δk∗ | =
√

ξ 2
k∗ + |�k∗ |2 ,

i.e., a sign change of Ek,− and thus a BdG Fermi surface [7].
Whether this criterion is fulfilled is determined by the value of
the chemical potential, yielding a mechanism to tune between
the gapped and nodal phase as already mentioned above.

In the gapped phase, similar to conventional s-wave pair-
ing, T becomes the smallest energy scale at low temperatures,
and all terms in Eq. (25) saturate close to T = 0. This sce-
nario is shown in Fig. 5(b). Qualitatively, it displays the
same features as the A2 BOD pairing state; however, the
terms are much less susceptible to varying �0. In contrast,
in the nodal regime the low-temperature asymptotics of Di j

s

changes significantly. We show this in Fig. 5(c). Here, the
BdG spectrum stays nodal all the way to T = 0 and thus
Ek,−/T stays finite for some k close to k∗. Generally, this
leads to nontrivial scaling behavior and prevents the curves
from saturating close to T = 0. The scaling analysis presented
in Appendix D shows universal, quadratic contributions for
small temperatures; however, there is an additional term
adding nonuniversal contributions, scaling as log(T ), which
only becomes dominant at exponentially low temperatures T .
It generally leads to a dip in the superfluid stiffness for T → 0,
as the logarithmic contribution diverges and dominates the
other terms. Numerically, we did not resolve those effects
all the way down to the smallest considered temperature,
0.02Tc. At such low-energy scales, other phenomena, such
as disorder, are likely to play a significant role, complicating
the interpretation and raising questions about the physical
and experimental relevance of the logarithmic term in this
regime. In the intermediate temperature range, we note that Ds

generally features less curvature relative to the gapped regime.
Depending on the parameters, the nodal chiral state can fea-
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ture a large linear regime, which does not show any signs of
exponential saturation. This makes it a potential candidate for
recent experimental observations [37].

V. CONCLUSIONS

In this paper, we investigate multiple aspects of band-off-
diagonal superconductivity as a candidate pairing state for
twisted multilayer graphene systems. We employ a minimal
two-band model and induce intervalley pairing by electron-
phonon coupling or fluctuations of a time-reversal symmetric
intervalley-coherent order parameter. We incorporate inter-
band effects by avoiding restrictions on the band-space
structure of the order parameter and account for these effects
beyond mean-field theory using an Eliashberg theory frame-
work. This generalized framework also incorporates phonon
dynamics, resulting in a Matsubara-frequency-dependent or-
der parameter that takes the form of a matrix in band space. By
deriving (Sec. II A) and solving (Sec. III A) a self-consistency
equation for the order parameter, we demonstrate that the
system exhibits pure band-off-diagonal superconductivity,
without any admixed band-diagonal components. Further-
more, a symmetry analysis in Sec. II C reveals a coupling
between band and Matsubara-frequency symmetries. This in-
terplay implies that the order parameter does not exhibit a
well-defined Matsubara parity in the general case.

We analyze the solutions over a range of temperatures and
band splittings, observing that larger band splittings generally
lead to stronger odd-frequency contributions. Within the ex-
plored parameter space, we find that interband Cooper pairs
are favored, and increasing the band splitting tends to lower
the critical temperature, eventually suppressing the supercon-
ducting phase entirely. To study the excitation spectrum, we
numerically compute the spectral functions via analytic con-
tinuation to the real axis (Sec. III B). A prominent feature of
band-off-diagonal superconductivity is the significant reduc-
tion of the excitation gap relative to the absolute value of
the order parameter. A comparison with mean-field spectra
shows overall consistency with these findings. We also ex-
plore the behavior of more exotic multiband pairing scenarios
(Appendix B).

To further characterize the properties of the band-off-
diagonal superconductivity studied in this paper, we computed
the superfluid stiffness as a function of temperature for both a
k-independent and a chiral superconducting state (Sec. IV).
Our expression incorporates corrections proposed by [55],
which, however, were found to be negligible in this con-
text. Our results show that the reduction of the gap of a

k-independent band-off-diagonal state can lead to a signif-
icant suppression of the temperature scale below which the
stiffness saturates exponentially. In contrast, the chiral band-
off-diagonal state displays a persistent nodal regime, even at
low temperatures. This leads to a distinct lack of saturation in
the superfluid stiffness.

There are multiple directions to extend our work further.
For instance, it would be interesting to perform the same
calculation in the presence of IKS order [26,56], taking into
account Goldstone modes as pairing glue [57], and studying
the impact of additional residual Coulomb interactions on
pairing.
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APPENDIX A: NAMBU FORMALISM

Expanding the propagators [Eqs. (4a) and (4b)] in the
self-energies can be done very elegantly by introducing the
Nambu-Gor’kov Green’s function

G(k, η) =
(

G(k, η) F (k, η)

F †(k, η) −G(−k,−η)

)
(A1)

together with the matrix-valued self-energy

�̂(k, η) =
(

�(k, η) −�(k, η)

−�†(k, η) −�(−k,−η)

)
. (A2)

Within this framework the matrix multiplication algebra ac-
counts for all the mixing effects and the inverse interacting
propagator can be written in the familiar way

G−1(k, η) = G−1
0 (k, η) − �̂(k, η), (A3)

where

G−1
0 (k, η) =

⎛⎜⎜⎜⎜⎝
iωn − ξηk,+ 0 0 0

0 iωn − ξηk,− 0 0

0 0 iωn + ξ(−η)(−k),+ 0

0 0 0 iωn + ξ(−η)(−k),−

⎞⎟⎟⎟⎟⎠ (A4)

denotes the noninteracting Gor’kovs Green’s function. Setting � = 0, explicitly inverting equation (A3) and extracting F = G1,2

as the upper right component of the Gor’kov Green’s function leads to Eq. (8). The determinant of the inverse Gor’kov Green’s
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function is given by

θ (k,+) = (
ω2

n + ξ 2
k,+
)(

ω2
n + ξ 2

k,−
)+ (

ω2
n + ξ 2

k,−
)|�+,+|2 + (

ω2
n + ξ 2

k,+
)|�−,−|2

− (iωn − ξk,+)(iωn + ξk,−)|�−,+|2 − (iωn − ξk,−)(iωn + ξk,+)|�+,−|2 + |�+,+�−,− − �+,−�−,+|2, (A5)

where all � are evaluated at (k, η = +). Owing to Eq. (12) it is sufficient to only regard the η = + case.

APPENDIX B: OTHER MULTIBAND SUPERCONDUCTORS

In this Appendix, we examine some additional interesting
behavior resulting from a scattering vertex of the form

gl
k,k′ = λ(σ0 + σx )η0 (B1)

with λ ∈ R. Solving the resulting Eliashberg equation using
the same method as described in the main text we find an order
parameter of the form

φ(iωn, k) = f (iωn, k)(σ0 + σx ), (B2)

where f (iωn, k) transforms trivially under the combined lat-
tice and Matsubara symmetry group, i.e., s-wave and even in
Matsubara frequency.

A mean-field analysis leads to the four BdG bands

±Ek,± = ± [
δ2

k + (εk − μ)2 + 2�2
k

± 2
√

�4
k + δ2

k

(
�2

k + (εk − μ)2
)]1/2

(B3)

already showing some unusual behavior when when 2|εk| �
|δk|. In this regime the excitation gap at fixed momentum k is
decreasing for bigger order parameters. If the equality is true
or δk = 0, the minus bands will be completely independent
of �k, and the excitation gap is constant as a function of the
order parameter. This can be seen by evaluating the small and
big �k limits of the minus bands of Eq. (B3),

Ek,− =
{||δk| − |εk − μ|| �k = 0

|εk − μ| �k → ∞ . (B4)

FIG. 6. Plot of the particle-like minus band Ek,− of the BdG
spectrum calculated under the σ0 + σx order parameter at fixed
momentum as a function of �k. The different panels show the in-
creasing, decreasing, and constant behavior caused by the different
ratios of |δk| and |εk − μ|.

Further analysis shows that Ek,−(�k) is always a monotonic
function of |�k| and therefore the relation between the two
limits dictates whether Ek,− increases or decreases when di-
aling up the order parameter. We illustrate this behavior in
Fig. 6. It can be explained by analyzing the avoided crossings
in the BdG spectrum. Figure 7(a) shows the four BdG bands
for different values of the order parameter. To illustrate the ef-
fects we use a constant �0 for all momenta. The nonvanishing
values in all band components of the order parameter imply
that a crossing between all electronic- and hole-like bands will
be avoided. In the shaded area (A), we see that the Ek,− bands
intersect for �0 = 0. Dialing up the value of the order param-
eter leads to gapping-out those bands. This happens because
of the (−,−) component of the order parameter. Because
of symmetry, particle- and hole-like bands originating from
the same electronic band always meet at zero energy and the
diagonal components of the order parameter therefore always
shift the bands away from the Fermi-level creating a gapped
spectrum.

This symmetry constraint does not hold for the intersection
of particle- and hole-like bands originating from different
electronic bands. We see this in the areas (B) and (C). The
off-diagonal components of the order parameter prevent this
intersection for �0 
= 0. As the intersection appears away
from the Fermi-energy, one of the bands gets shifted towards
the Fermi-energy and therefore the excitation decreases with
increasing �0. At the K point, δk=K = 0 and the two original

FIG. 7. We show the four BdG bands (a) along the � − K − M
path for different values of the momentum-independent order pa-
rameter �0. The shaded regions indicate avoided crossings caused
by the diagonal (A) and off-diagonal (B,C) components of the order
parameter. The band splitting and chemical potential were chosen
such that the effects are well visible. Explicitly, we used t/t ′ = 0.8
and μ/t ′ = 0.4. The DOS plot (b) was obtained using the BdG
spectrum (blue and orange), as well as the spectral functions (green)
obtained from the σ0 + σx state at T/Tc = 0.95 and t/t ′ = 0.61.
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electronic points are degenerate. When dialing up the �0 we
note that the effects cancel out and the two ±Ek,− bands sit at
the same spot, independent of �0.

As both bounds in Eq. (B4) are generally positive, the
dispersion can never show any zeros for �k 
= 0. However,
if |εk − μ| is close to |δk| for some momenta the excitation
spectrum becomes nodal in the low-temperature limit.

The resulting DOS at T = 0.95Tc is shown in Fig. 7(b).
Even in this temperature regime the excitation gap is rather
small. Comparison with Fig. 4(b) shows that the band struc-
ture of the order parameter seems to lead to an even smaller
gap than that of the BOD order parameter. However, there
exists no temperature regime where the gap fully closes within
mean-field theory. Furthermore, we found that the BdG bands
are not always consistent with the peaks of the spectral func-
tions in some intermediate temperature regime for this specific
order parameter. This could either indicate that the BdG bands
do not provide an accurate description of the spectral function
in this regime, or reflect a numerical artifact of the analytic
continuation.

APPENDIX C: COMPUTING THE CORRECTION TERMS
OF THE SUPERFLUID STIFFNESS

Equation (25) can be derived within linear response theory.
However, as pointed out in [55], it is crucial to carefully
account for the dependence of all quantities on the vector po-
tential. In this Appendix, we address corrections arising from
the dependence of the order parameter, �α (q), on the Cooper-
pair momentum q. We focus on the case where time-reversal
symmetry is present, which implies �α (q) = �∗

α (−q).

Consequently, the total derivatives d�α

dqi
|q=0 = i d�I

α

dqi
|q=0 are

purely imaginary with �I
α denoting the imaginary part of the

order parameter. In single-band models, this derivative can be
eliminated by choosing a real-valued order parameter. How-
ever, in multiband systems, such simplifications are generally
not possible, as only one component of �α (q) can be made
real at a given q. We set the global phase such that �1(q) ∈ R
and utilize the fact that both components coincide at q = 0,
i.e., �1(0) = �2(0) = � ∈ R. The additive correction term
to the superfluid stiffness, Eq. (25), can then be evaluated as

δDi j
s = 1

4

∑
k

⎡⎢⎣−
2
(
di�

I
2

)(
d j�

I
2

)
sinh

(
β

√
ξ 2

k + �2
)√

ξ 2
k + �2

(
cosh(βδk) + cosh

(
β

√
ξ 2

k + �2
)) (C1)

−
∑
±

tanh

(
β

2
Ek,±

)⎛⎜⎝(di�
I
2

)(
d j�

I
2

)
Ek,±

+ 2
(
(∂iθk)

(
d j�

I
2

)+ (
di�

I
2

)
(∂ jθk)

)
δk�

ξ 2
k + �2 ± δk

√
ξ 2

k + �2

⎞⎟⎠
⎤⎥⎦− 2

U

(
di�

I
2

)(
d j�

I
2

)
, (C2)

where di�
I
2 ≡ d�I

2
dqi

|q=0. U < 0 is the attractive on-site interaction. Within our momentum-space model, there is no canonical
choice for this parameter. However, as mentioned in the main text, the corrections arising from Eq. (C1) are negligible compared
to the main contribution stated in Eq. (25).

As expected, the term only depends on the derivatives of the imaginary part of the second component of the order parameter,
i.e., �I

2. These derivatives are highly nontrivial to compute, as they seem to require solving the gap equation at nonzero Cooper-
pair momentum q. Here, we neglect the explicit electron-momentum dependence k.

We start the discussion by studying the BdG Hamiltonian (24) at finite q,

HBdG(q) =
(

H+
q+k �̂

�̂† −(H−
q−k)∗

)
(C3)

with valley Hamiltonian H±
k = σ0ξk ± (σ1δ

1
k + σ2δ

2
k ) and band diagonal order parameter �̂ = diag(�1,�2). Following [55] the

desired derivative can be rewritten as

d�I
2

dqi
= − ∂2�

∂qi∂�I
2

/
∂2�

∂�I
2

2 , (C4)

which involves only partial derivatives of the grand canonical potential

� = − 1

β

∑
k

∑
i

ln [1 + exp (−βEk,i )] +
∑

k

Tr H−
k − nNcμ − Nc

∑
α

|�α|2
U

. (C5)

The q dependence is hidden in den eigenvalues Ek,i of Eq. (C3). Taking the respective derivatives yields the terms

∂2�

∂qi∂�I
2

=
∑

k

∑
j

∂�I
2
∂qi Ek, j + eβEk, j

[
∂�I

2
∂qi Ek, j − β

(
∂�I

2
Ek, j

)(
∂qi Ek, j

)]
(1 + eβEk,i )2

(C6)

and

∂2�

∂�I
2

2 =
∑

k

∑
j

∂2
�I

2
Ek, j + eβEk, j

[
∂2
�I

2
Ek, j − β

(
∂�I

2
Ek, j

)2]
(1 + eβEk,i )2

− 2Nc

U
. (C7)
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The derivatives of the eigenvalues require some special attention as it is generally not possible to analytically diagonalize the
general Hamiltonian (C3) at finite q and �1 
= �2. However, as all terms are eventually evaluated at q = 0 and �1 = �2 = � ∈
R it is still possible to find exact analytical expressions by perturbative methods. We start by rewriting Eq. (C3) as

HBdG
(
q,�I

2

) = H0 + �I
2H1, with H0 = HBdG(q = 0)|�I

2=0, H1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

⎞⎟⎟⎠. (C8)

The eigensystem of H0 can be computed analytically and is
denoted by (E0

i , |ψ0
i 〉). The first-order corrections to the states

read as ∣∣ψ1
i

〉 = �I
2

∑
j 
=i

〈
ψ0

j

∣∣H1

∣∣ψ0
i

〉
E0

i − E0
j

∣∣ψ0
j

〉
, (C9)

and the full eigensystem is given by (Ei, |ψi〉). For notational
convenience we omit the k index here.

The easiest terms to evaluate are the first-order deriva-
tives ∂�I

2
Ej and ∂qi E j , which can be computed using

the general property, ∂xλ(x) = 〈λ(x)|[∂xM(x)]|λ(x)〉, for a
parameter-dependent matrix M(x) and respective eigensystem
(λ(x), |λ(x)〉). Applying this we find

∂qi E j |q=0,�I
2=0 = 〈

ψ0
j

∣∣(∂qi HBdG|q=0)
∣∣ψ0

j

〉
, (C10)

∂�I
2
Ej |q=0,�I

2=0 = 〈
ψ0

j

∣∣H1

∣∣ψ0
j

〉
. (C11)

To compute the second-order derivatives, we must account
for the dependence of the states on �I

2. Specifically, the terms
of interest are of the form ∂�I

2
|ψi〉|�I

2=0, which means that
only the terms linear in �I

2 contribute. Consequently, we
can exactly rewrite ∂�I

2
|ψi〉|�I

2=0 = 1
�I

2
|ψ1

i 〉. The remaining
derivatives are therefore found as

∂�I
2
∂qi E j |q=0,�I

2=0 = 〈
ψ1

j

∣∣(∂qi HBdG|q=0)
∣∣ψ0

j

〉
+ 〈

ψ0
j

∣∣(∂qi HBdG|q=0)
∣∣ψ1

j

〉
, (C12)

∂2
�I

2
Ej |q=0,�I

2=0 = 〈
ψ1

j

∣∣H1

∣∣ψ0
j

〉+ 〈
ψ0

j

∣∣H1

∣∣ψ1
j

〉
. (C13)

With the Eqs. (C10)–(C13), we find exact expressions for all

terms in Eqs. (C6) and (C7) and thus d�I
2

dqi
in Eq. (C4) can

be computed without relying on numerical differentiation and
without solving the gap equation at nonzero q.

APPENDIX D: LOW-TEMPERATURE SCALING OF
SUPERFLUID STIFFNESS IN THE CHIRAL STATE

In this Appendix we discuss the low-temperature scaling
behavior of the superfluid stiffness (25) in the chiral state. We
split the expression as

Dconv1
s =

∑
k

λconv
k√

ξ 2
k + |�k|2

∑
±

tanh

(
β

2
Ek,±

)
, (D1)

Dconv2
s = −β

2

∑
k

λconv
k

∑
±

1

cosh2
[

β

2 Ek,±
] , (D2)

Dgeo1
s =

∑
k

λ
geo
k δk

∑
±

± tanh

(
β

2
Ek,±

)
, (D3)

Dgeo2
s = −

∑
k

λ
geo
k δ2

k

∑
±

tanh
[

β

2 Ek,±
]

Ek,±
, (D4)

where the superscript discriminates between the two terms of
the conventional and geometric contribution, respectively. The
prefactors have been absorbed into

λconv
k = [(∂iξk)(∂ jξk) − (∂iδk)(∂ jδk)]

|�k|2
ξ 2

k + |�k|2 , (D5)

λ
geo
k = (∂iθk)(∂ jθk)

|�k|2
ξ 2

k + |�k|2 . (D6)

The terms proportional to the derivative of the order parameter
are given by

D�1
s = −

∑
k

λ�
k

ξ 2
k√

ξ 2
k + |�k|2

∑
±

tanh

(
β

2
Ek,±

)
, (D7)

D�2
s = −

∑
k

λ�
k |�k|2 β

2

∑
±

1

cosh2
(

β

2 Ek,±
) , (D8)

Dϕ
s = −

∑
k

λ
ϕ

k

∑
±

tanh

(
β

2
Ek,±

)
. (D9)

Besides the prefactors,

λ�
k = (∂i|�k|)(∂ j |�k|) 1√

ξ 2 + |�k|2
, (D10)

λ
ϕ

k = (∂iϕk)(∂ jϕk)
|�k|2√

ξ 2
k + |�k|2

, (D11)

Eq. (D7), Eq. (D9), and Eq. (D8) are equivalent to the con-
ventional contributions Eq. (D1) and Eq. (D4), respectively.
Consequently those terms do not yield any new temperature
dependence and could be absorbed in the respective conven-
tional terms by redefining λ

conv
k . However, to stay consistent

with only including dispersion-derivatives in the conventional
contribution, we will, without loss of generality, keep the
terms separate and omit D

�1/2
s and Dϕ

s from the following
discussion.

For simplicity, we assume isotropic dispersions, which im-
plies that Di j

s ∝ δi j . In the regime where both, Ek,+ and Ek,−
are gapped, it holds that βEk,± � 1,∀k ∈ BZ at small tem-
peratures. As a consequence, all deviations Ds(T ) − Ds(0) are
exponentially suppressed. However, in the nodal regime, near
the Fermi surface this does not hold anymore, which might
lead to nonexponential scaling. To understand how the terms
behave, we model Ek,− = vF (k − kF ) with k = |k| and Fermi
velocity and momentum vF > 0 and kF > 0, respectively. As
long as the terms decay rapidly as a function of |k|, we can
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FIG. 8. Terms of the superfluid stiffness that feature universal
scaling in the nodal regime (a), close to the boundary (b), and in the
gapped regime (c) of the chiral, BOD state. The dashed lines are ob-
tained by fitting the results of the scaling analysis in in the respective
regimes, i.e., y = uτ 2 + ve−w/τ in (a) and (b) and y = ue−v/τ in (c),
where we defined the dimensionless temperature τ ≡ T/Tc. Panel
(d) shows the excitation gap, �E ≡ mink∈BZ[|δk −√

ξ 2
k + |�k|2|], as

a function of the chemical potential.

approximate
∑

k → ∫ 2π

0 dφ
∫∞

0 dkk = 2π
∫∞

0 dkk. We start
with the first conventional contribution i.e., Dconv1

s . We rewrite
the term∑

±
tanh

(
β

2
Ek,±

)
= 1

1 + e−βEk,−
+ O(e−E0β ),

where E0 represents the minimum of band energy scales. For
simplicity, we assume E0 > 0. In the zero-temperature limit
this terms becomes the Heaviside step function �(Ek,−) =
�(k − kF ). We can therefore model the low temperate de-
viations as Dconv1

s (T ) − Dconv1
s (0) = 2π

∫∞
0 dkkλ

conv
k (�(k −

k f ) − 1
1+e−βvF (k−kF ) ) + O(e−E0β ). Substituting x = βvF (k −

kF ) and using λ
conv
k = λ

conv
−k we find that the leading contribu-

tion scales as T 2. The same argument holds for Dgeo1
s , which

only differs by a relative minus sign between the two sum-
mands. As a consequence, we find quadratic low-temperature
scaling with opposite sign than Dconv1

s .
The second conventional contribution, Dconv2

s , consists of
two summands. However, as Ek,+ > 0 holds by construction
only the term corresponding to Ek,− potentially features non-
exponential behavior. Because of the hyperbolic cosine term
the integrand is localized in a small window around the Fermi
surface, which justifies rewriting the sum as Dconv2

s (T ) =
2π

∫∞
−∞ dkkλ

conv
k

β

2
1

cosh2(βvF (k−kF )/2)
+ O(e−E0β ), where we ex-

tended the lower bound from 0 → −∞. We can elegantly
understand this term by recognizing lima→∞ a

2 sech2(ax) =
δ(x) is a representation of the Dirac distribution δ(x). Sub-
stituting x = vF

2 k and defining λ̃x = λ
conv
k=2x/vF

we can interpret

the integral, up to a constant prefactor, as a convolution (xλ̃x ∗
fβ )(xF ), where fβ (x) = β

2 sech2(βx) and xF = vF
2 kF . The er-

ror resulting from big but finite β is given by the moments
of the distribution fβ (x). Because of the symmetric nature of

fβ (x) all odd moments vanish and the first nonzero contribu-
tion is generically given by the second moment, which scales
as 1

β2 . We therefore find (xλ̃x ∗ fβ )(xF ) = xF λ̃xF + c2T 2 +
c4T 4 + · · · , c2, c4 ∈ R. The first term is the result one would
obtain if fβ (x) was a sharp δ(x), i.e., the zero-temperature
limit. The prefactor cn is generically nonzero if and only if
xλ̃x includes terms of at least xn. In order to capture nonexpo-
nential behavior in Dconv2

s (T ) − Dconv2
s (0), λ̃x must therefore

include at least linear terms in x (owing to λ̃x = λ̃−x at least
x2 in our model). The latter follows from λ

conv
k = λ

conv
−k .

In the low-temperature limit, the integrands of Dgeo2
s do

not decay rapidly and the integral is UV divergent. Thus it
is necessary to introduce a momentum cutoff �, which en-
ters as Dgeo2

s (T ) ∼ ln(�vF /T ) for small temperatures. This
leads to nonuniversal behavior and the scaling depends on
the dispersions far away from the BdG Fermi surface. We
leave the analysis of the consequences for the superconductor
at and below the associated exponentially small tempera-
tures for future work since at such low energy scales various
other perturbations, such as inhomogeneities, are likely more
relevant.

Summing up the analysis, we find the universal scaling

Dconv1
s (T ) − Dconv1

s (0) ∝ −T 2, (D12)

Dgeo1
s (T ) − Dgeo1

s (0) ∝ T 2, (D13)

Dconv2
s (T ) − Dconv2

s (0)

∝
{

T 2 if λ
conv
k includes k1 or higher orders

O
(
e− E0

T

)
else

.

(D14)

The signs of (D12) and (D13) could be swapped for different
system parameters. However, the relative negative sign be-
tween the terms persists. As emphasized above, D

�1/2
s features

the same scaling behavior as D
conv1/2
s .Dϕ

s scales like Dconv1
s .

Figures 8(a)–8(c) show the terms (D12)–(D14) plotted sep-
arately. To compare the scaling behavior, we subtract the
(approximate) zero-temperature values of all terms individu-
ally, i.e., plot D j

s (T ) − D j
s (T0) where T0 = 1

80 Tc is the lowest
computed temperature value, Tc/t = 2.5. Panel (d) shows the
excitation gap as a function of μ. In panel (a), the system is
well inside the nodal regime, the solid lines show the scaling
of Dconv1

s , Dgeo1
s and Dconv2

s , respectively. The dashed lines are
given by y = uτ 2 + ve−w/τ where u, v,w are fit parameters
and τ ≡ T/Tc. The numerical values, (u(a)

conv1
, v(a)

conv1
,w(a)

conv1
) �

(−8.78, 0.00, 0.12) show that the exponential corrections
to Dconv1

s are small and the curve is dominated by the
quadratic term in the entire plotted temperature regime.
Near the transition to the gapped regime the minimal fi-
nite energy scale E0 is naturally smaller and the exponential
terms e−βE0 start contributing sooner. We show this in panel
(b), which optically looks similar to (a), however, the the
fit parameters, (u(b)

conv1
, v(b)

conv1
,w(b)

conv1
) � (−4.45,−0.17, 0.19)

show, that Dconv1
s does not scale as a pure parabola over

the entire plotted temperature range. For Dgeo1
s we find the

fit parameters (u(a)
geo1

, v(a)
geo1

,w(a)
geo1

) � (7.62,−0.12, 0.21) and
(u(b)

geo1
, v(b)

geo1
,w(b)

geo1
) � (8.74,−0.08, 0.15) in the regimes (a)

and (b), respectively. We note that the sign of the quadratic
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term is, as expected, opposite to the sign of the first conven-
tional contribution. From the scaling analysis alone, it is not
clear how the deviations of Dconv2

s behave at low temperatures,
as it depends on the form of λconv

k . Panels (a) and (b) show
a fit with (u(a)

conv2
, v(a)

conv2
,w(a)

conv2
) � (−49.35, 1.28, 0.25) and

(u(b)
conv2

, v(b)
conv2

,w(b)
conv2

) � (−63.54, 0.49, 0.15) to the curve, as-
suming that λ

conv
k includes k2 or higher order terms. Visually,

the curves coincide, however, without analyzing λ
conv
k one

cannot be sure that the correct function was optimized. How-
ever, as this analysis is concerned with the universal scaling
properties and Dconv2

s does not yield new contributions in
both cases, we shall not analyze this further. Panel (c) shows
the terms well inside the gapped regime. All curves clearly
saturate. The red lines show a fit y = ue−v/τ of Dconv1,2

s and
Dgeo1

s with (u(c)
conv1

, v(c)
conv1

) � (−1.00, 0.32), (u(c)
conv2

, v(c)
conv2

) �
(−5.03, 0.26) and (u(c)

geo1
, v(c)

geo1
) � (0.41, 0.29).
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