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Classification of pair symmetries in superconductors with unconventional magnetism
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We consider unconventional magnets with proximity-induced superconductivity and investigate the emergence
of superconducting correlations by carrying out a full classification of allowed Cooper pair symmetries. In par-
ticular, we focus on d-wave altermagnets and p-wave magnets under the influence of spin-singlet and spin-triplet
superconductivity induced by proximity effect. Under generic conditions, we find that unconventional magnets
not only drive a spin-singlet to spin-triplet conversion but also they transfer their parity symmetry that induces
superconducting correlations with higher angular momentum. For instance, a conventional spin-singlet s-wave
superconductor with d-wave altermagnetism is able to host odd-frequency mixed spin-triplet d-wave supercon-
ducting pair amplitudes, while when combining with p-wave magnetism the emerging superconducting pairing
acquires an even-frequency mixed spin-triplet p-wave symmetry. We further demonstrate that unconventional
magnetism produces even more exotic superconducting correlations in spin-singlet d-wave superconductors,
where odd-frequency mixed spin-triplet g-wave and even-frequency mixed spin-triplet f -wave pair symmetries
are possible in altermagnets and p-wave magnets, respectively. We also discuss how these ideas generalize to
spin-triplet p-wave superconductors and show how our results can be applied to unconventional magnets with
higher angular momentum, such as with f -, g-, and i-wave symmetries. Our results can help us understand the
emergent superconducting correlations due to the interplay of unconventional magnetism and superconductivity.

DOI: 10.1103/PhysRevB.111.144508

I. INTRODUCTION

The interplay between magnetism and superconductivity
represents one of the most studied areas in physics due
to its fascinating ground for superconducting phenomena
that hold potential for quantum applications [1–5]. Recently,
the field has experienced a boost due to the prediction of
magnets exhibiting zero net magnetization and a momentum-
dependent spin splitting of energy bands which leads to
anisotropic spin-polarized Fermi surfaces [6,7]. Interestingly,
these unconventional magnets can possess even- and odd-
parity magnetic orders originating from nonrelativistic effects
and protected by distinct symmetries. On one hand, the even
parity magnetic order can have d-, g-, or i-wave symmetries
and characterizes the so-called altermagnets (AMs), where
time-reversal symmetry is broken but inversion symmetry is
preserved. The candidate materials for AMs include RuO2

[8,9], Mn5Si3 [6,8], and MnF2 [10]. On the other hand, the
odd-parity magnetic order appears with p-wave symmetry and
defines the unconventional p-wave magnets (UPMs), where
time-reversal symmetry is preserved but inversion symmetry
is broken. In terms of candidate materials, UPMs can be
realized in Mn3GaN and CeNiAsO [11]. It is worth noting
that higher odd-parity magnetic order is also possible, with
f -wave magnets being one type of such order [12–14].

The intriguing properties of AMs and UPMs have moti-
vated several studies in the normal state and recently also
in systems with superconductivity [15], unveiling uncon-
ventional magnetism as a promising ground for realizing

exotic superconducting states. In this regard, the combina-
tion of superconductivity and AMs has already proven very
fruitful, with studies including anomalous Andreev reflec-
tions [16–20], exotic Josephson effects [20–26], topological
superconductivity [27–31], superconducting diodes [32–34],
magnetoelectric effects [35,36], quantum transport [37], and
finite-momentum superconductivity with zero net magneti-
zation [38–42]. In relation to UPMs, their combination with
superconductors has received less attention and the few stud-
ies address Andreev reflections [16], the Josephson effect
[25], and transport [37]. While all these efforts indeed reveal
the great potential of unconventional magnetism, it is still not
fully understood what types of superconducting states emerge
due to the interplay of superconductivity and unconventional
magnetism.

In this paper, we consider unconventional magnets with
distinct types of superconductivity, induced, e.g., by prox-
imity effect, and explore how their interplay impacts the
symmetries of the emergent superconducting correlations. For
this purpose, we address d-wave AMs and p-wave magnets
with spin-singlet and spin-triplet superconductivity, and then
we carry out a full classification of superconducting sym-
metries. We find that unconventional magnets act as a spin
mixer and induce spin-singlet to spin-triplet conversion in
spin-singlet and chiral p-wave superconductors, while they
do not for helical p-wave superconductors because the lat-
ter involve equal spin Cooper pairs. Interestingly, we also
discover that unconventional magnets transfer their parity
symmetry, which then gives rise to higher angular momentum
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emergent superconducting correlations in spin-singlet and
spin-triplet superconductors. As such, we find that odd-
frequency mixed spin-triplet d-wave superconducting pairing
emerges in conventional spin-singlet s-wave superconductors
with d-wave altermagnetism, while even-frequency mixed
spin-triplet p-wave pairs are possible when combining a
conventional superconductor with p-wave magnetism. For
spin-singlet d-wave superconductors combined with AMs and
p-wave magnets, we show that odd-frequency mixed spin-
triplet g-wave and even-frequency mixed spin-triplet f -wave
superconducting correlations appear, respectively. We obtain
a similar spin and parity conversion in chiral spin-triplet
p-wave superconductors, with an intriguing odd-frequency
spin-singlet f -wave pairing in d-wave AMs. Furthermore, we
demonstrate that our findings can be easily used for unconven-
tional magnets with higher angular momentum such as with
f -, g-, and i-wave symmetries, which then produce supercon-
ducting correlations with an even higher degree in momentum
and might help conceive previously reported predicted higher
angular momentum superconducting states [43–46].

The remainder of this paper is organized as follows. In
Sec. II, we discuss the models for unconventional magnets, the
distinct types of superconductors, the method for obtaining
the superconducting correlations, and density of states (DOS).
In Sec. III, we discuss the superconducting correlations in
superconductors with d-wave AMs, while in Sec. IV we focus
on superconductors with p-wave magnets, and we present
our conclusions in Sec. V. In the Appendix, we show how
our results can be used for obtaining the superconducting
correlations in unconventional magnets with higher angular
momentum.

II. MODEL AND METHOD

We are interested in investigating the types of supercon-
ducting correlations that emerge when combining supercon-
ductors and unconventional magnets, as depicted in Fig. 1.
We consider a two-dimensional (2D) unconventional magnet
modeled by

HN =
∑

k

ĉ†
kĥ(k)ĉk, (1)

with

ĥ(k) = ξkσ̂0 + Mkn̂ · σ̂, (2)

where ĉk = (ck↑, ck↓)�, ckσ is a fermionic operator that an-
nihilates an electronic state with momentum k = (kx, ky) and
spin σ . Moreover, ξk = h̄2|k|2/(2m) − μ is the kinetic energy,
μ is the chemical potential measuring the filling of the band,
Mk is the strength of the unconventional magnet that depends
on the wave number k, n̂ is the unit vector in the direction
of the magnetization, and σ̂i with i = 0, x, y, z are the Pauli
matrices in the spin space. We focus on recently predicted
unconventional magnets, including d-wave AMs and uncon-
ventional p-wave magnets. The d-wave AMs are described by
an effective momentum dependent exchange field given by

Md
k = J

k2
F

[(
k2

x − k2
y

)
cos 2α + 2kxky sin 2α

]
, (3)

FIG. 1. Schematic figure of the interface between a two-
dimensional unconventional magnet and a two-dimensional super-
conductor (middle panel). The top panel shows the shape of the
Fermi surfaces of the unconventional magnets, the d-wave AM and
UPM. The red and blue colors indicate the up and down spins, re-
spectively, while α is the angle between the x axis and the lobe of the
unconventional magnet. The bottom panel shows the pair potentials
d0(k) or d(k) of the distinct types of superconductors. The colors
represent the complex argument of the momentum dependence of
the pair potentials: + (cyan) and − (red) signs indicate the positive
and negative values, while purple and green colors represent the
complex arguments π/2 and −π/2; β is the angle between the x axis
and the lobe of the d-wave superconductor. The arrows indicate the
directions of the d vectors of the spin-triplet superconductors. The
little circles with a black dot inside them represent arrows directed
out of plane.

while the unconventional p-wave magnets by

M p
k = J

kF
[kx cos α + ky sin α]. (4)
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Here, J is the exchange energy, kF = √
2mμ/h̄ is the Fermi

wave number, and α represents the angle between the x axis
and the lobe of AM or unconventional p-wave magnet; see
Fig. 1(a). We note that the exchange field strength for AMs is
an even function of momentum (even parity), namely, Md

k =
Md

−k. For UPMs, the exchange field obeys M p
k = −M p

−k,
which is an odd function of momentum (odd parity). The
even parity symmetry of AMs also holds for unconventional
magnets with a higher even power in momentum such as
g- and i-wave magnets since Mg

k = Jkxky(k2
x − k2

y )/k4
F and

Mi
k = Jkxky(3k2

x − k2
y )(3k2

y − k2
x )/k6

F. Similarly, the odd parity
symmetry is also inherent to unconventional magnets with a
higher odd power in momentum such as in f -wave magnets,
where M f

k = Jkx(k2
x − 3k2

y )/k3
F. While we will mainly focus

on AMs and UPMs, whenever necessary we will also dis-
cuss unconventional magnets with higher angular momentum
dependence.

To account for superconductivity, we assume that the
unconventional magnet possesses homogeneously induced
superconductivity, e.g., by proximity effect, as depicted in
Fig. 1. The unconventional magnet with superconductivity can
therefore be described by a mean-field Hamiltonian written in
Nambu space as

HS = 1

2

∑
k

�
†
k ȞBdG(k)�k, (5)

with �k = (ck↑, ck↓, c†
−k↑, c†

−k↓)� being the Nambu spinor

and ȞBdG the Bogoliubov-de Gennes (BdG) Hamiltonian
given by

ȞBdG(k) =
(

ĥ(k) �̂(k)

�̂†(k) −ĥ∗(−k)

)
, (6)

where �̂(k) represents the pair potential and ĥ is the normal
state Hamiltonian given by Eq. (2). Taking into account the
spin structure, the pair potential can be written as [47]

�̂(k) = [d0(k)σ̂0 + d(k) · σ̂]iσ̂y, (7)

with d0(k) the spin-singlet pair potential and d(k) the d vec-
tor of the spin-triplet pair potential. We note that the pair
potential satisfies the relations d0(k) = d0(−k) and d(k) =
−d(−k), which can be shown by using the Fermionic com-
mutation relations. We here will analyze distinct types of
superconductors, including spin-singlet s- and d-wave as well
as spin-triplet chiral [48–52] and helical p-wave superconduc-
tors [53–56]. The spin-singlet and spin-triplet chiral p-wave
pair potential correspond to the spin projection with Sz = 0,
while the spin-triplet helical p-wave pair potential to the spin
projection with Sz = ±1. The specific form of their pair poten-
tials are detailed in Table I. We expect that the Hamiltonian
on the interface between the unconventional magnet and the
superconductor in Fig. 1 can be approximated by Eq. (5).
It is worth noting that, in terms of materials, conventional
spin-singlet s-wave superconductors can be fabricated using
Al, Nb, or NbTiN [57], while spin-singlet d-wave supercon-
ductors are likely to appear, e.g., in cuprates [58]. In the case
of spin-triplet p-wave superconductors, there already exist ev-
idence of their emergence in several materials, such as in UPt3
[59], UTe2 [60], and K2Cr3As3 [61]. Alternatively, spin-triplet

TABLE I. Expressions of the d vectors describing the pair po-
tentials of the superconductors considered in this paper. While d0(k)
describes the spin-singlet s- and d-wave superconductors, d(k) de-
scribes the spin-triplet chiral and helical p-wave superconductors.
The spin-triplet chiral (helical) p-wave pair potential corresponds
to the mixed spin-triplet (equal spin-triplet) superconductor [62].
Here, �0 is a constant quantity representing the amplitude of the pair
potential, while β depicts the angle between the x axis and the lobe
of the d-wave superconductor [58,63–66]; see Fig. 1. Moreover, kF

is the Fermi wave vector and (x̂, ŷ, ẑ) is a unit vector in 3D.

Type of superconductor Pair potential

Spin-singlet s wave d0(k) = �0

Spin-singlet d wave d0(k) = �0

[(
k2

x − k2
y

)
cos 2β

+ 2kxky sin 2β
]
/k2

F

Spin-triplet chiral p wave d(k) = �0(kx + iky )ẑ/kF

Spin-triplet helical p wave d(k) = i�0(kx ŷ + kyx̂)/kF

p-wave pair potentials can be designed by combining a con-
ventional spin-singlet s-wave superconductor with spin-orbit
coupling, e.g., in Al-InAs systems [57].

Superconducting correlations and density of states

To characterize the types of induced Cooper pairs,
we investigate the anomalous electron-hole component of
the Gorkov Green’s function Ǧ(k, iωn) in Nambu space.
Ǧ(k, iωn) is obtained as

Ǧ(k, iωn) = [iωn1̌ − ȞBdG(k)]−1, (8)

where ωn represents Matsubara frequencies, 1̌ is the 4 × 4
identity matrix, and ȞBdG(k) is the BdG Hamiltonian given by
Eq. (6). We then write Ǧ(k, iωn) as a 4 × 4 matrix in Nambu
and spin spaces [47,67,68],

Ǧ(k, iωn) =
(

Ĝ0(k, iωn) F̂ (k, iωn)

ˆ̄F (k, iωn) ˆ̄G0(k, iωn)

)
, (9)

where Ĝ0(k, iωn) and ˆ̄G0(k, iωn) represent the normal Green’s
functions, while F̂ (k, iωn) and ˆ̄F (k, iωn) are the anoma-
lous Green’s functions. Both the normal and the anomalous
Green’s functions are matrices in spin space given by

Ĝ0(k, iωn) =
(

G↑↑(k, iωn) G↑↓(k, iωn)

G↓↑(k, iωn) G↓↓(k, iωn)

)
,

F̂ (k, iωn) =
(

F↑↑(k, iωn) F↑↓(k, iωn)

F↓↑(k, iωn) F↓↓(k, iωn)

)
.

(10)

The normal Green’s function allows the calculation of the
density of states, while the anomalous Green’s function de-
termines the superconducting correlations. In particular, the
DOS is obtained as

D(E ) =
∫

A(k, E ) d2k, (11)

where A(k, E ) is the spectral function obtained as

A(k, E ) = − 1

π
Im tr Ĝ0(k, E + iη) (12)
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and η is an infinitesimal positive number that enables the
analytic continuation to real energies.

To identify the type of superconducting correlation, it
is necessary to unveil the symmetry of the pair amplitude
Fσσ ′ (k, iωn); see Refs. [67,68]. This is possible by exploit-
ing the antisymmetry condition imposed by the Fermi-Dirac
statistics on the pair amplitude under the total exchange of the
quantum numbers [69–72]:

Fσσ ′ (k, iωn) = −Fσ ′σ (−k,−iωn). (13)

Under the exchange of individual quantum numbers, the pair
amplitude Fσσ ′ (k, iωn) can be either even or odd but the total
exchange must pick up a minus sign as dictated by Eq. (13).
Without loss of generality, we can decompose the spin sym-
metry in the pair amplitudes by writing

F̂ (k, iωn) = [Fs(k, iωn)σ̂0 + F t (k, iωn) · σ̂]iσ̂y, (14)

where Fs(k, iωn) corresponds to the pair amplitude of spin-
singlet Cooper pairs and F t (k, iωn) corresponds to a vector
containing the pair amplitudes of spin-triplet Cooper pairs,

Fs(k, iωn) = 1
2 (F↑↓ − F↓↑),

F t (k, iωn) = (
F x

t , F y
t , F z

t

)
,

(15)

with

F x
t = 1

2
(−F↑↑ + F↓↓),

F y
t = 1

2i
(F↑↑ + F↓↓),

F z
t = 1

2
(F↑↓ + F↓↑).

(16)

For visualization and further understanding purposes, we also
define

�α (ωn) =
∫

d2k Fα (k, iωn) F†
α (k, iωn), (17)

where α = s, t and hence denotes that �α (ωn) is due to a
singlet or triplet pair amplitude. Note that the structure of
the pair amplitude F̂ (k, iωn) in Eq. (14) is the same as that
of the pair potential �̂(k) in Eq. (7); �̂(k) represents the
order parameter of the parent superconductor, while F̂ (k, iωn)
describes the emergent superconducting pairing. It is worth
noting that the normal and anomalous Green’s functions are
connected by the following relation:

Ĝ0(k, iωn) = F̂ (k, iωn)[iωnσ̂0 + ĥ∗(−k)]�̂(k)−1, (18)

which provides a useful way to explore the impact of emergent
pair correlations on the DOS. Equation (18) is generic and
applies to any type of superconductor.

Before going further, we anticipate the allowed sym-
metries of the superconducting correlations. By using the
antisymmetry condition given by Eq. (13), the pair ampli-
tudes develop four pair symmetry classes: (i) even-frequency
spin-singlet even-parity (ESE), (ii) even-frequency spin-
triplet odd-parity (ETO), (iii) odd-frequency spin-singlet
odd-parity (OSO) [73–79], and (iv) odd-frequency spin-triplet
even-parity (OTE) [2,69,70,72,80–94]. While all these pair
symmetry class are in principle allowed, their existence and
size are strongly dependent on the system under study [95].

For instance, within this classification, the spin-singlet (spin-
triplet) pair potentials shown in Table II correspond to ESE
(ETO) pair symmetry classes. In what follows, we will use
Eq. (8), together with Eq. (6), to identify all the possible
allowed superconducting correlations emergent due to the
combination of unconventional magnets and superconductors.

III. SUPERCONDUCTORS WITH d-WAVE MAGNETISM

We start by discussing the emergent superconducting cor-
relations in spin-singlet and spin-triplet superconductors with
d-wave altermagnetism characterized by the Hamiltonian
given by Eq. (3). We set the direction of the magnetization
as n̂ = ẑ with ẑ the unit vector along the z-direction.

A. Spin-singlet superconductors

For the spin-singlet pair potentials, with d0(k) due to a
spin-singlet s-wave or spin-singlet d-wave superconductor
given in Table II and d(k) = 0, we analytically obtain the
anomalous Green’s function and its components read

F↑↑(k, iωn) = F↓↓(k, iωn) = 0,

F↑↓(k, iωn) = − d0(k)

Qk(ωn) + 2iωnMd
k

,

F↓↑(k, iωn) = d0(k)

Qk(ωn) − 2iωnMd
k

,

(19)

where Qk(ωn) = ω2
n + ξ 2

k − [Md
k ]2 + |d0(k)|2 is an even func-

tion in both frequency and momentum. Using Eqs. (15) and
(19), we obtain spin-singlet and spin-triplet pair amplitudes
given by

Fs(k, iωn) = − d0(k)Qk(ωn)

[Qk(ωn)]2 + 4
[
Md

k

]2
ω2

n

,

F t (k, iωn) = 2iωnd0(k)Md
k ẑ

[Qk(ωn)]2 + 4
[
Md

k

]2
ω2

n

.

(20)

By a direct inspection of previous equations, we identify
that the spin-singlet pair amplitude Fs(k, iωn) has an
even-frequency dependence and is even in parity k since
d0(k) = d0(−k) and Qk(ωn) = Q−k(ωn); hence, Fs(k, iωn)
has ESE symmetry which fulfills the antisymmetry condition
given by Eq. (13). In the case of the spin-triplet F t (k, iωn), it
develops an odd-frequency dependence and is even in k since
both d0(k) and Md

k are even functions of momentum. The
even momentum dependence due to the AM field Md

k induces
a parity symmetry in F t (k, iωn) of d-wave nature. Thus, if
d0(k) corresponds to a spin-singlet s-wave superconductor,
the parity of F t (k, iωn) is d wave due to the AM. If d0(k)
corresponds to a spin-singlet d-wave superconductor, the
parity of F t (k, iωn) is given by the combined action of
both the d-wave AM and d-wave superconductor, which
can be interpreted as an induced g-wave parity. We remark
that F t (k, iωn) is a spin-triplet component along the z axis,
which characterizes pairing between distinct spins (mixed
spin-triplet). Hence, F t (k, iωn) is an OTE pair symmetry
class that satisfies the antisymmetry condition given by
Eq. (13). An interesting point to make here is that F t (k, iωn)
originates from the d-wave AM field Md

k , which here acts
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FIG. 2. Induced pair amplitudes and DOS in a spin-singlet s-
wave superconductor with a dx2−y2 -wave AM. (a) Absolute value of
the emergent OTE pair amplitude given by Eqs. (20) as a function
of momenta. The diagonal lines indicate the nodes of the OTE pair
amplitude, namely, where it becomes zero. (b) Argument of the
OTE pair amplitude as a function of momenta, where the purple
and green colors indicate the argument values of π/2 and −π/2,
respectively. In (a) and (b), ωn = 0.5�0 and J = 0.3�0. (c) Ratio
of the integrated pair potentials �t (iωn)/�s(iωn) as a function of
the exchange energy J and the Matsubara frequency ωn. The blue,
white, and red colors correspond to �t < �s, �t = �s, and �t > �s,
respectively. (d) DOS in arbitrary units (a. u.) as a function of energy
for distinct values of J . Parameters: �0 = 0.01μ.

as a spin mixing mechanism that induces mixed spin-triplet
superconducting correlations along ẑ. While ESE pairing
stems from the parent superconductor, OTE pairing is an
emergent superconducting correlation due to the interplay of
d-wave magnetism and spin-singlet superconductivity.

To visualize the emergence of superconducting correla-
tions given by Eqs. (20), in Figs. 2(a) and 2(b) we plot the
absolute value and argument of the OTE pair amplitude for a
spin-singlet s-wave superconductor with a dx2−y2 -wave AM as
a function of momenta [96]. Moreover, in Fig. 2(c) we show
the ratio between the integrated squared magnitudes of OTE
and ESE pair amplitudes as a function of exchange field J and
Matsubara frequency ωn, while in Fig. 2(d) we show the DOS
as a function of energy. The first observation in Fig. 2(a) is
that the OTE pair amplitude develops four nodes along the
diagonals in momentum space, which stem from the d-wave
character coming from the AM and therefore defines its even
parity; see white lines in Fig. 2(a). When inspecting the argu-
ment of the OTE pairing [Fig. 2(b)], it develops an alternating
opposite sign in four regions as one moves around momentum
space but still following an even momentum dependence that
reflects its even parity symmetry. While under general condi-
tions, both ESE and OTE pairing coexist [Eqs. (20)], the OTE
pairing can dominate when J is of the order of �0; see red
regions in Fig. 2(c). The effect of the exchange field J is also
evident in the DOS, where the superconducting gap shrinks
as J increases [Fig. 2(d)], ultimately leading to a gapless

FIG. 3. Induced pair amplitudes and DOS in a spin-singlet dxy-
wave superconductor with a dx2−y2 -wave AM. (a) Absolute value of
the emergent OTE pair amplitude given by Eqs. (20) as a function
of momenta. The diagonal lines indicate the nodes of the pair am-
plitude. (b) Argument of the OTE pair amplitude as a function of
momenta, where the purple and green colors indicate π/2 and −π/2,
respectively. In (a) and (b), ωn = 0.5�0 and J = 0.3�0. (c) Ratio of
the integrated pair potentials �t (iωn)/�s(iωn) as a function of the
exchange energy J and Matsubara frequency ωn. The blue, white, and
red colors indicate �t < �s, �t = �s, and �t > �s, respectively.
(d) DOS as a function of energy for distinct values of J . Parameters:
�0 = 0.01μ.

structure and a finite DOS for J > �0 [97]. Since the DOS
is given by the normal Green’s function and can be separated
into the pair amplitude contributions [Eq. (18)], a gapless
DOS signals an OTE dominant regime in a spin-singlet s-wave
superconductors with a dx2−y2 -wave AM.

Following a similar spirit, in Fig. 3 we present the same as
in Fig. 2 but for a spin-singlet dxy-wave superconductor with
a dx2−y2 -wave AM. The absolute value of the OTE pair ampli-
tude now unveils eight nodes, showing the g-wave symmetry
arising due to the interplay between d-wave AM and d-wave
superconductor; see the white lines in Fig. 3(a). Similarly, the
argument of the OTE pairing exhibits eight regions with alter-
nating opposite signs, confirming its g-wave parity symmetry
[Fig. 3(b)]. As noted above, the OTE pairing also coexists with
its ESE counterpart and acquire similar values but its domi-
nant behavior is rather challenging [Fig. 3(c)]. In relation to
the DOS shown in Fig. 3(d), it has a V shape already at J = 0
due to the d-wave nature of the parent superconductor. At
finite J , the DOS acquires finite constant values for energies
below |J| [Fig. 3(d)], a regime where ESE and OTE pairings
are equally important [Fig. 3(c)]. The flat DOS in Fig. 3(d) is
thus a signal of the emergence of OTE pairing in a spin-singlet
dxy-wave superconductor with a dx2−y2 -wave AM.

B. Spin-triplet superconductors

In the case of superconductors with unitary spin-triplet
pair potentials, we distinguish two cases, namely, spin-triplet
chiral p-wave superconductors and spin-triplet helical p-wave

144508-5



KAZUKI MAEDA et al. PHYSICAL REVIEW B 111, 144508 (2025)

superconductors; see Table II. Remember that the spin-triplet
chiral p-wave superconductors have mixed spin-triplet Cooper
pairs, while the spin-triplet helical p-wave superconductors
host equal spin Cooper pairs [55].

For spin-triplet chiral p-wave superconductors with spin-
triplet pair potentials having a d(k) vector parallel to the z axis
and d0(k) = 0 given in Table II, we obtain the pair amplitudes
given by

F↑↑(k, iωn) = F↓↓(k, iωn) = 0,

F↑↓(k, iωn) = − dz(k)

Pk(ωn) + 2iωnMd
k

,

F↓↑(k, iωn) = − dz(k)

Pk(ωn) − 2iωnMd
k

,

(21)

where Pk(ωn) = ω2
n + ξ 2

k − [Md
k ]2 + |dz(k)|2 is an even func-

tion of momentum and frequency. As for spin-singlet super-
conductors, we now use Eqs. (15) and (21) to identify the
spin symmetry of the pair amplitudes. Thus, we obtain the
spin-singlet and spin-triplet pair amplitudes given by

Fs(k, iωn) = 2iωndz(k)Md
k

[Pk(ωn)]2 + 4
[
Md

k

]2
ω2

n

,

F t (k, iωn) = − dz(k)Pk(ωn)ẑ

[Pk(ωn)]2 + 4
[
Md

k

]2
ω2

n

.

(22)

Taking into account that the d vector of the parent supercon-
ductor is odd in momentum dz(k) = −dz(−k) because it is p
wave, the spin-singlet pair amplitude Fs(k, iωn) in Eqs. (22)
exhibits an OSO symmetry while the spin-triplet amplitude
F t (k, iωn) has an ETO symmetry. The odd parity symmetry
in both pair amplitudes can be understood by noting that the
exchange of momentum in the xy plane gives rise to a minus
sign in the pair potential (Table II), which leads to a global
minus sign when exchanging k in dz(k). It is interesting to
note that the parity of the OSO pair amplitude is determined
by the interplay of dz(k) and Md

k , giving rise to a momentum
dependence of f -wave nature and hence higher than the parent
spin-triplet superconductor. Since the parent superconductor
here has a spin-triplet odd-parity pair potential [dz(k)], the
ETO pair symmetry stems from dz(k) while the OSO pair
correlation is an emergent effect arising due to the combined
effect of d-wave altermagnetism and the spin-triplet chiral su-
perconductivity. To further understand the above discussion,
the absolute value and argument of the OSO pairing is plotted
in Figs. 4(a) and 4(b) as a function of momenta for a spin-
triplet chiral p-wave superconductor with a dx2−y2 -wave AM.
We clearly see the four nodes coming from the d-wave nature
of the AM and the alternating signs [Figs. 4(a) and 4(b)],
which show the f -wave symmetry of the emergent OSO pair
amplitude. Moreover, the OSO pair amplitude can dominate at
J > �0, although in general it coexists with the ETO pairing;
see Fig. 4(c). Large values of J also reduce the gap in the
DOS and can lead to a finite subgap DOS for J > �0, as seen
in Fig. 4(d). This DOS feature can be then taken as a signal of
dominant OSO pairing; see also Eq. (18).

For spin-triplet helical p-wave superconductors having
spin-triplet pair potentials with d(k) vector perpendicular to
the z axis satisfying d∗(k) × d(k) = 0 [53], and d0(k) = 0,

FIG. 4. Induced pair amplitudes and DOS in a spin-triplet chiral
p-wave superconductor with dx2−y2 -wave AM. (a) The absolute value
of the emergent OSO pair amplitude given by Eqs. (22) as a function
of momenta. The diagonal white lines indicate the nodes of the OSO
pair amplitude. (b) Argument of the OSO pair amplitude as a function
of momenta, where the distinct colors show the value of the argument
as depicted in the color bar. In (a) and (b), ωn = 0.5�0 and J =
0.3�0. (c) Ratio of the integrated pair potentials �s(iωn)/�t (iωn)
as a function of the exchange energy J and the Matsubara frequency
ωn. The blue, white, and red colors depict �s < �t , �s = �t , and
�s > �t , respectively. (d) DOS as a function of energy for distinct
values of J . Parameters: �0 = 0.01μ.

dz(k) = 0, we obtain the pair amplitudes as

F↑↓(k, iωn) = F↓↑(k, iωn) = 0,

F↑↑(k, iωn) = dx(k) − idy(k)

ω2
n + (

ξk + Md
k

)2 + d∗(k) · d(k)
,

F↓↓(k, iωn) = −dx(k) − idy(k)

ω2
n + (

ξk − Md
k

)2 + d∗(k) · d(k)
.

(23)

Now, we use Eqs. (15) and (23) to decompose the spin
symmetry of the pair amplitudes. Then, the spin-singlet and
spin-triplet pair amplitudes are given by

Fs(k, iωn) = 0,

F t (k, iωn) = F‖(k, iωn) + F⊥(k, iωn),
(24)

with

F‖(k, iωn) = − d(k)[Rk(ωn)]

[Rk(ωn)]2 − 4ξ 2
k

[
Md

k

]2 ,

F⊥(k, iωn) = 2iξkMd
k ẑ × d(k)

[Rk(ωn)]2 − 4ξ 2
k

[
Md

k

]2 ,

(25)

where Rk(ωn) = ω2
n + ξ 2

k + [Md
k ]2 + d∗(k) · d(k) is a func-

tion that is even in both momentum and frequency. In
Eqs. (24), we see that no spin-singlet superconducting pairing
is induced, Fs(k, iωn) = 0. This is because the parent helical
spin-triplet p-wave pair potential represents equal spin Cooper
pairs and altermagnetism cannot mix distinct spins. Moreover,
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FIG. 5. Induced pair amplitudes and DOS in a spin-triplet helical
p-wave superconductor with dx2−y2 -wave AM. (a) The absolute value
of the emergent pair amplitude F⊥(k, iωn) given by Eqs. (25) as a
function of momenta at ωn = 0.5�0 and J = 0.3�0. The diagonal
lines indicate the nodes of F⊥(k, iωn). (b) DOS as a function of
energy for distinct values of J . Parameters: �0 = 0.01μ.

we find that there is a spin-triplet pair amplitude F‖(k, iωn)
originating from the parent spin-triplet pair potential, which
has ETO symmetry. Interestingly, there is also a spin-triplet
pair amplitude component F⊥(k, iωn) that is perpendicular
to the parent pair potential and originates entirely due to the
interplay of altermagnetism and spin-triplet helical supercon-
ductivity. In fact, while F⊥(k, iωn) requires altermagnetism to
be finite via Md

k , it is an odd function under the exchange of
momenta which is determined by the nature of the symmetry
of the superconductor, namely, d(k) = −d(−k). As a result,
the perpendicular pair amplitude F⊥(k, iωn) has ETO symme-
try. The odd-parity symmetry of F⊥(k, iωn) is determined by
the cubic power in momentum, a quadratic dependence due to
the d-wave AM via Mk and a linear dependence due to p-wave
superconductor via d(k), giving rise to a perpendicular pair
amplitude with f -wave parity. The transfer of the d-wave
symmetry from the AM to the perpendicular spin-triplet pair-
ing F⊥(k, iωn) is seen in Fig. 5(a) via the appearance of four
nodes for a spin-triplet helical superconductor with dx2−y2 -
wave altermagnetism. The DOS corresponding to this system
is shown in Fig. 5(b) as a function of energy at distinct values
of the exchange field J . The DOS very weakly depends on the
exchange field, which is not evident from the naked eye even
for reasonable J values [Fig. 5(b)]. This thus suggests that it is
challenging to identify the dominant behavior of F⊥(k, iωn)
from the DOS via Eq. (18). In closing, we stress that the
results obtained in this section are also applicable to other
UMs with higher even-parity angular momentum dependence,
as we demonstrate in the Appendix.

IV. SUPERCONDUCTORS WITH p-WAVE MAGNETISM

Having discussed superconductors with d-wave alter-
magnetism, in this section we investigate the emergent
superconducting correlations in spin-singlet and spin-triplet
superconductors with p-wave magnetism. The superconduc-
tors with p-wave magnetism are modeled by Eq. (6), where
the pair potentials are given by Eq. (7) and Table II and the p-
wave magnets described by Eq. (4). Here, we set the direction
of the magnetization as n̂ = ẑ with ẑ the unit vector along
the z direction. To obtain the emergent pair amplitudes, we
follow the discussion presented in Sec. II A, which involves

the calculation of the anomalous Green’s functions associated
to the BdG Hamiltonian given by Eq. (6).

A. Spin-singlet superconductors

In the case of spin-singlet pair potentials characterized by
d0(k) 
= 0 and d(k) = 0, we find that the components of the
anomalous Green’s function are given by

F↑↑(k, iωn) = F↓↓(k, iωn) = 0,

F↑↓(k, iωn) = − d0(k)

ω2
n + (ξk + Mk)2 + |d0(k)|2 ,

F↓↑(k, iωn) = d0(k)

ω2
n + (ξk − Mk)2 + |d0(k)|2 .

(26)

Thus, by plugging Eqs. (26) into Eqs. (15), we decompose the
spin symmetry and obtain the spin-singlet and spin-triplet pair
amplitudes,

Fs(k, iωn) = − d0(k)Qp
k (ωn)[

Qp
k (ωn)

]2 − 4ξ 2
k

[
M p

k

]2 ,

F t (k, iωn) = 2d0(k)ξkM p
k ẑ[

Qp
k (ωn)

]2 − 4ξ 2
k

[
M p

k

]2 ,

(27)

where Qp
k (ωn) = ω2

n + ξ 2
k − [M p

k ]2 + |d0(k)|2 is an even func-
tion in both momentum and frequency.

From previous expressions, we directly identify that
Fs(k, iωn) has ESE pair symmetry, where the even parity
is dictated by the parent superconductor via d0(k), which
can be s wave or d wave; see Table II. The ESE symme-
try of Fs(k, iωn) fulfils the antisymmetry condition given by
Eq. (13). For the spin-triplet pair amplitude F t (k, iωn), we
find that it is along z, has an even-frequency dependence, and
is odd in momentum k due to the p-wave magnet via M p

k . The
p-wave parity of the UPM (M p

k = −M p
−k) is then transferred

to F t (k, iωn). As a result, F t (k, iωn) represents a pair ampli-
tude with ETO symmetry, which satisfies the antisymmetry
condition given by Eq. (13). For a spin-singlet s-wave pair po-
tential d0(k), the odd parity symmetry of the ETO amplitude
F t (k, iωn) stems from a momentum dependence that is linear
since M p

k is linear for a p-wave magnet. For a spin-singlet
d-wave pair potential d0(k), the odd parity arises due to a
momentum dependence that is cubic, linear due to M p

k , and
quadratic due to d0(k), implying that the overall odd parity of
F t (k, iωn) has an f -wave nature.

As an example of the above discussion, in Figs. 6(a) and
6(b) we show the absolute value and argument of the emerging
ETO pairing F t (k, iωn) for a spin-singlet s-wave supercon-
ductor with a px-wave magnet as a function of momenta. The
ETO amplitude exhibits two nodes at kx = 0 [Fig. 6(a)] and
its argument acquires values of 0, π that reflect the oddness
in momentum [Fig. 6(b)]. The circle formed in Fig. 6(b)
around zero momenta with changing sign has a radius defined
by kF and comes from ξk in the numerator of F t (k, iωn)
in Eqs. (27). The size of the induced ETO pairing hardly
overcomes the ESE pairing due to the parent superconductor
[Fig. 6(c)], which makes it difficult to be distinguishable in
the DOS at reasonable values of J [Fig. 6(d)]. When the
superconductor is dx2−y2 wave and the magnet is px wave,
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FIG. 6. Induced pair amplitudes and DOS in a spin-singlet s-
wave superconductor with px-wave magnet. (a) The absolute value
of the emergent ETO pair amplitude given by Eqs. (27) as a function
of momenta. The vertical line indicates the nodes of the ETO pair
amplitude. (b) Argument of the ETO pair amplitude as a function of
momenta, where the cyan and red colors indicate the argument values
0 and ±π , respectively. In (a) and (b), ωn = 0.5�0 and J = 0.3�0.
(c) Ratio of the integrated pair potentials �t (iωn)/�s(iωn) as a func-
tion of the exchange energy J and the Matsubara frequency ωn. The
blue, white, and red colors depict �t < �s, �t = �s, and �t > �s,
respectively. (d) DOS as a function of energy for distinct values of J .
Parameters: �0 = 0.01μ.

the ETO pairing develops six nodes marked by white lines
in Fig. 7(a) unveiling its f -wave symmetry, out of which
four stem from the d-wave superconductor and two from the
p-wave magnet. The argument of ETO here picks up 0, π

that shows the odd-parity symmetry [Fig. 7(b)]. Moreover,
ETO can be equally large as ESE even at weak J [Fig. 7(c)],
implying that both contribute to the V-shaped DOS, as seen
in Fig. 7(d); see also Eq. (18). The DOS profile originates
from the d-wave nature of the superconductor and remains
largely unchanged for reasonable values of the strength of
J for a p-wave magnet. The DOS insensitivity to variations
of J can be understood by noting that the effect of J enters
via the normal dispersion ξkσ . In fact, ξkσ can be rewrit-
ten as ξkσ = [h̄2/(2m)]{(kx + sgn(σ )[mJ/(h̄2kF )] cos α)2 +
(ky + sgn(σ )[mJ/(h̄2kF )] sin α)2} − (μ + [J2/(4μ)]), where
sgn(σ ) by sgn(↑) = +1 and sgn(↓) = −1. Hence, J ef-
fectively shifts the wavevector’s origin and changes the
chemical potential’s effective value. Thus, after integrat-
ing the spectral function in k-space, the effect of k-shift
due to J is canceled, which results in the DOS shown in
Fig. 7(d).

We further point out that when combining dxy-wave
superconductivity with py-wave magnetism, the ETO pair am-
plitude is an odd function of kx and an even function of ky, thus
having an odd-parity symmetry as when combining dxy-wave
superconductivity with px-wave magnetism discussed above.
In this regard, it is worth noting that the emergence of ETO
pair correlations have been predicted before in the bulk of a

FIG. 7. Induced pair amplitudes and DOS in a spin-singlet
dx2−y2 -wave superconductor with px-wave magnet. (a) The absolute
value of the emergent ETO pair amplitude given by Eqs. (27) as a
function of momenta. The diagonal and vertical lines indicate the
nodes of the ETO pair amplitude. (b) Argument of the ETO pair
amplitude as a function of momenta, where the cyan and red colors
indicate 0 and ±π , respectively. In (a) and (b), ωn = 0.5�0 and J =
0.3�0. (c) Ratio of the integrated pair potentials �t (iωn)/�s(iωn) as
a function of the exchange energy J and the Matsubara frequency
ωn. The blue, white, and red colors depict �t < �s, �t = �s, and
�t > �s, respectively. (d) DOS as a function of energy for distinct
values of J . Parameters: �0 = 0.01μ.

spin-singlet dxy-wave superconductor with a persistent spin
helix that has a spin-splitting similar to the py-wave UPMs
studied here; see Refs. [98,99]. Our findings thus show their
applicability to other systems beyond spin-singlet supercon-
ductors with unconventional p-wave magnets.

B. Spin-triplet superconductors

We now obtain the emergent pair amplitudes for spin-
triplet superconductors with p-wave magnetism. We consider
spin-triplet chiral and spin-triplet helical p-wave supercon-
ductors with the pair potentials given in Table II, which
characterize mixed-spin triplet and equal-spin triplet Cooper
pairs, respectively.

For spin-triplet chiral p-wave superconductors, we con-
sider the pair potential determined by d(k) ‖ ẑ and d0(k) = 0.
Hence, the components of the anomalous Green’s functions
are given by

F↑↑(k, iωn) = F↓↓(k, iωn) = 0,

F↑↓(k, iωn) = − dz(k)

ω2
n + (

ξk + M p
k

)2 + |dz(k)|2
,

F↓↑(k, iωn) = − dz(k)

ω2
n + (

ξk − M p
k

)2 + |dz(k)|2
.

(28)
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FIG. 8. Induced pair amplitudes and DOS in a spin-triplet chiral
p-wave superconductor with px-wave magnet. (a) The absolute value
of the emergent ESE pair amplitude given by Eqs. (29) as a function
of momenta. The vertical lines indicate the nodes of the ESE pair
amplitude. (b) Argument of the ESE pair amplitude as a function of
momenta, where the distinct colors show the value of the argument as
depicted in the color bar. In (a) and (b), ωn = 0.5�0 and J = 0.3�0.
(c) Ratio of the integrated pair potentials �s(iωn)/�t (iωn) as a func-
tion of the exchange energy J and the Matsubara frequency ωn. The
blue, white, and red colors depict �s < �t , �s = �t , and �s > �t ,
respectively. (d) DOS as a function of energy for distinct values of J .
Parameters: �0 = 0.01μ.

We can now use Eqs. (15) and (28) to obtain the spin-singlet
and spin-triplet pair amplitudes, which read

Fs(k, iωn) = 2ξkM p
k dz(k)[

Pp
k (ωn)

]2 − 4ξ 2
k

[
M p

k

]2 ,

F t (k, iωn) = − Pp
k (ωn)dz(k)ẑ[

Pp
k (ωn)

]2 − 4ξ 2
k

[
M p

k

]2 ,

(29)

where Pp
k (ωn) = ω2

n + ξ 2
k − [M p

k ]2 + |dz(k)|2 is an even func-
tion in both momentum and frequency. We realize that the
spin-singlet pair amplitude Fs(k, iωn) is even in momentum,
which, interestingly, occurs due to the simultaneous effect
of chiral p-wave superconductivity and p-wave magnetism
via dz(k) and M p

k , respectively. In fact, both effects are odd
in momentum, namely, dz(k) = −dz(−k) and M p

k = −M p
−k,

hence resulting in an even in momentum dependence. Hence,
Fs(k, iωn) has an ESE symmetry, consistent with the anti-
symmetry condition dictated by Eq. (13). The even parity of
Fs(k, iωn) is given by a quadratic dependence on momentum,
which can then be interpreted as a sort of d-wave symmetry.
When it comes to the spin-triplet pair amplitude F t (k, iωn),
it is linearly proportional to dz(k), which then determines
its odd-parity symmetry directly coming from the chiral p-
wave nature of the parent superconductor. These dependences
classify F t (k, iωn) as an ETO pair amplitude. To visualize
the behavior of the emerging ESE pairing discussed here,
in Figs. 8(a) and 8(b) we show its absolute value and its
argument as a function of momenta. As expected, it has two

nodes at kx = 0 due to the p-wave magnet and its argument
acquires values that show the evenness in momentum, while
developing an inner circle defined by ξk, see Fig. 8(b). The
size of ESE is rather small in comparison to ETO, albeit large
J can induce sizable values but still smaller [Fig. 8(c)]. This
implies that identifying the contribution from the ESE pairing
in the DOS is challenging [Fig. 8(d)].

When it comes to spin-triplet helical p-wave superconduc-
tors with pair potentials having a d(k) vector perpendicular to
the z-axis as d∗(k) × d(k) = 0 and d0(k) = 0, we find

F↑↓(k, iωn) = F↓↑(k, iωn) = 0,

F↑↑(k, iωn) = dx(k) − idy(k)

Rp
k (ωn) + i2M p

k ωn
,

F↓↓(k, iωn) = −dx(k) − idy(k)

Rp
k (ωn) − i2M p

k ωn
.

(30)

where Rp
k (ωn) = ω2

n + ξ 2
k − [M p

k ]2 + d∗(k) · d(k) Now, com-
bining Eqs. (15) and (30), we obtain the spin-singlet and
spin-triplet pair amplitudes,

Fs(k, iωn) = 0,

F t (k, iωn) = F‖(k, iωn) + F⊥(k, iωn),
(31)

where

F‖(k, iωn) = − d(k)Rp
k (ωn)[

Rp
k (ωn)

]2 + 4ω2
n

[
M p

k

]2 ,

F⊥(k, iωn) = − 2ωkM p
k ẑ × d(k)[

Rp
k (ωn)

]2 + 4ω2
n

[
M p

k

]2 .

(32)

Equations (31) show that no spin-singlet superconducting
correlations are induced by combining p-wave magnetism
and spin-triplet helical superconductors. Moreover, Eqs. (31)
demonstrate that the spin-triplet pair amplitude develops two
orthogonal components, F‖,⊥(k, iωn). There emerges a pair
amplitude F‖(k, iωn) that is parallel to the d(k) vector of
the parent superconductor, with odd parity due to d(k) =
−d(−k), thus classifying F‖(k, iωn) as an ETO pair sym-
metry class coming from the parent superconductor and in
line with Eq. (13). In the spin-triplet pair amplitude, we also
obtain F⊥(k, iωn), which is perpendicular to the d(k) vector
of the parent superconductor. This spin-triplet pair amplitude
is odd in frequency and has even parity, and hence belongs to
class OTE. The even parity pair symmetry is a result of the
combined effect of the p-wave magnet via M p

k and the the par-
ent superconductor via d(k). While both M p

k and d(k) induce
a linear in momentum dependence, the resulting momentum
dependence of F⊥(k, iωn) is a quadratic dispersion and hence
behaves as a d-wave symmetry. The emerging OTE pairing
F⊥(k, iωn) is shown in Fig. 9(a) as a function of momenta,
where we note its vanishing value at kx due to the nature of
the p-wave magnet. In this case, the effect of J in the DOS
is that it reduces the energy gap [Fig. 9(b)], which can fill up
for J > �0 with a sizable contribution due to the emerging
perpendicular OTE pairing. The discussion presented here
can be further generalized to UMs with higher odd-parity
momentum dependence, as discussed in the Appendix.
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FIG. 9. Induced pair amplitudes and DOS in a spin-triplet helical
p-wave superconductor with px-wave magnet. (a) The absolute value
of the emergent OTE pair amplitude given by Eqs. (32) as a function
of momenta at ωn = 0.5�0 and J = 0.3�0. The vertical line indi-
cates the nodes of the OTE pair amplitude. (b) DOS as a function of
energy for distinct values of J . Parameters: �0 = 0.01μ.

V. CONCLUSIONS

In conclusion, we have investigated the emergence of su-
perconducting correlations in unconventional magnets with
spin-singlet and spin-triplet superconductivity. We have
demonstrated that unconventional magnets induce a spin-
singlet to mixed spin-triplet conversion in spin-singlet and
spin-triplet chiral p-wave superconductors, while such a
conversion is absent in spin-triplet helical p-wave super-
conductors. Moreover, we have shown that unconventional
magnets transfer their parity symmetry to the emerging su-
perconducting correlations, which makes them have a higher
degree in their momentum dependence. In the case of con-
ventional spin-singlet s-wave superconductors, we found that
d-wave altermagnetism and p-wave magnetism can induce,
respectively, odd-frequency mixed spin-triplet d-wave and
even-frequency mixed spin-triplet p-wave superconducting
correlations. For spin-singlet d-wave superconductors, we
obtained that d-wave altermagnets can host odd-frequency
mixed spin-triplet g-wave pairing, while an even-frequency
mixed spin-triplet f -wave pairing emerges in p-wave mag-
nets. When combining spin-triplet chiral p-wave supercon-
ductors with d-wave altermagnetism and p-wave magnetism,
we showed that odd-frequency spin-singlet f -wave and even-
frequency spin-singlet d-wave superconducting correlations
are induced, respectively. Finally, for spin-triplet helical p-
wave superconductors, we found that even-frequency equal
spin f -wave and odd-frequency equal spin d-wave pair am-

plitudes form in d-wave altermagnets and p-wave magnets,
respectively. Table II summarizes the emergent pair symme-
tries due to the combined effect of superconductivity and
unconventional magnetism. Our findings offer a comprehen-
sive discussion of the possible emergent superconducting
correlations in unconventional magnets.

Note added. Recently, we became aware of
Refs. [100–102], which partially overlap with some of
the topics studied in our present paper.
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APPENDIX: SUPERCONDUCTORS
WITH f -, g-, AND i-WAVE MAGNETS

In this Appendix, we highlight that the obtained expres-
sions for the emergent superconducting correlations Fs(iωn, k)
and F t (iωn, k) in Secs. II and III are also applicable to su-
perconductors with more exotic unconventional magnetism
having the magnetization direction as n̂ = ẑ such as due to
magnets with f -, g-, and i-wave symmetry. This is because
the effective exchange field of g- and i-wave magnets exhibits
the same even parity symmetry as the d-wave AMs studied
in this paper, Mk = M−k; hence, the results of Sec. III on
AMs are directly applicable to superconductors with g- and i-
wave magnets. Similarly, f -wave magnets exhibit an effective
exchange field that is odd in momentum, Mk = −M−k; this
implies that the results of Sec. IV on p-wave magnets are
valid for superconductors with f -wave magnets. Of course

TABLE II. List of emergent pair symmetry classes when combining superconductivity with unconventional magnetism. Top row and
leftmost column indicate the type of superconductor and unconventional magnet, respectively. From the second column and second row,
the symmetries of the induced pair amplitudes are indicated. For instance, the combination of spin-singlet s-wave superconductivity with
d-wave AM results in two pair symmetry classes which are s-wave ESE and d-wave OTE, with a d vector parallel to the z axis. The
symbols s, p, d, f , . . . -wave indicate that the pair amplitudes can be written as homogeneous polynomials of momenta (kx and ky) of degree
0, 1, 2, 3, . . . , respectively.

Magnet/SC Singlet s wave Singlet d wave Triplet chiral p wave Triplet helical p wave

s-wave ESE d-wave ESE p-wave ETO(‖ d) p-wave ETO(‖ d)
d-wave altermagnet

d-wave OTE(‖ ẑ) g-wave OTE(‖ ẑ) f -wave OSO f -wave ETO(‖ ẑ × d)

s-wave ESE d-wave ESE p-wave ETO(‖ d) p-wave ETO(‖ d)
p-wave magnet

p-wave ETO(‖ ẑ) f -wave ETO(‖ ẑ) d-wave ESE d-wave OTE(‖ ẑ × d)
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FIG. 10. Induced pair amplitudes and DOS in a spin-singlet
dx2−y2 -wave superconductor with a g-wave AM. (a) Absolute value
of the emergent OTE pair amplitude given by Eqs. (20) as a function
of momenta, where the white lines indicate the nodes of the OTE pair
amplitude. (b) Argument of the OTE pair amplitude as a function of
momenta, where the purple and green colors indicate the values of
π/2 and −π/2, respectively. Parameters: �0 = 0.01μ, ωn = 0.5�0,
and J = 0.3�0, α = 0.

that the parity of the induced pairing also develops a higher
momentum dependence as discussed in Secs. III and IV.

As an example, we consider the case of a spin-singlet
dx2−y2 -wave superconductor with a g-wave AM. A generic
expression for the exchange field of a g-wave AM can be

written as

Mg
k = J

k4
F

[(
k4

x − 6k2
x k2

y + k4
y

)
cos 4α

+ 4kxky
(
k2

x − k2
y

)
sin 4α

]
, (A1)

where α represents the angle between the x axis and the
lobe of AM. Note that for α = π/8, Eq. (A1) reduces to
the expression for the g-wave AM given below Eq. (4) up
to a factor of 4. Since this type of AM has an even parity,
namely, Mg

k = Mg
−k, the emergent pair amplitudes are in this

case given by Eqs. (20). Hence, the combination of the g-wave
nature of the AM and the d-wave nature of the superconductor
originates an emergent OTE pairing with sextic momentum
dependence (degree 6). To visualize this exotic emergent OTE
pairing, in Figs. 10(a) and 10(b) we plot its magnitude and
argument as a function of momenta at α = 0. It is interesting
to see that this induced OTE pairing has 12 nodes [Fig. 10(a)]
and its argument develops an alternating opposite sign when
going around momentum [Fig. 10(b)]. The results therefore
support the discussion of Secs. III and IV on the role of uncon-
ventional magnetism for inducing a spin-singlet to spin-triplet
conversion and also for changing the parity of the emergent
superconducting correlations.
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