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The antiferromagnetic (AFM) spintronics have aroused comprehensive interest due to the fast magnetic
dynamic response and lack of stray fields. However, probing and manipulating AFM order has always been
a scientific challenge due to the lack of macroscopic statistical magnetic moments and insensitivity to external
fields. So, the discovery, control, and detection of AFM materials has important scientific and practical signif-
icance. In this paper, we propose a strategy to control and detect the AFM order through electrical and optical
methods, and demonstrate its feasibility with a group of one-dimensional (1D) materials MoX3(X = Cl, Br, I) as
examples. The basic concept is to use the antisymmetric Compton profile to distinguish the ferrotoroidic order
and antiferrotoroidic order in the 1D AFM spin chain based on the magnetoelectric multipole theory. MoX3 is
predicted to be an AFM semiconductor by the anisotropic Heisenberg model and Monte Carlo simulation. More-
over, under hole doping the magnetic ground state can switch between two different AFM states with different
symmetry and short-range vortex order. More interesting, two different AFM orders, respectively, correspond
to 1D ferrotoroidic and antiferrotoroidic states. Due to the existence of toroidal moment in ferrotoroidic state,
the Compton scattering provides an intuitive detection of magnetic configurations by optical method. Through
symmetry analysis and theoretical calculations, we show that the antisymmetric Compton profile serves as a
detectable fingerprint that can be used to distinguish the symmetry-dependent toroidic phase transition or AFM
orders. One-dimensional materials have potential application prospect in the development of miniaturization
and high-density integration of devices while maintaining 1D electron transport. Therefore, the tunable and
detectable AFM order endows 1D MoX3 chain with great possibility for future applications in AFM spintronics.
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I. INTRODUCTION

Spintronics is an attractive branch of condensed matter
physics, which involves the utilization of electronic spin
for information storage and processing [1]. Low-dimensional
spintronic materials with high spin polarization and high
Curie temperature are highly desirable for practical ap-
plications [2]. Ferromagnets provide a potential platform
for practical devices with noticeable spintronic effects due
to the intrinsic magnetic order [3]. This makes it possi-
ble to create magnetic random-access memory, which has
unique advantages over semiconductor-based alternatives in-
cluding nonvolatility, extended durability, and low power
consumption.

Different from ferromagnets, antiferromagnets have been
largely ignored due to their vanishing statistical magnetiza-
tion and insensitivity to magnetic fields, posing fundamental
challenges for probing and manipulating the antiferromag-
netic (AFM) order, which only work as passive ingredients in
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magnetic tunnel junctions by pinning adjacent ferromagnets.
However, compared to ferromagnets, AFM materials have
ultrahigh dynamic speed and low sensitivity to stray magnetic
fields, which makes them more efficient for high-speed device
operation. So, AFM spintronic devices have received much
attention in recent years [4–6]. But, the two most fundamental
functions of the AFM sequence as a data storage device are
control and reading, which is a key challenge in AFM spin-
tronics.

In addition, in order to meet the demands of device minia-
turization, materials science is undergoing the evolution of
dimensionality reduction from 3D to 2D and now to 1D [7].
Recent developments have shown that reducing material di-
mensions from a single atom sheet to a single atom chain
not only opens new avenues for practical applications but
also leads to breakthroughs in fundamental theory. Examples
include high critical temperature superconductivity in 1D iron
or copper chains and ladders [8,9], ferroelectricity induced by
phonon modes or spin ordering [8], charge-density wave or
spin-density wave states [10], spin block states in the orbital-
selective Mott regime of iron 1D ladders or chains [11], and
so on. This can, to some extent, compensate for the drawbacks
of higher-dimensional materials. Atomic chains not only
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offer dimensional advantages but also expand and strengthen
the properties of original bulk or high-dimensional materials,
facilitating theoretical model development and experimental
control of the correlation between various physical properties
[12]. One-dimensional magnetic systems, usually in the form
of spin chains, have become a thriving field of research, il-
lustrating many key concepts in many-body quantum physics
and even inspiring the recent search for new phases of matter,
such as the Majorana fermion [13–15]. Recently, many 1D
magnetic materials have been investigated by both experi-
mental and theoretical approaches, including 1D OsCl4 [11],
CrSbSe3 [16,17], TiI3 [18], VI3 [19], CuBr3 [20], and WOI3

[21]. However, developing efficient and feasible methods to
regulate and detect the AFM order in 1D materials remains a
huge challenge.

In this work, we have proposed a strategy to control and
detect the AFM order through electrical and optical methods,
and taken a group of 1D materials MoX3 (X = Cl, Br, I) as ex-
amples to demonstrate the feasibility of strategy. We predicted
a stable 1D MoX3 dimeric chain, characterized by alternating
short and long Mo-Mo pairs along the period direction. The
magnetic ground state is an AFM semiconductor, with an easy
plane perpendicular to the chain direction and a large mag-
netic anisotropy energy (MAE). Moreover, under hole doping,
the magnetic ground state switches between two distinct AFM
orders with different symmetry due to a sign change in the
exchange interactions between second-nearest neighboring
Mo atoms. Interestingly, these two different AFM orders
correspond, respectively, to 1D ferrotoroidic and antiferro-
toroidic states. Through symmetry analysis and theoretical
calculations of antisymmetric Compton profile we elucidate
the different responses of two AFM orders and underlying
physical mechanism.

II. RESULTS AND DISCUSSION

A. Concept and mechanism

Ferroic materials exhibit spontaneous ordering of spin,
charge, or strain. The AFM order is a spin-ordered state,
but it lacks a net magnetic dipole, making its measurement
a challenging task. Although some methods such as neutron
diffraction [22,23] and second-harmonic generation [24,25]
have been used for measuring AFM order, new alternative
methods still need to be explored for different applications and
convenience. There is a special AFM order that can induce
the toroidal moments, known as the ferrotoroidic order. It can
be described by defining a toroidal moment,

⇀

t = ∑
i

⇀

r i × ⇀

si,
where

⇀

r i and
⇀

si are the position and spin vector of the ith
ion, respectively, and the sum covers all ion positions in
the cell. The intensity of toroidal moment can be defined as

the toroidal moment per unit volume,
⇀

T = ⇀

t /V. As shown
in Fig. 1, the uniform arrangement of 1D AFM spin chain
results in a nontoroidal state due to the complete cancellation
of adjacent toroidal moment. However, 1D AFM spin chain
arranged in dimerization generates a 1D ferrotoroidic state
due to the net toroidal moment. Similar to the definition of
ferroelectric polarization, the periodicity leads to uncertainty
in the value of toroidal moment. Therefore, according to the
definition of polarization intensity in periodic systems, the

FIG. 1. (a) A uniformly arranged 1D AFM spin chain model with
zero toroidal moment. (b) A dimerized 1D AFM spin chain model
with a net toroidal moment. (c) A dimerized 1D AFM spin chain
model with zero toroidal moment.

intensity of toroidal moment can be defined as the difference
between the ferrotoroidic state and the nontoroidal state [26]

and thus it will have a uniquely determined value
⇀

T = sd
4 ,

which is an observed physical quantity.
A promising method for detecting ferrotoroidic order in-

volves measuring the antisymmetric Compton profile [27–29]
through Compton scattering experiments, an inelastic x-ray
scattering technique [30]. Compton scattering refers to the
phenomenon where the energy and momentum of photons
change after colliding with electrons in matter. It is mainly
used to study the electronic structure and magnetic properties
of matter. The Compton profile reflects the distribution of
electron momentum density, closely related to the symmetry
of the crystal structure, electronic structure, and magnetic
order. As a comparison, Raman scattering is also a scattering
spectroscopy technique [31–33]. It is mainly used to study the
structure and vibration modes of molecules by measuring the
frequency changes of scattered light and is not usually used to
directly measure magnetism.

The antisymmetric Compton profile is denoted as JA(pz ) =
1
2 [J (pz ) − J (−pz )], where the Compton profile J (pz ) =
1
n

∫∫ ∞
−∞ ρ(

⇀

p)d pxd py is the projection of electron momentum

density ρ(
⇀

p) along the specific direction (z) in momentum
space. The electron momentum density ρ(

⇀

p) can be calculated
from the wave function obtained through the first-principles
calculations. For systems possessing either spatial-inversion
symmetry or time-reversal symmetry, the Compton profile
must satisfy J (pz ) = J (−pz ). Consequently, the antisym-
metric Compton profile is vanishing. However, in systems
that simultaneously break spatial-inversion and time-reversal
symmetries, such as the ferrotoroidic state, this symmetry
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FIG. 2. (a) Crystal structure of bulk MoX3. (b) The side view of 1D MoX3 chain. The exchange interaction parameters between the short
Mo-Mo pair, the long Mo-Mo pairs, and the next-nearest Mo-Mo pairs are denoted as J1, J2, and J3, respectively. (c) The phonon spectrum of
1D MoBr3. (d) The cleavage energy of MoBr3.

constraint is no longer satisfied. This theoretical founda-
tion enables the characterization of ferrotoroidic order using
Compton profiles. According to the magnetoelectric (ME)
multipole expansion theory [30], the antisymmetric Comp-
ton profile is related to the toroidal moment by JA(pz ) �
pz

⇀

t · ẑ
∫∫ A1(p)

p d pxd py, where
⇀

t is the toroidal moment, pz

is the projection direction of the electron momentum, and
A1(p) is the radial part of the multipole expansion. If a

nonzero
⇀

t exists in the system, such as tz, then JA(pz ) will be
nonzero and antisymmetric along the pz direction. Therefore,
the connection between the antisymmetric Compton profile
and the ferrotoroidic moment provides an effective method for
characterizing the ferrotoroidic order through the Compton
scattering experiment.

Ferrotoroidic materials are exceedingly rare, and related
research reports are limited. Currently, ferrotoroidic domains
have been observed in LiCoPO4 materials [34], where the ma-
nipulation of ferrotoroidic domains has been achieved under
an external vortex electromagnetic field. Since two antiparal-
lel spins constitute the simplest toroidal moment, we take 1D
AFM spin chain as an example to illustrate the ferrotoroidic-
ity. In a uniformly arranged 1D AFM spin chain in Fig. 1(a),
no toroidal moment exists due to the space-inversion symme-
try. However, the dimerized atomic structure and staggered
AFM configuration break both the space-inversion symme-
try and time-reversal symmetry, giving rise to a net toroidal
moment in Fig. 1(b). By regulating the exchange interaction

between adjacent sites, it is possible to obtain the different
AFM order, as shown in Fig. 1(c). Due to the absence of a net
toroidal moment, it can be classified as an antiferrotoroidic
state. Consequently, Compton scattering serves as an alterna-
tive method for detecting and distinguishing the ferrotoroidic
and antiferrotoroidic state. In this paper, we present findings
on such a group of 1D van der Waals (vdW) ferrotoroidic
materials. Due to the vdW interaction between 1D chains,
the experimental realization of true 1D materials has been
achieved [35]. Most importantly, we found that the hole dop-
ing can tune exchange interactions, leading to the transition
from a ferrotoroidic state to an antiferrotoroidic state. This
provides opportunities for controlling and detecting AFM or-
der via Compton scattering. In the following, we take 1D
MoX3 as an example to to elaborate on our proposed concept.

B. Structures and stability of 1D MoX3

The bulk MoBr3 and MoI3 have been experimentally syn-
thesized [35–38]. Given the similarity of MoX3, we will use
MoBr3 as a representative example to elucidate its struc-
tural, Pnmm electronic, and magnetic properties in detail.
As shown in Fig. 2(a), bulk MoBr3 adopts an orthorhombic
structure with the space group Pnmm. The optimized lattice
constants from first-principles calculations are a = 5.545 Å,
b = 11.330 Å, and c = 6.067 Å, which closely align with ex-
perimental values. The bulk MoBr3 consists of 1D chains by
weak vdW interactions. Each 1D vdW chain in bulk MoBr3
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TABLE I. The lattice constant c along axis direction, ds and dl

representing the distances between short Mo pairs and long Mo pairs,
respectively. r = ds/dl is the ratio of short to long Mo pairs. M is the
magnetic moment and Egap is the band gap of AFM1 state.

System c (Å) ds/dl (Å) r M (μB) Egap (eV)

MoCl3 5.839 2.663/3.175 0.84 1.900 1.427
MoBr3 6.119 2.764/3.355 0.82 1.938 1.418
MoI3 6.514 2.881/3.632 0.79 1.969 1.322

consists of an infinite series of face-sharing Mo-Br octahedral
along the c axis. As illustrated in Fig. 2(b), these octahedra
exhibit alternating short and long Mo–Mo bonds with lengths
of 2.780 and 3.287 Å, respectively. The dimerization of Mo
atoms in the 1D vdW chain distorts Mo-Br octahedra and
breaks the spatial-inversion symmetry. The lattice constants
of MoCl3 and MoI3 are also provided in Table I.

The optimized structure of 1D MoBr3 chain exhibits slight
deviations from its bulk counterpart. The lattice constant c
increases to 6.119 Å, and the length of the long and short
Mo–Mo bonds change to 3.354 and 2.764 Å, respectively,
indicating a stronger dimerization due to the absence of in-
teractions with surrounding chains. To assess the dynamic
stability of the 1D MoBr3 chain, we calculated the phonon
spectrum with a 1 × 1 × 4 supercell. From the phonon
spectrum as shown Fig. 2(c), we can find a small negative
frequency (−0.06 THz) near the � point, which comes from
collective vibration perpendicular to the 1D chain. It is partic-
ularly dependent on simulation parameters, such as supercell
size and k-point sampling, which happens to be a common
issue in ab initio calculations on low-dimensional materials.
The similar situation also occurs in other reported 1D materi-
als, WOI3 [21] and VI3 [39]. For these reasons, these negative
frequencies are understood to be spurious. In addition, we also
carried out ab initio molecular dynamics (MD) simulation at
300 K. We found that the structure is stable and there was no
atomic diffusion phenomenon within 10 ps. Combined with
our MD simulations and recent experimental reports on 1D
single-chain MoI3 [35], we think that 1D MoX3 chains are
stable.

The cleavage energy is calculated by gradually expanding
lattice constants in the a- and b axes simultaneously by 2% at
each step, as shown in Fig. 2(d), followed by structural opti-
mization and total energy calculation. The calculated cleavage
energy of MoBr3 is approximately 0.29 J/m2, comparable to
that of other reported 2D materials such as CrI3(0.31 J/m2)
[40], graphene (0.39 J/m2) [40], NbO2I (0.28 J/m2) [41], and
MgPSe3(0.21 J/m2) [42].

C. Magnetic ground state

Next, we focus on the magnetism of 1D vdW MoBr3.
Each Mo3+ ion is surrounded by six Br− ions. Therefore, the
five degenerate 4d orbitals will split into three low-energy t2g

orbitals and two high-energy eg orbitals under an octahedral
crystal field. However, the distortion of the ideal octahe-
dron due to dimerization leads to further minor splitting of
the degenerate orbitals. The magnetism of MoBr3 originates
from the unpaired electrons in the d orbitals of Mo3+(4d3).

TABLE II. The anisotropic and isotropic exchange constants,
DM interaction coefficients, and the single-ion anisotropy coeffi-
cients for 1D MoBr3.

Exchange constant
Isotropic case

(meV/µ2
B)

Anisotropic case
(meV/µ2

B)

J1 18.001 14.853 (J1a)
14.852 (J1b)
15.089 (J1c)

J2 3.206 2.626 (J2a)
2.625 (J2b)
2.701 (J2c)

J3 −0.578 −0.578 (J3a)
−0.578 (J3b)
−0.564 (J3c)

DM interaction meV/µ2
B

⇀

d1 −0.113 (d1a)
−0.113 (d1b)
−0.114 (d1c)

⇀

d2 0.004 (d2a)
0.004 (d2b)
0.000 (d2c)

Single-ion
anisotropy

meV/µ2
B

Da −0.702
Db −0.702

The calculated local magnetic moment is about 1.9 µB/Mo
[43]. To investigate the magnetic ground state of MoBr3,
we employed a 1 × 1 × 2 supercell to construct four dif-
ferent collinear magnetic configurations labeled FM, AFM1,
AFM2, and AFM3, as shown in Fig. 3. We use the Heisenberg

model Hamiltonian [44] H = ∑
i j Ji j

⇀

Si · ⇀

S j to study mag-
netic exchange interaction, where Ji j is the isotropic exchange
coefficient. The nearest-neighbor J1 and J2 correspond to the
short and long Mo-Mo pairs respectively, and the next-nearest
neighbor (NNN) exchange constant is defined as J3, as shown
in Fig. 2(b). By mapping four magnetic configurations to
the Hamiltonian, we can obtain exchange constants listed in
Table II. The positive values of J1 and J2 and the negative
value of J3 indicate that the AFM1 magnetic configuration is
the ground state of the 1D vdW MoBr3 chain. Similarly, 1D
MoCl3 and MoI3 also possess AFM1 ground state.

According to the Mermin-Wanger theorem [45], long-
range magnetic order is prohibited in low-dimensional (1D
and 2D) materials in the absence of magnetic anisotropy. To
understand the magnetic anisotropy in the 1D MoBr3 chain,
we define a spin Hamiltonian that includes the magnetic
anisotropy and Dzyaloshinskii-Moriya (DM) interaction [46]:

H =
∑

i j

∑

α=(a,b,c)

Ji j;α

⇀

Si · ⇀

S j +
∑

i j

∑

α=(a,b,c)

⇀

di j;α · (
⇀

Si × ⇀

S j )

+
∑

i

∑

α=(a,b)

Di;α (
⇀

Si )
2
, (1)

where Ji j;α is the anisotropic exchange coefficient,
⇀

di j;α is the
antisymmetric DM interaction vectors, Di;α is the single-ion
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FIG. 3. (a)–(d) The four collinear magnetic configurations: FM, AFM1, AFM2, and AFM3. (e) Isosurface of magnetic anisotropy energy
of 1D MoBr3 chain, where the c direction indicates the hard axis and the ab plane denotes the easy plane. (f) Temperature-dependent magnetic
susceptibility, with a TN of approximately 80 K.

anisotropy coefficient (with the c direction as reference), and
⇀

S is the spin magnetic moment. Spin-orbit coupling (SOC)
was considered in the calculation of magnetism anisotropy. To
incorporate the DM interaction, we constructed four 90° non-
collinear magnetic orders [47]. The DM interactions between
the short Mo-Mo pairs and long Mo-Mo pairs are denoted as
⇀

d1 and
⇀

d2, respectively. All calculated coefficients are listed
in Table II. Due to symmetry constraints, the DM interaction

can be neglected. Our calculations indicate that
⇀

d1 and
⇀

d2 are
much smaller than the exchange interaction coefficients, indi-
cating that 1D MoBr3 chain can preserve the AFM1 magnetic
state [48,49].

Although the formation of spin spirals can be neglected,
the single-ion anisotropy remains strong compared to other
materials. The calculated single-ion anisotropy coefficient
is −0.702 meV/Mo, which is larger than that of 2D CrI3

(−0.26 meV/Cr) [50]. To determine the MAE, we employed
the torque method, varying the direction of magnetic moments
uniformly throughout space as shown in Fig. 3(e). The results
show that the ab plane is the easy plane and the hard axis is
along the c direction. The energy difference between the easy
plane and hard axis is 1.78 meV/Mo, which is larger than that
of the 2D CrI3 (0.65 meV/Cr) [44]. The larger MAE suggests
the potential for achieving stable long-range magnetic order

and collective excitation in the 1D MoBr3 chain. Using the
above effective spin Hamiltonian, we performed classical MC
stimulations to estimate the TN of the AFM order. The cal-
culated TN is about 80 K, as shown in Fig. 3(f). This TN is
comparable to those of known 1D magnetic semiconductors
such as CrSbSe3 (170 K) [17], VI3 (80 K) [19], and CuBr3

(35 K) [20].
In addition, we have also evaluated the interchain ex-

change interactions in bulk. We found that each 1D single
chain in bulk still maintains the AFM1 ground state. The
interchain nearest-neighboring exchange interactions J ′

1 and
next-nearest neighboring exchange interaction J ′

2 are 0.14
and 0.04 meV, respectively. Because J ′

2 is much smaller than
J ′

1, J ′
1 dominates the interchain AFM magnetic coupling in

bulk MoBr3 [47].

D. AFM phase transition by carrier doping

We subsequently investigated the magnetic ground state
of 1D MoBr3 chain under carrier doping. The relationship
between doping and magnetic ground state can be seen in
Fig. 4(a). The magnetic ground state transitions from the
AFM1 state to AFM3 state when the hole concentration ex-
ceeds 9.8 × 1013 cm−2. Although a significant magnetic phase
transition occurs, the local magnetic moments of Mo in both
the AFM1 and AFM3 states decrease linearly within a narrow
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FIG. 4. (a) The energy difference between FM, AFM2, and AFM3 with AFM1. The yellow region indicates the AFM1 ground state and the
blue region represents the AFM3 ground state. (b) The magnetic moment of AFM1 and AFM3. (c) The exchange constants J1, J2, and J3. (d)
The change of MAE of AFM3. All as functions of hole concentration.

range as the hole concentration increases by a fitted slope
of 1 µB atom/hole, as shown in Fig. 4(b). This is because
the valence-band top is entirely contributed by Mo-d orbitals,
while the contribution of Br is far away from the valence-band
top. So, removing electrons from half-occupied d orbitals
corresponds to the reduction of spin magnetic moment on Mo.
However, for materials with multiple orbital hybridization at
the top of the valence band, the number of doped holes is not
equivalent to a decrease in spin magnetic moment, e.g., CrI3

under hole doping [51].
To elucidate the physical mechanism of magnetic phase

transition, we studied the change of the exchange constants
with hole concentration, as shown in Fig. 4(c). All three
exchange constants decrease with increasing hole concen-
tration. The strong exchange interaction J1 between short
Mo-Mo pairs remains consistently positive, indicating strong
AFM coupling. The weaker J2 will change from positive to
negative when the hole concentration increases to 0.12 hole
per Mo. We define the doping effective area as the periodic
length of the single chain multiplied by the thickness of the
atomic layer. So, doping concentration of 0.12 hole per Mo
corresponds to 9.8 × 1013 cm−2. It means the spin coupling
between the long Mo-Mo pairs change from AFM to FM and
thus the magnetic ground state becomes AFM3. The NNN
interaction J3 is smallest and relatively insensitive to hole
doping. Moreover, MoCl3 and MoI3 also undergo transitions

from AFM1 to AFM3 at hole concentration of 1.5 × 1012 and
8.2 × 1013 cm−2, respectively. Due to the requirement of spin
conservation, the exchange interaction between half-occupied
d orbitals tends towards AFM coupling, while FM coupling
involves virtual transitions between occupied states and unoc-
cupied states and thus is weaker compared to AFM coupling.
So, in the absence of doping, the material is an AFM semicon-
ductor with staggered AFM1 ground states along the 1D axis
direction. Due to the contribution of d orbitals at the top of the
valence band, under hole doping the d orbitals will become
partially occupied, which contributes additional FM exchange
channels. With the increase of the hole doping concentration,
FM exchange interaction begins to compete with AFM ex-
change interaction, manifested as a decrease of the exchange
interaction coefficient and even a sign change. As shown in
Fig. 4(c), although the exchange interaction coefficient J1 de-
creases with increasing hole-doping concentration, it remains
positive within the considered doping concentration range,
indicating the maintenance of AFM coupling. The exchange
interaction coefficient J2 is much smaller than J1. It decreases
continuously with the increase of hole-doping concentration,
and at a doping concentration of 0.12 hole per Mo, the sign
changes from positive to negative, indicating a transition from
AFM to FM coupling. Thus, the entire system transitions from
AFM1 state to AFM3 state. The magnitude of the critical
transition concentration depends on the specific material and
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FIG. 5. (a), (b) Electronic band structures of 1D MoBr3 in the
AFM1 and AFM3 state, respectively. The blue and orange dots denote
the Mo atoms and Br atoms, respectively. (c) Schematic illustration
of band alignment for the AFM1 and AFM3 states.

electronic structures. So, the first-principles calculations are
needed quantitatively to evaluate it. However, the underlying
physical mechanisms and qualitative change trends can be
theoretically predicted according to above physical picture.
The mechanism of carrier doping-induced magnetic phase
transitions has been also used in Ref. [21].

In addition, the magnetic phase transition under hole dop-
ing is also accompanied by a decrease in energy, which can
be explained by the band alignment theory, as illustrated in
Fig. 5. The band structures of 1D MoBr3 with AFM1 and
AFM3 magnetic states are shown in Figs. 5(a) and 5(b), re-
spectively. Both AFM1 and AFM3 are semiconductors, with
the valence-band maximum (VBM) and the conduction-band
minimum (CBM) primarily composed of Mo orbitals. The
ionization energy I is defined as the energy difference be-
tween the VBM and the vacuum energy level, and the electron
affinity energy χ is the energy difference between the CBM
and the vacuum energy level. I and χ determine the relative
energy change of different phases under charge doping, as
shown in Fig. 5(c). In the case of hole doping, electrons are
removed from the VBM states. Since I of the AFM3 phase is
smaller that of the AFM1 phase, the VBM of the AFM3 phase
is higher. Consequently, less energy is required to remove
electrons from the AFM3 phase compared to the AFM1 phase,
making the AFM3 phase more energetically favorable under
hole doping. A phase transition occurs when the doping con-
centration reaches a critical value of 9.8 × 1013 cm−2. These
findings are in complete agreement with the results presented
in Fig. 4.

Another interesting finding is the magnetic phase transition
from easy-plane ab to easy-axis c with the hole concentrations
exceeding 9.8 × 1013 cm−2. Further research indicates that
the easy plane of AFM1 does not change with hole doping,
while AFM3 changes from easy plane to easy axis. As shown
in Fig. 4(d), the MAE increases with increasing hole concen-
tration. The tunability of MAE through hole doping can be
explained by perturbation theory analysis [52]. Given a pair
of valence (v) eigenstate �v and conduction (c) eigenstate �c,
their contribution to MAE is given by

�Evc = 1

�vc

(∣∣HSOC
vc (�x)

∣∣2 − ∣∣HSOC
vc (�z)

∣∣2)
, (2)

where HSOC
vc (�n) = 〈�v|HSOC(�n)|�c〉 is the SOC matrix ele-

ment and �vc = εv − εc. HSOC(�n) = ξ �σ · �L, where �σ =
(σx, σy, σz ) are the 2 × 2 Pauli matrices, �L is the orbital
angular momentum operator, and ξ is the SOC strength. The
sign of �Evc is determined by the spin and magnetic quan-
tum number of orbital characters [53]. The sum of �Evc in
Eq. (2) over all valence-conduction pairs determines the MAE
and easy axis. The Mo d-orbital projected band structure
of AFM3 is shown in Figs. 6(a)–6(e). The highest valence
bands (VB) are mostly contributed by dxy/dx2−y2 . The electron
hopping from VB dxy/dx2−y2 to conduction band (CB) dxz/dyz

contributes to both parallel chain and perpendicular chain
magnetization, while the hopping between dxy and dx2−y2

contributes only to perpendicular chain magnetization. Upon
hole doping, dxy and dx2−y2 become unoccupied, reducing
the stability of perpendicular chain magnetization. Hence, as
the hole concentration increases, the AFM3 state undergoes
a transition from easy plane of ab to easy axis of c. The
isosurface of MAE for AFM3 state under a hole concentration
9.8 × 1013 cm−2 is shown in Fig. 6(f), where the c direction is
the easy axis.

E. Detection of 1D ferrotoroidicity by Compton scattering

By carefully comparing two AFM states, we identify
AFM1 state as a unique 1D ferrotoroidic state with nonzero
toroidal moment, as schematically shown in Fig. 1(b).
Recently, 1D ferrotoroidic order has also been predicted ex-
perimentally for the quasi-1D material Ba6Cr2S10 [54]. In
contrast, the AFM3 state is an antiferrotoroidic order with zero
toroidal moment in Fig. 1(c). The dimerized atomic structure
and staggered AFM configuration breaks both space-inversion
symmetry and time-reversal symmetry, giving rise to the prob-
ability of ME multipole moments [26,55].

Symmetry analysis reveals that the 1D AFM1 MoBr3 be-
longs to C2v point group with the irreducible representation
(IR) B2. The character table of C2v and corresponding ME
multipoles are listed in Table III [47]. The nonvanishing
toroidal moments ty and quadrupole moments qxz in the Carte-
sian coordinate system are shown in Table III. For the AFM1

ferrotoroidic state, JA(pz ) is nonzero and exhibits antisym-
metry, such that JA(pz ) = −JA(−pz ). Two-dimensional (2D)
antisymmetric Compton profiles of AFM1 ferrotoroidic state
in plane px − py are calculated and shown in Fig. 7(a). The
pattern is antisymmetric along py and remains symmetric
along px, which is consistent with the symmetry analysis.
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FIG. 6. (a)–(e) Mo-d orbital resolved electronic band structures of AFM3. Yellow and blue color indicate spin-up and spin-down
states, respectively. (f) Isosurface of MAE of AFM3 under a hole concentration of 9.8 × 1013 cm−2, where the c direction indicates the
easy axis.

Meanwhile, the pattern also reveals the direction of the Néel
vector, confirming the capability of Compton scattering to
probe magnetic structures. For example, if the Néel vector is
rotated 90° to align with the y direction, the toroidal moments
tx and quadrupole moments qyz become nonzero, leading to
the antisymmetric JA(px ) along px, as shown in Fig. 7(b). In
the AFM3 configuration, no multipole moments are allowed.
The calculated JA is three orders of magnitude smaller than
that of the AFM1. Therefore, the antisymmetric Compton
profile not only can effectively distinguish the ferrotoroidic
AFM1 and antiferrotoroidic AFM3 state, but also can image

the Néel vector switching, making it a valuable method for
detecting AFM states.

III. CONCLUSION

In conclusion, we demonstrated a concept to control
and detect the different AFM order in the 1D AFM spin
chain through electrical and optical methods, and predicted
a group of 1D materials MoX3 (X = Cl, Br, I) as exam-
ples. One-dimensional MoX3 chain has alternating short and
long Mo-Mo pairs along the periodic direction. The magnetic

FIG. 7. Two-dimensional antisymmetric Compton profile in the px − py plane corresponding to the AFM1 state with the Néel vector along
x- (a) or y (b) direction.
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TABLE III. The basic functions for the ME multipoles with
the C2v point group. ME monopole (α), toroidal moment (�t), and
quadrupole moment (qi j).

IRs of C2v ME multioples Basis in

Real space k space

A1 tz, qxy (xmy − ymx), (ymx + xmy) kz

α (xmx + ymy + zmz) kx ky kz

qx2−y2 (xmx − ymy)
A2 qz2 (2zmz − xmx − ymy)
B1 tx , qyz (ymz − zmy ), (ymz + zmy ) kx

B2 ty, qxz (zmx − xmz), (zmx + xmz) ky

ground state of MoX3 is AFM with alternating opposite mag-
netic moments and the magnetic easy plane perpendicular
to the periodic direction. The 1D dimerization structure and
staggered AFM order indicates the existence of 1D ferro-
toroidicity. Interestingly, as the hole concentration increases
to 9.8 × 1013 cm−1, the ground state of 1D MoX3 chain transi-
tions from the ferrotoroidic AFM1 to antiferrotoroidic AFM3,
accompanied by a sign change in the exchange interaction
between the second-nearest neighboring Mo atoms. We re-
vealed the physical mechanisms behind the magnetic phase
transition and the change in the magnetic easy axis using band
alignment theory and perturbation theory of SOC. Finally, we
combined symmetry analysis and Compton scattering theory
to illustrate how to distinguish between ferrotoroidic AFM1

order and antiferrotoroidic AFM3 order using antisymmetric
Compton profiles. Therefore, the tunability and detectability
of the magnetic order and ferrotoroidic order of 1D MoX3

materials provides potential possibilities for future AFM spin-
tronic applications.

IV. METHODS

A. DFT calculations

The calculations were performed based on density-
functional theory (DFT) [56] using the projected augmented-
wave method as implemented in the Vienna Ab initio Simula-
tion Package (VASP) [57]. The general gradient approximation
(GGA) [58] in the scheme of the Perdew-Burke-Ernzerhof
(PBE) functional [59] was adopted to describe the exchange
and correlation terms. The atomic positions were optimized
with the maximum atomic force less than 0.001 eV/Å and
the convergence of total energy was less than 1 × 10−6 eV.
The DFT-D2 method of Grimme was used to account for van
der Waals (vdW) interaction. The Brillouin zone was sampled
with 1 × 1 × 15 k points, and a large vacuum space of 25 Å
was applied in the 1D MoX3 to avoid the periodic interactions
in the a- and b directions. The phonon spectra were calculated
using the PHONOPY package [60] with a 1 × 1 × 4 supercell.

Spin-orbit coupling (SOC) was taken into account for com-
puting the MAE and exchange coefficients in 1D MoX3 chain.
The MAEs were determined using the torque method [61,62].
Although a Hubbard U correction is typically not consid-
ered or only used with small U for Mo atoms [43,63], we
investigated their impact on our main conclusions. Applying
moderate effective U values (Ueff = U − J) of 1 and 2 eV to
Mo atoms revealed that our findings remained qualitatively
unaffected [47]. Therefore, we present the results without U
correction in the main text.

B. Monte Carlo simulations

The Néel temperature (TN), a crucial parameter character-
izing the antiferromagnetic phase transition, was determined
using the classical Monte Carlo (MC) method [64,65] with
the anisotropic Heisenberg XYZ model [66]. To ensure the
detailed balance and to achieve the highest efficiency of pro-
gram simulation for 1D MoX3, the Hinzke-Nowak method
[67] and the MC Metropolis algorithm [68] were used. At
each temperature, the initial magnetic moments on the lattice
points were completely randomized. The rationality of our
results was confirmed by testing the effects of supercell size
and simulation time per grid point. We employed a supercell
of 1 × 1 × 200 grids with a simulated temperature range of 0
to 150 K in 10 K increments. Magnetic susceptibility (χ ) was
chosen as the critical exponent due to the zero net magnetic
moment of the AFM system.

C. Calculations of Compton profile

Compton profile is calculated by using ELK code [69] based
on the linearized augmented plane-wave method. SOC was
considered due to the asymmetric magnetization density ris-
ing from broken space-inversion symmetry and time-reversal
symmetry. The GGA with PBE functional was used to de-
scribe the exchange and correlation terms. The electronic
structure obtained from the ELK code agreed well with that
from the VASP code. The Compton profile was presented in
atomic units. We normalized the antisymmetric Compton pro-
file by multiplying it by the vacuum thickness used in both
the a- and b directions due to the 1D nature. This normaliza-
tion ensures that the results are independent of the artificial
vacuum layer.
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