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Anomalous charge transport in the sine-Gordon model
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We conduct a comprehensive study of anomalous charge transport in the quantum sine-Gordon model. Em-
ploying the framework of generalized hydrodynamics, we compute Drude weights and Onsager matrices across
a wide range of coupling strengths to quantify ballistic and diffusive transport, respectively. We find that charge
transport is predominantly diffusive at accessible timescales, indicated by the corresponding Onsager matrix
significantly exceeding the Drude weight – contrary to most integrable models where transport is primarily
ballistic. Reducing the Onsager matrix to a few key two-particle scattering processes enables us to efficiently
examine transport in both low- and high-temperature limits. The charge transport is dictated by nondiagonal
scattering of the internal charge degree of freedom: at particular values of the coupling strength with diagonal,
diffusive effects amount to merely subleading corrections. However, at couplings approaching these points, the
charge Onsager matrix and corresponding diffusive timescale diverge. Our findings relate to similar transport
anomalies in XXZ spin chains, offering insights through their shared Bethe ansatz structures.
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I. INTRODUCTION

With recent advancements in the realization and manip-
ulation of quantum many-body systems—particularly in the
domain of ultracold atoms [1]—there has been a grow-
ing demand for frameworks to describe their transport and
far-from-equilibrium dynamics. Integrable models are partic-
ularly notable in this context, as they are some of the few
strongly interacting quantum systems for which exact results
are available, providing a unique perspective for examining
transport phenomena [2]. These systems have an extensive
number of conserved quantities and stable quasiparticle ex-
citations, which can lead to anomalous transport properties
[2,3]. Although quasiparticle propagation is mainly ballistic,
reflected in their finite Drude weights [4,5] detected by the
Mazur inequality [6,7], integrable systems can also feature
diffusive [8,9], and even superdiffusive transport [10–13].

A significant theoretical development in this area is
Generalized Hydrodynamics (GHD) [14,15], a recent hy-
drodynamic approach specifically designed for integrable
systems, which facilitates a detailed analysis of transport
and reveals connections between microscopic processes and
emergent macroscopic behavior (see reviews [12,16–19]).
Although integrability imposes specific, idealized scattering
conditions, several experimentally realized systems are ap-
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proximately integrable and can therefore be described by
GHD [20–27].

In this work, we perform an in-depth study of transport
in the sine-Gordon (sG) quantum field theory, a model with
numerous applications as the low-energy description of a
large spectrum of gapped one-dimensional systems [28], rang-
ing from quasi-1D antiferromagnets and carbon nanotubes
through organic conductors [29,30], trapped ultracold atoms
[31–35], to quantum circuits [36] and coupled spin chains
[37]. It is an integrable model with a known exact S-matrix
[38,39], thus facilitating treatment via the Bethe ansatz and
GHD. Nevertheless, the current understanding of the general
transport properties of the quantum sine-Gordon model re-
mains limited, as its hydrodynamic description for generic
couplings has only been obtained recently [40,41].

Previous works on transport in the sine-Gordon model
studied the optical conductivity using spectral expansion tech-
niques [42] based on the exact solution of the form factor
bootstrap [43]. More recently, it was shown that the Drude
weight characterizing the ballistic charge transport displays a
fractal structure [40], similar to the spin Drude weight in the
gapless XXZ spin chain [5,44–47]. The origin of this structure
is the presence of reflective scattering, which also results in
other anomalous transport properties such as separation of
the charge and energy transport [48]. More recently, a similar
fractal structure was found in higher-spin generalizations of
the integrable XXZ spin chain [49].

The fractal structure of the Drude weight indicates that
the low-frequency charge transport is anomalous, motivating
us to examine the roles of diffusive processes. Within the
GHD framework, one-particle processes dictate the ballistic
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dynamics at the lowest order hydrodynamic expansion, while
two-particle processes result in diffusive corrections [50,51].
We demonstrate that following the nondiagonal scattering of
the internal charge degree of freedom, diffusive spreading of
charge is strongly enhanced and exhibits anomalous scaling.
We also connect our findings to studies conducted in the
semiclassical limit [52,53] and of the closely related XXZ spin
chains [46,54,55], thereby providing a comprehensive picture
of transport.

The paper is structured as follows. In Sec. II, we introduce
the quantum sine-Gordon model, focusing on the scattering
properties of its excitations and how they manifest in the
thermodynamics and hydrodynamics of the model. In Sec. III,
we establish the transport coefficients studied throughout the
paper and demonstrate their anomalous scaling with the cou-
pling strength of the model. Next, in Sec. IV, we break down
the individual scattering contributions to diffusive transport
and illustrate how they scale with temperature. Building on
this, Secs. V and VI treat the high- and low-temperature limits
of charge transport; the former focuses on the divergence
of the Onsager matrix when adding magnonic excitations
to the spectrum, while the latter explores the regime ap-
proaching the classical limit of vanishing coupling strength.
In Sec. VII, we consider the crossover between diffusive
and ballistic transport at finite timescales in the bipartition
protocol, both in the hydrodynamic and microscopic picture.
Finally, Sec. VIII contains our conclusions and outlook for
future studies. Several Appendixes containing more technical
aspects complement the main text.

II. SINE-GORDON HYDRODYNAMICS

The sine-Gordon model is a relativistic field theory with
Hamiltonian

H =
∫

dx

[
1

2
(∂tφ)2 + 1

2
(∂xφ)2 − λ cos(βφ)

]
, (1)

where φ(x) is a real scalar field, β is a dimensionless coupling
strength, and the dimensionful parameter λ sets the mass
scale.

The fundamental excitations are topologically charged
kinks/antikinks of mass mS , which interpolate between the
degenerate vacua of the periodic cosine potential. To describe
the spectrum and the scattering of excitations, it is useful to
introduce the renormalized coupling constant

ξ = β2

8π − β2
. (2)

In the attractive regime 0 < ξ < 1 kink-antikink pairs can
form neutral bound states dubbed breathers Bk , with masses

mBk = 2mS sin

(
kπξ

2

)
, (3)

where k runs from 1 to NB = �1/ξ�. It is convenient to use
units setting h̄ = 1 and the speed of light (the speed of sound
in condensed matter context) c = 1, as well as to set the Boltz-
mann constant kB = 1. As a result, energies and temperatures
are measured in units of mS , while distances and times are
measured in units of 1/mS . The energy E and momentum p

(t
)

( )
( )

FIG. 1. Illustration of excitation dynamics. (a) Semiclassical par-
ticle trajectories of a single antikink in a background of kinks.
Due to their reflective scattering, the charge carried by the antikink
spreads diffusively. (b) Effective magnon velocities for different
temperatures T . For T → 0, GHD approaches the semiclassical ap-
proximation as the ballistic magnon velocity vanishes.

of excitations a with mass ma can be parameterized by the
rapidity variable θ as E = ma cosh θ and p = ma sinh θ .

A. Scattering amplitudes and Bethe ansatz

To understand the transport properties of the sine-Gordon
model, it is necessary to first understand its spectrum of ex-
citations and their scattering. While most scattering processes
are purely transmissive, the kink-antikink scattering can be
both transmissive and reflective with respective amplitudes
given by

ST (	θ ) = sinh (	θ/ξ )

sinh ((iπ − 	θ )/ξ )
S0(	θ, ξ ), (4)

SR(	θ ) = i sin (π/ξ )

sinh ((iπ − 	θ )/ξ )
S0(	θ, ξ ), (5)

where 	θ is the rapidity difference between the excitations
and S0 is a phase factor. For integer values of 1/ξ , the
reflective scattering amplitude vanishes; for these particular
couplings, referred to as reflectionless points, the physical
particles (kinks, antikinks, and breathers) constitute the entire
excitation spectrum.

The presence of reflective scattering significantly alters
the transport of topological charge. To fully appreciate
this, it is instructive to first consider the semiclassical
approach of Ref. [56], which assumes the momenta of
all quasiparticles to be negligibly small and that a Dirac
delta can approximate the scattering potential. Hence, the
scattering matrix becomes independent of the incoming mo-
menta and fully reflective in the space of internal quantum
numbers, i.e., the topological charge. Figure 1(a) illustrates
the resulting dynamics of a single antikink in a background
of kinks. Although the particles propagate ballistically, the re-
flective scattering inhibits ballistic transport of charge, which
spreads diffusively instead. Conserved quantities unrelated to
the internal quantum numbers, such as momentum and energy,
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are unaffected by the reflections and thus remain transported
ballistically.

Beyond the semiclassical approach, the sine-Gordon model
can be solved exactly via the Bethe ansatz, which pa-
rameterizes the solution of integrable systems in terms of
quasiparticle excitations [57,58]. Due to the nondiagonal scat-
tering, the Bethe ansatz equations are nested, requiring an
auxiliary Bethe ansatz system for the internal degrees of free-
dom. Notably, the auxiliary Bethe equations are the same as
the Bethe equations of the XXZ spin chain in its gapless (easy-
plane) phase. The interested reader can find the details of the
correspondence between the XXZ and sine-Gordon models in
Appendix A 2. Ultimately, the thermodynamic description can
be formulated in terms of quasiparticle excitations consisting
of the breathers Bk , a single solitonic excitation S accounting
for the energy and momentum of the kinks, and also partly
for the charge, and additional massless auxiliary excitations,
dubbed magnons, which account for the internal degeneracies
related to the charge degrees of freedom. Physically, a magnon
corresponds to a “topological-charge flip” relative to an all-
solitonic reference state, similar to the scenario depicted in
Fig. 1(a).

In the thermodynamic limit, the roots of the magnonic
Bethe equations arrange themselves into “strings” (a set of
complex roots with the same real part), with each string
corresponding to a bound state of elementary magnons. The
different strings, including the elementary magnons, are called
separate magnon species. Due to the mapping to the XXZ
chain, these solutions correspond to the gapless XXZ spin
chain strings. Crucially, the soliton, the breathers, and the
magnons all have diagonal scattering.

The magnon species can be classified by writing the cou-
pling ξ as a continued fraction

ξ = 1

NB + 1

ν1 + 1

ν2 + . . . ,

(6)

with NB breathers and νk different magnon species at level k.
Following the thermodynamic Bethe ansatz, the system can be
described in terms of the total densities of states ρ tot

a (θ ) and
densities of occupied states ρa(θ ) of quasiparticle excitation
with species a.

B. Soliton gas picture for quasiparticle dynamics

At the lowest order of hydrodynamic expansion, the Eu-
ler scale, generalized hydrodynamics describes the evolution
of integrable systems via the collisionless Boltzmann equa-
tions [14,15]

∂tρa(θ, x, t ) + ∂x
(
veff

a (θ, x, t ) ρa(θ, x, t )
) = 0, (7)

where the effective velocity veff
a (θ ) depends on local in-

teractions with other particles [59,60] (see Appendix for
explicit expression). A particularly useful physical interpreta-
tion of Eq. (7) derives from its mapping to a classical soliton
gas [61,62]: Each quasiparticle of species a with rapidity
θ propagates ballistically along classical trajectories with a
time-independent velocity. Although all collisions are trans-
missive in the magnonic picture, elastic collisions with other

particles result in the particles acquiring a Wigner time delay
dependent on the scattering phase factor; the accumulated
contributions of all delays yields the effective velocity veff

a (θ ).
As a result, while the Boltzmann equation includes no col-
lision integral term in the usual sense, the effective velocity
does account for the effect of quasiparticle collision.

However, despite the diagonal quasiparticle scattering,
signs of the underlying partially reflective scattering of the
physical particles can be seen in the effective velocities of
magnons, particularly at lower temperatures. This is illus-
trated in Fig. 1(b), depicting the magnon and soliton velocities
at different temperatures for a neutral system in thermal equi-
librium. In the low-temperature limit, i.e., at temperatures
far below the gap T � mB1 , the magnons become nondisper-
sive, as their effective velocity for all rapidity states tends
toward the solitonic fluid velocity vS = Js/nS , where JS =∫

dθ ρS (θ )veff
S (θ ) and nS = ∫

dθ ρS (θ ) is the current density
and linear density of solitons, respectively. Thus, given a
finite JS , the magnons are dragged along with the solitons,
while for JS = 0 the ballistic magnon velocity vanishes, akin
to the semiclassical scenario depicted in Fig. 1(a). Indeed,
as shown analytically in Ref. [53], predictions of the semi-
classical approach are recovered in the low-temperature limit
of GHD. Away from this limit, however, charge transport is
always ballistic. Nevertheless, the magnons continue to expe-
rience a significant drag by the solitons, resulting in transport
phenomena such as dynamical charge-energy separation and
distinctively shaped “arrowhead” light cones [48]. Finally, in
the high-temperature limit, the system decouples into inde-
pendent left and right moving modes. Hence, the effective
velocities of the magnons approach that of the solitons. We
study this limit in further detail below in Sec. V.

C. Diffusive corrections

The next order of hydrodynamic expansion accounts for
dissipative effects, which in GHD manifests as a diffusive
broadening of the ballistic quasiparticle trajectories [9,50,51].
Again, the soliton gas picture offers an appealing physical
interpretation: Gaussian fluctuations of the quasiparticle den-
sities ρa result in fluctuations of the number of collisions
experienced by a particle propagation through a region of
the system. Hence, the accumulated Wigner delay fluctuates,
resulting in the trajectory of each particle broadening as it
follows a biased random walk. In turn, the ballistic transport
of conserved quantities, which are carried by the quasiparticle
excitations, pick up diffusive corrections as well.

Unlike diffusion in nonintegrable models, diffusion in
GHD arises mostly as a subleading correction to the ballistic
Euler-scale hydrodynamics. Integrable diffusion is neverthe-
less important, resulting in effects such as an effective viscos-
ity at low temperature [63] and thermalization in the presence
of an external potential [64,65]. The role of higher-order hy-
drodynamic terms is yet to be fully understood [66–68].

The variance of each quasiparticle trajectory, and thus
the diffusive spreading of different quantities, depends on
the scattering properties of the individual particle species.
A detailed analysis of two-body scattering processes in the
sine-Gordon model is conducted in Sec. IV. In relativisti-
cally invariant field theories, energy spreading is nondiffusive
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[51]. Furthermore, no cross effects exist between topological
charge, momentum, and energy at zero chemical potential
[41]. Therefore we will only consider diagonal topological
charge and momentum transport values.

III. COEFFICIENTS OF TRANSPORT

Two transport coefficients, instrumental in characterizing
the transport properties of many-body systems, are the Drude
weight Di and Onsager matrix Li. The subscript i refers to a
conserved quantity whose linear density and associated cur-
rent we denote by ni and ji, respectively. Conventionally, the
real part of the corresponding conductivity σi takes the form

Re σi(ω) = πT −1Di δ(ω) + σ
reg.
i (ω), (8)

composed of a singular contribution quantified by the Drude
weight Di and a remaining frequency-dependent part. The d.c.
conductivity is obtained in the ω → 0 limit of the conductivity
after the Drude weight is subtracted and is related to the
Onsager matrix Li via

Li = (2T ) lim
ω→0

σ
reg.
i (ω). (9)

Both transport coefficients are typically expressed in terms
of the time-averaged current–current auto-correlation function
Ci(x, t ) ≡ 〈 ji(x, t ) ji(0, 0)〉c as

Di = lim
τ→∞

1

2τ

∫ τ

−τ

dt
∫

dx Ci(x, t ), (10)

Li = lim
τ→∞

∫ τ

−τ

dt

(∫
dx Ci(x, t ) − Di

)
. (11)

Hence, a finite Drude weight Di > 0 indicates a dissipation-
less current ji and thus ballistic transport.

In the context of hydrodynamic expansions, the Drude
weight and the Onsager matrix provide complementary per-
spectives on transport, each associated with different orders
of the expansion [18]. The Drude weight is tied to ballistic
transport (the Euler-scale hydrodynamics), while the Onsager
matrix incorporates dissipative effects, here in the form of dif-
fusion. Remarkably, the GHD picture yields exact expressions
of the two transport coefficients in integrable systems through
form factor expansion of quasiparticle excitations on top of
the local steady state. The resulting Drude weight is com-
pletely determined by single-particle processes and reads [69]

Di =
∑

a

∫
dθ χa(θ )

(
hdr

i;a(θ ) veff
a (θ )

)2
, (12)

whereas only two-particle scattering processes contribute to
the diffusive dynamics and thus the Onsager matrix [51]

Li =
∑
a,b

∫
dθ1dθ2

2
χa(θ1)χb(θ2)

∣∣veff
a (θ1) − veff

b (θ2)
∣∣

×
(

�dr
ab(θ1 − θ2)ηb

2π

)2
(

hdr
i;b(θ2)

ρ tot
b (θ2)

− hdr
i;a(θ1)

ρ tot
a (θ1)

)2

. (13)

Here, χa = ρa(1 − ρa/ρ
tot
a ) is the quasiparticle susceptibility,

ηa = ±1 are appropriate sign factors, and hi;a(θ ) are the bare
values of conserved quantity i carried by a particle species
a with rapidity θ . The superscript “dr” indicates that the

quantity is dressed modifying it through quasiparticle interac-
tions (see Appendix). Crucially, although the soliton and all
magnons carry a bare topological charge, following dressing
all charge is concentrated in the last two magnon species.

Employing Eqs. (12) and (13), we calculate the transport
coefficients of charge and momentum for thermal states at
temperature T = 0.1 for various couplings [70,71]. The re-
sults are shown in Fig. 2. Comparing the transport coefficients
for topological charge and momentum, we observe very dif-
ferent behavior. Whereas the momentum Drude weight Dp

(and the corresponding Onsager matrix Lp) is continuous as
a function of the coupling, its charge counterpart exhibits a
fractal structure, where Dq can jump by O(1) for an infinites-
imal change of β. As shown in studies of the easy-plane
XXZ spin chain [46], which displays similar properties in
its spin transport, these jumps in the zero-frequency spectral
weight suggest a nontrivial behavior of the finite-frequency
conductivity. Indeed, the charge Onsager matrix plotted in
Fig. 2 exhibits several anomalous features. First, while Lq of
the reflectionless points is of similar magnitude to the charge
Drude weight, attractive points with just two level-1 magnons
have Lq ∼ O(1), i.e., several orders of magnitude higher.
This suggests that reflective scattering between excitations
significantly alters the d.c. conductivity of charge. Secondly,
approaching one of the reflectionless points, i.e. adding ad-
ditional magnons to the spectrum, leads to a divergence of
Lq. Such divergence of the Onsager matrix is associated with
the breakdown of the diffusive expansion, in which case the
model is expected to display super-diffusion [12]. This is
similar to the behavior observed in Ref. [46] for the XXZ
spin chain, where the anomalous response was interpreted as
a consequence of quasiparticles undergoing Lévy flights; we
shall return to this point in Sec. V where a detailed analysis of
the divergence is performed.

IV. SCATTERING CONTRIBUTIONS
TO DIFFUSIVE TRANSPORT

According to form factor expansions, only two-particle
scattering processes contribute to the diffusive GHD dynamics
[50,51]. Hence, to gain physical insight into the anomalous
transport behavior of the sine-Gordon model, we may study
the individual two-body contributions to the Onsager matrix
Li ≡ 1

2

∑
a,b Li;ab. For simplicity, we restrict our analysis to a

single level of magnons.
Figure 3 shows results for different temperatures at two

coupling points: a reflectionless point with seven breather
species and an attractive point with six breathers and four
magnon species. In both cases, only specific particle species
carry dressed topological charge: kinks/antikinks at the re-
flectionless couplings and the last two magnon species at
generic couplings. Consequently, only scattering events in-
volving these charged particles contribute to the charge
Onsager matrix. Despite this commonality, the two regimes
differ significantly.

At the reflectionless point, all quasiparticles are mas-
sive, and scattering shifts associated with heavier particles
are generally larger. However, at lower temperatures, the
population of heavier particles is suppressed, whereby for
T = 0.1 ∼ mB1/4, scattering of the lightest breathers with
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FIG. 2. Charge and momentum transport coefficients for T = 0.1 across various couplings in the quantum sine-Gordon model. Each data
point corresponds to a distinct quasiparticle spectrum, with the shape indicating the number of magnonic levels and the color denoting the
total number of magnon species ν1 + ν2. (a) and (b) show the Drude weights Dq and Dp for topological charge and momentum, respectively,
while (c) and (d) present the corresponding Onsager matrices Lq and Lp. The insets in (a) and (c) provide zoomed-in views of selected regions
plotted on linear axes, where the dashed lines indicate the couplings of reflectionless points.

FIG. 3. Contribution of each two-particle scattering to the Onsager matrix. The top row depicts the decomposed charge Onsager matrix for
the reflectionless point ξ = 1/8, computed for three different temperatures. The bottom two rows are the charge and momentum matrices for
the attractive point ξ = 1/(6 + 1/4).

115121-5



MØLLER, NAGY, KORMOS, AND TAKÁCS PHYSICAL REVIEW B 111, 115121 (2025)

kinks/antikinks is the dominant contributor. As temperature
increases, the heavier particles contribute more despite being
less abundant. Additionally, since kinks and antikinks carry
topological charge, their mutual scattering plays a larger role
than interactions with neutral particles.

In contrast, at the generic points, scattering of the dressed
charge carriers (two last magnon species) and particles with
a bare charge (magnons and the soliton) all make significant
contributions to the charge Onsager matrix. These scattering
events contribute much more than any interactions involv-
ing neutral particles. Hence, the generic points feature much
higher diffusive charge transport than the reflectionless points.
Furthermore, unlike the scattering with massive neutral par-
ticles, the magnon-magnon and magnon-soliton scattering
exhibit a much weaker temperature dependence. Hence, the
charge Onsager matrix only varies modestly with temperature,
unlike other transport coefficients, such as the charge Drude
weight, which exhibits a strong temperature dependence.

For the momentum Onsager matrix, the reflectionless and
generic points show similar behavior (only the generic case is
shown in Fig. 3). Since magnons are massless and only have
small dressed momenta, the main contributions come from
scattering between massive particles. At low temperatures,
only the lightest particles are excited, while at higher tem-
peratures, heavier particles take over. The massive particles
are largely unaffected by the presence of magnons, leading
to a continuous momentum Onsager matrix as a function of
coupling.

V. HIGH-TEMPERATURE LIMIT AND DIVERGENCE
OF CHARGE ONSAGER MATRIX

At high temperatures, the interaction term in the sine-
Gordon model can typically be neglected, whereby the system
approximates a massless free boson. This simplification was
used to derive the high-temperature limit of charge Drude
weight [40]. Since diffusion is driven by two-particle inter-
actions, one would, therefore, expect the Onsager matrix to
vanish in the high-temperature limit. However, when calculat-
ing the charge Onsager matrix for increasing temperatures T ,
we find that it instead converges to a finite value, as shown
in Fig. 4(a). The free boson theory, which only accounts for
ultrarelativistic particles, cannot explain this high-temperature
convergence. Instead, the Onsager contribution must come
from low-energy particles. In the limit T � ma, massive
modes are highly excited. However, their corresponding den-
sity of states remains small at lower rapidities. Thus particles
are excited at higher rapidities, leading to root densities ρa(θ )
peaked around θ ∼ ± ln 2T/ma and otherwise exponentially
close to zero. As a result, the dressing equations decouple
into independent left and right moving modes, and excitations
around the ultrarelativistic peaks have effective velocity ±1.
From the Onsager matrix expression (13), the term |veff

a (θ1) −
veff

b (θ2)| shows that scattering between particles with the
same effective velocity, i.e., within the same rapidity peak,
does not contribute. Further, the dressed scattering kernel
�dr

ab(θ1 − θ2) rapidly vanishes for large rapidity differences,
meaning scattering between particles in opposite peaks is
also negligible. Therefore only the scattering of states θ ∼ 0,
which remain constant beyond a certain temperature, signifi-

FIG. 4. (a) Topological charge Onsager matrix (13) as func-
tion of temperature T for couplings with increasing number
of level-1 magnon species ν1. Calculated for NB = 3 breathers.
(b) High-temperature limit of contributions to the Onsager ma-
trix from scattering of the last magnon scattering with remaining
quasiparticles.

cantly contributes to the charge Onsager matrix, thus leading
to its convergence.

In the high-temperature limit, the charge Onsager matrix
diverges with an increasing number of magnons. Following
dressing, only the last two magnons carry a topological charge
of value ±ν1. Hence, we can restrict our study of the Onsager
divergence to scattering processes involving the last magnon,
which we plot in Fig. 4(b). For ν1 � 1, we find that scat-
tering between the two last magnons produces the dominant
contribution.

To study this scattering process in more detail, we calcu-
late the high-temperature charge Onsager matrix for up to 24
magnon species; the results are very accurately fitted with the
power-law Lq ∼ ν

y
1 with y ≈ 2.05, as shown in Fig. 5(a). Note

that all exponents reported here depend weakly on the number
of breathers. The contribution to the charge Onsager matrix
from the scattering between the last two magnon species
exhibits the same scaling. A similar power-law divergence
is seen in the d.c. spin conductivity of the XXZ spin chain
at infinite temperature near irrational coupling [46]. There,
the dominant scattering events experienced by charged par-
ticles are those with the heaviest neutral quasiparticles. These
heavy particles become rarer when approaching an irrational
coupling. However, the associated Wigner scattering displace-
ment of the charged particle exhibits a power-law increase.
Thus the charged quasiparticle undergoes Lévy flights [72].
For the sine-Gordon model, the magnons are auxiliary ex-
citations accounting for internal degeneracies of the charge
degrees of freedom, thus complicating a physical interpreta-
tion of the dynamics of the charged particles. However, we can
still analyze the dynamics of the magnons using the soliton
gas framework.
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FIG. 5. Divergence of charge conductivity and magnon scat-
tering at high temperature, calculated for T = 20 and NB = 1.
(a) Charge Onsager matrix (13) as function of number of
level-1 magnons ν1. The observed divergence is polynomial Lq ∼ ν

y
1,

demonstrated by the fitted blue line. (b) Susceptibility of the last
magnon. (c) Dressed displacement of the last magnon when scatter-
ing with the second-to-last magnon. At low rapidities, a reasonable
collapse of the curves is found following appropriate scaling. The
color of each curve corresponds to the points in (a).

In Fig. 5(b), we plot the susceptibilities χ of the last
magnon. For rapidities near the ultrarelativistic peaks θ ∼
± ln 2T/mS, we find an inverse quadratic scaling; for low
rapidity states θ ∼ 0, which are the main contributor to the
Onsager matrix at high temperature, the scaling is slightly
different χMν1

(0) ∼ ν−1.8
1 . Next, in Fig. 5(c), we plot the

dressed displacement of the last magnon when scattering
with the second-to-last magnon. The peak displacement at
θ = 0 exhibits an approximate power-law divergence scaling
as 	xdr (0) = �dr/(∂θ p)dr (0) ∼ ν2.35

1 . These scaling behav-
iors are similar to those observed in the XXZ chain [46]
(though for a different coupling parameter), thus suggesting
that the anomalous charge conductivity of sine-Gordon model
likewise is due to the charged quasiparticles undergoing Lévy
flights. We note, however, that these results do not give con-
clusive evidence in this regard.

VI. LOW-TEMPERATURE LIMIT

The analysis of transport conducted in Ref. [53] showed
that semiclassical predictions of the sine-Gordon model are
analytically recovered from GHD in the low-temperature
limit. However, this treatment was restricted to the repulsive
regime ξ > 1. To extend the analysis to any coupling, we
take advantage of the vanishing population of all but the
lightest massive particles in the low-temperature limit, which,
as already seen in Fig. 3, drastically reduces the relevant
scattering contributions to the Onsager matrix. Further, the
inter-magnon scattering vanishes for ν1 = 2, leaving only the

FIG. 6. Transport coefficients as function of coupling at low
temperature (T = 0.01, close to the gap at the lowest coupling).
The blue and red curves are calculated for reflectionless and at-
tractive two-magnon points using the simplified low-temperature
TBA equations, accounting only for specific quasiparticle scattering
processes. Symbols in corresponding colors show the results of full
GHD calculations.

soliton-magnon contribution. Thus the scattering kernel takes
a particularly simple form, allowing us to efficiently compute
transport coefficients (see Appendix for expressions). Ow-
ing to the simplicity of the low-temperature formulation, we
can extend the calculations to several hundreds of breather
species. Approaching the β → 0 limit is of particular inter-
est, as experimental realizations of the sine-Gordon model
achieved with tunnel-coupled quasicondensates are in the
vicinity of this regime [34,74–76].

In Fig. 6, we show the results of calculating the trans-
port coefficients of charge and momentum at T = 0.01
for the reflectionless and two-magnon points. To test our
low-temperature approximation, we compare it with GHD
computations employing the full scattering kernel; for cou-
plings with few breather types, we observe a good agreement.
For a fixed temperature T , the density of solitons (and
kinks/antikinks) ρS (θ ) remains constant when lowering the
coupling, while the density of magnons changes slightly (con-
verges for sufficiently low β). Meanwhile, since the mass of
the first breather mB1 = 2mS sin(πξ/2) decreases with cou-
pling, the density of breathers increases significantly as β

is lowered. This results in a growth of transport coefficients
containing breather contributions, as seen in Fig. 6.

When increasingly many breather species enter, their spec-
trum effectively becomes continuous, and the sine-Gordon
model becomes classical with limξ→0 SR/ST = 0. Thus all
anomalous transport phenomena related to reflective scatter-
ing should vanish in the limit ξ → 0, and transport coeffi-
cients should be well-represented by their values at the reflec-
tionless points. This classical limit has been obtained through
the reflectionless points [77,78]. Indeed, for sufficiently low
coupling strengths, the charge Drude weights Dq computed
for the reflectionless and attractive points converge to the
same value, whereby the fractal structure vanishes. However,
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we find that Lq of reflectionless and magnonic points do
not converge; instead, the charge diffusion of the magnonic
points continues to be many orders of magnitude greater. We
attribute this to a conflict of limits. Upon approaching the
classical limit, the amplitude of reflective scattering should
vanish. However, by calculating the transport coefficient using
the scattering of magnons, we implicitly assume that SR is
finite. Thus the classical result can only be obtained by taking
the limit ξ → 0 through reflectionless points.

VII. CROSSOVER TIMESCALE AND DYNAMICS
AT FINITE SCALES

The continuity equations ∂t ni + ∂x ji = 0 link the Drude
weight and Onsager matrix to the spreading of a local charge
perturbation, whose density correlation function at asymptotic
long times reads [51]∫

dx x2〈ni(x, t )ni(0, 0)〉c = Dit
2 + Lit + O(t ). (14)

To the leading order, correlations spread ballistically at a rate
governed by the Drude weights. At the same time, the term Lit
represents diffusive broadening around the ballistic propaga-
tion quantified by the Onsager matrix. Hence, while transport
is ultimately ballistic, charges may spread diffusively at short
to intermediate timescales, particularly if the corresponding
Onsager matrix is large. Notably, experiments are limited to
probing only shorter timescales.

We therefore introduce a crossover timescale between dif-
fusive and ballistic hydrodynamic transport t�

i , defined as the
ratio

t�
i = Li

Di
. (15)

From the previous calculations of transport coefficients shown
in Fig. 2, we find that momentum transport is dominantly
ballistic, even at short timescales, as t�

p � 1. Other integrable
models with diagonal scattering, such as the one-dimensional
Bose gas and the reflectionless points of the sine-Gordon
model, display similarly weak diffusion [79]. Meanwhile, at
generic couplings of the sine-Gordon model, the nature of
charge transport is dependent on temperature: Following our
analysis of the low-temperature limit T � mS in Sec. VI, it
is evident that the charge spreads diffusively at all but the
very longest timescales. Oppositely, in the high-temperature
limit T � mS , we find that the charge Onsager matrix satu-
rates, whereas the charge Drude weight increases linearly with
T [40]. Hence, competition ensues between the temperature
scaling of the Drude weight and the divergence of the On-
sager matrix with increasing magnon species. At intermediate
temperatures, T ∼ mS , we find that t�

q ∼ 1 for attractive points
with two magnon species; increasing the number of magnon
species again leads to a divergence of the charge Onsager
matrix, and thus the crossover timescale.

To demonstrate the crossover between diffusive and bal-
listic hydrodynamics, consider the bipartition protocol, where
the system is initialized with the step condition ϑa(θ ; x, 0) =
ϑa;L(θ )�(−x) + ϑa;R(θ )�(x), with ϑa = ρa/ρ

tot
a and �(x)

being the Heaviside function. Given just a small differ-
ence between the left and right subsystems, ϑa;L ∼ ϑa;R, the

Euler-scale solution at time t is given by

ϑa(θ ; x, t ) = ϑa;L(θ ) − (ϑa;R(θ ) − ϑa;L(θ ))�
(
tveff

a (θ ) − x
)
.

(16)

For each fluid mode (or rapidity θ ), the initial interface
between the initial subsystems translates to the coordinate
fulfilling veff

a (θ ) = x/t . The resulting ballistic currents are de-
termined by the Drude weights [5]; thus, the bipartition setup
can be used to measure Di [27].

In the presence of diffusion, the boundary is smoothened
out, and the solution up to corrections of order t−1 instead
reads [51]

ϑa(θ ; x, t ) = ϑa;L(θ ) + (ϑa;R(θ ) + ϑa;L(θ ))

2

×
⎛
⎝1 − erf

⎡
⎣

√
tveff

a (θ ) − x

4twa(θ )

⎤
⎦

⎞
⎠ + O(t−1)

(17)

where wa(θ ), which quantifies the diffusive broadening of a
quasiparticle of species a and rapidity θ [9], is given by

wa(θ ) =
∑

b

∫
dθ ′

[
χb(θ ′)

(
�dr

ab(θ − θ ′)ηb

2πρ tot
a (θ )

)2

× ∣∣veff
a (θ ) − veff

b (θ ′)
∣∣].

(18)

Note, in Eq. (17), we have omitted an additional term describ-
ing rearrangements of rapidities among particles following
interparticle scatterings, as this term only yields a minor con-
tribution to charge transport.

Given a bipartite thermal state with small, opposite polar-
ization, the charge profiles of the solutions to Eqs. (16) and
(17) for a generic attractive as well as a reflectionless point
are shown in Fig. 7. For the reflectionless point, the solutions
to both equations collapse to a single curve following bal-
listic rescaling, consistent with the very short corresponding
crossover timescale of t�

q = 0.06. In the presence of reflec-
tive scattering, however, we find that charge profiles for t �
t�
q = 517 follow diffusion scaling, whereas later solutions at

t � t�
q approach the ballistic curve. This may explain the ob-

servations in Ref. [53], where a hybrid approach, combining
classical quasiparticle trajectories with a quantum description
of kink-antikink scattering [80], was used to study charge
dynamics. After a bipartite quench, the charge front showed
diffusive scaling, which seemed at odds with the ballistic
transport predicted by GHD. However, given the very long
diffusive timescale for nonreflectionless points, it is likely that
the asymptotic ballistic regime was not reached within the
evolution times explored.

Approaching a reflectionless point, the charge Onsager
matrix, and thus t�

q , diverges, suggesting that charge transport
becomes fully diffusive. However, microscopic simulations
of XXZ spin chains near irrational coupling strengths sug-
gest that dynamics at finite timescales is quite different
[54]. Following a quench, the induced current passes through
transient regimes, exhibiting plateaus corresponding to the
Drude weights of subsequent rational approximations of the
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FIG. 7. Topological charge density at times t following a quench
from a bipartite thermal state at temperature T = 0.25 and chemical
potential μL/R = ±0.001. (a) Attractive point with NB = 1 breathers
and ν1 = 2 magnons, resulting in a crossover time of t �

q = 517.
The solid lines correspond to solutions of the diffusive Eq. (17),
while the dashed line is the ballistic solution (16). The inset shows
a collapse of the solutions at shorter timescales following diffu-
sive rescaling. (b) Reflectionless point with NB = 2 breathers and
t �
q = 0.06.

(irrational) coupling. Physical intuition of this phenomenon
is given by the quasiparticle spectrum, which in the XXZ
spin chain consists of neutral particles of increasingly larger
size; upon approaching the irrational coupling point, the
number of particle species grows, similar to the quantum
sine-Gordon model. At finite evolution times, a propagating
charge-carrying particle can, therefore, only resolve part of the
excitation spectrum up to particles of a certain length. Thus
the system effectively acquires transient transport coefficients
corresponding to the subsequent rational approximations of
the coupling. Notably, this phenomenon is completely absent
in GHD, as the diffusion kernel is derived from the quasipar-
ticle distributions of the thermodynamic Bethe Ansatz; being
formulated in the thermodynamic limit, the theory immedi-
ately resolves the full particle spectrum, whereby the GHD
dynamics exhibits no transient behavior. Indeed, as shown
in Fig. 8 for ξ = (2 + 1/7)−1 in the quantum sine-Gordon
model, calculating the charge current of the hydrodynamic
bipartition solution (17) yields a smooth crossover to the
asymptotic value set by the Drude weight. However, following
the close similarities of the Bethe ansatz solution between the
XXZ spin chain and the quantum sine-Gordon model, it is
likely that a charge current induced in the latter would also
exhibit transient behavior.

To illustrate how the resulting charge current may appear,
we compute the asymptotic currents and crossover timescales
for couplings approaching ξ = 1/2, i.e., for two breather
species with an increasing number of magnon species. The
results, connected by dotted curves to guide the eye, are
plotted in Fig. 8, where plateaus corresponding to increments
of level-1 magnons are highlighted by dashed lines. Moving
through couplings with increasing crossover time, we find

FIG. 8. Hydrodynamic charge current at x = 0 following a
quench of a bipartite state (green curve) for ξ = (2 + 1/7)−1. Mark-
ers indicate 2πt �

q and ballistic currents calculated from the solution
to Eq. (16) for couplings with an increasing number of level 1
(orange squares) and 2 magnons (blue circles) until ξ is reached.
The red dotted curve connecting the points is a guide to the eye.
Dashed lines indicate the asymptotic currents (plateaus) of couplings
ξ = (2 + 1/ν1)−1 for ν1 = 2, . . . , 7. The inset shows the corre-
sponding crossover times t �

q as functions of the continued fraction
α = (ν1 + (ν2 + . . .)−1)−1 for NB = 2 breathers.

an oscillatory behavior of the ballistic charge current while
increasing ν1 leads to an increase in t�

q and a decrease in
Dq. Accounting for level-2 magnonic excitations introduces
intermediate crossover times. Additional magnon levels likely
yield even finer features. However, achieving numerical con-
vergence of the TBA equations for larger numbers of magnon
species becomes increasingly difficult.

VIII. CONCLUSIONS

In this work, we have comprehensively studied transport
properties in the integrable quantum sine-Gordon model.
Specifically, we have focused on the transport of topo-
logical charge, which shows anomalous behavior in the
low-frequency regime due to nondiagonal scattering be-
tween the physical charge-carrying particles. At reflectionless
points, where scattering becomes diagonal for specific cou-
pling values, charge transport is ballistic, while diffusive
effects merely provide subleading contributions to dynamics.
However, for generic couplings, diffusive transport dominates
at most accessible timescales, unlike the behavior found in
most integrable models.

As the coupling approaches a reflectionless point, the
charge Onsager matrix diverges with power-law scaling, caus-
ing the diffusive timescale to increase. To identify the source
of this diffusion, we have analyzed scattering between quasi-
particle excitations and found that the primary contribution
comes from interactions between charged particles and those
carrying dressed charge. By reducing the Onsager matrix to a
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few key scattering combinations, we could efficiently examine
transport in both low- and high-temperature limits.

We also observed that the scattering of dressed charge
carriers, particularly the two last magnon types, shows similar
scaling with coupling strength, as seen in the integrable XXZ
spin-1/2 chain. In that system, the power-law divergence of
the Onsager matrix was linked to Lévy flights of spin-carrying
excitations [46]. We anticipate a similar mechanism to be
responsible for the charge Onsager matrix divergence of the
sine-Gordon model since solving its nondiagonal scattering
problem requires auxiliary Bethe equations identical to those
of the gapless phase of the XXZ spin chain. It is an inter-
esting open question whether the anomalous transport indeed
corresponds to the Lévy flight found for the XXZ model,
or whether some other universality class appears, possibly
by engineering the particle species contents, such as e.g. the
Fibonacci class found in Ref. [81].

Analogously with the XXZ spin chain, at finite times and
in finite-sized systems, the sine-Gordon model’s transport
dynamics is likely to exhibit transient behavior as its exten-
sive excitation spectrum is dynamically resolved. However,
because generalized hydrodynamics (GHD) is formulated in
the thermodynamic limit, capturing all excitation species at
all times, simulations of microscopic dynamics are needed to
observe such transient effects.

GHD and the Bethe ansatz quasiparticle framework of-
fer new perspectives on many-body dynamics, particularly
in analog quantum field simulators realized using ultracold
atoms. For example, studies of the integrable one-dimensional
Bose gas have deepened our understanding of the emer-
gence and breakdown of effective field theories. Recent
advancements in theoretical techniques have provided valu-
able insights into sine-Gordon dynamics [82–84]; to achieve
a comprehensive understanding of the model, it is thus crucial
to consolidate these findings with the GHD framework. A
key initial step in this direction is exploring the transition
between the quantum and classical sine-Gordon models, along
with their respective GHD formulations [41,77,78,85], since
current experimental quantum field simulators operate in this
transition regime.
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APPENDIX A: GENERALIZED HYDRODYNAMICS
FOR THE SINE–GORDON MODEL

1. Sine-Gordon thermodynamics

The main complication in setting up sine-Gordon thermo-
dynamics and hydrodynamics is the nondiagonal character of
the kink-antikink scattering

S++
++ (θ ) = S−−

−− (θ ) = S0(θ ),

S+−
+− (θ ) = S−+

−+ (θ ) = ST (θ )S0(θ ),

S−+
+− (θ ) = S+−

−+ (θ ) = SR(θ )S0(θ ),

ST (θ ) =
sinh

(
θ
ξ

)
sinh

(
iπ−θ

ξ

) , SR(θ ) =
i sin

(
π
ξ

)
sinh

(
iπ−θ

ξ

) ,

S0(θ ) = − exp

(
i
∫ ∞

−∞

dt

t

sinh
(

tπ
2 (ξ − 1)

)
2 sinh

(
πξ t

2

)
cosh

(
πt
2

)eiθt

)
, (A1)

where +/− stands for kinks/antikinks, with θ denoting the
difference of their rapidities. ST and SR are the amplitudes
for transmission and reflection, with integer values of 1/ξ

corresponding to reflectionless points. The scattering theory
can be diagonalised using magnonic excitations, as detailed
in Sec. II A.

In the thermodynamic limit, the system can be described
in terms of the total densities of states ρ tot

a and densities of
occupied states ρa of quasiparticle excitation a, with the Bethe
Ansatz relating them by the following system of linear integral
equations:

ρ tot
a = ρa + ρ (h)

a = ηa
ma

2π
cosh θ +

∑
b

ηa�ab ∗ ρb, (A2)

where ma = 0 for magnonic degrees of freedom, ρ (h)
a is the

density of unoccupied states (holes), and the star denotes
convolution in rapidity space defined by

( f ∗ g)(θ ) =
∫

dθ ′

2π
f (θ − θ ′)g(θ ′). (A3)

The �ab kernels are the logarithmic derivatives of the scat-
tering phases between the different quasiparticles, while
ηa = ±1 are appropriate sign factors; for their explicit speci-
fication, we refer to [41]. These equations can be brought to
a partially decoupled form, which has several advantages: it
has simpler kernels given by universal functions, can be en-
coded graphically and speeds up the numerical solution of the
system [40,41].

Equations (A2) are valid for any equilibrium state of
the system. Integrable systems have more general equilib-
rium states due to the presence of infinitely many conserved
charges, which are often conceptualized as generalized Gibbs
ensembles [86]. However, it turned out that the local con-
served charges were generally insufficient to describe such
equilibrium states [87,88], and they must be completed using
quasilocal charges [89]. As it turns out, the specification of
the equilibrium state in terms of the complete set of charges is
equivalent to giving all the densities of occupied states ρa via
the correspondence known as string-charge relations [90,91].
Therefore it is preferable to consider the general equilibrium
state to be described by the densities, avoiding the problems
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with finding the complete set of charges. Nevertheless, we
note that such charges have been found for the sine-Gordon
model as well [92].

To find a specific equilibrium state, additional conditions
beyond (A2) are required. For the important case of ther-
mal equilibrium at temperature T and chemical potential μ

(coupled to the topological charge), these are given by the
following thermodynamic Bethe Ansatz (TBA) equations:

εa = wa −
∑

b

ηb�ab ∗ ln(1 + e−εb ), (A4)

where the unknowns to be solved for are the pseudoenergy
functions

εa = ln
ρ (h)

a

ρa
(A5)

and

wa = ma

T
cosh θ − μqa

T
(A6)

correspond to the bare quasiparticle energies where qa gives
the topological charge of the excitation species a.

Figure 9 shows examples of density profiles of occupied
states ρa(θ ) and filling functions ϑa(θ ), highlighting the emer-
gence of the double-peaked distribution of particles for high
temperatures. Note also that the filling functions of magnons
take finite asymptotic values for |θ | → ∞. Unlike massive
particles, the magnons’ total densities of states (not shown)
vanish as |θ | → ∞, yielding a finite number of occupied
states.

2. Mapping between the sine-Gordon and the XXZ TBA

The Hamiltonian of the XXZ spin chain reads

HXXZ = −
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 + 	Sz
i Sz

i+1. (A7)

In case −1 < 	 < 1 (which has a quasiparticle content dif-
ferent from the |	| > 1 case), the Bethe Ansatz equations of
the model [58] can be mapped to that of the magnonic equa-
tions of the sine-Gordon model for reflective couplings. The
coupling strength is usually parametrized as 	 = cos γ with
0 < γ < π , and the identification of the XXZ parameter in
terms of the sine-Gordon coupling is given by

γ = π

α
with ξ = 1

NB + 1
α

. (A8)

Writing α in terms of its (unique) continued fraction

α = ν1 + 1

ν2 + . . .
(A9)

determines the magnon content in the TBA equations, which
consists of νi level-i magnons, i.e.,

∑
i νi magnons altogether.

The mapping works in both the repulsive (NB = 0) and
the attractive (NB �= 0) regimes by appropriately shifting and
rescaling the rapidities (see Ref. [41] for details). Still, it is
otherwise independent of the number of breathers. This means
that couplings for which α is the same but NB is different have
the same internal XXZ Bethe Ansatz as shown in Fig. 10.

In the XXZ model, when 	 = 1 (the XXX model), both the
TBA equations and the structure of magnons differ from the

FIG. 9. Example particle density and filling profiles for T =
0.25, 0.5, 1, 10, and 100 from top to bottom.

cases where |	| < 1. In the repulsive regime, only the point
β2/8π = 1 corresponds to 	 = 1. At this point, it is possible
to relate the string structure of the XXX model to the magnon
structure of the sine-Gordon model.

FIG. 10. TBA particle content and mapping of the sine-Gordon
model to the XXZ spin chain.
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In the attractive regime, the only points with |	| = 1 are
the “reflectionless points” where 1/ξ = NB + 1, resulting in
α = 1 and 	 = cos π/α = −1. However, at exactly the re-
flectionless points, the Bethe Ansatz equations contain no
nesting, so there is no corresponding spin chain. As a re-
sult, the sine-Gordon TBA excitation spectrum contains no
magnons; instead, it solely consists of NB = 1/ξ − 1 species
of breathers and a soliton/anti-soliton pair, all of which scatter
diagonally [93].

3. Generalized hydrodynamics for the sine-Gordon model

On the hydrodynamic (Euler) scale, the dynamics of in-
tegrable systems is captured by the theory of Generalized
Hydrodynamics. It is based on the transport of the in-
finitely many conserved quantities expressed by the continuity
equation

∂t ni(x, t ) + ∂x ji(x, t ) = 0, (A10)

where the expectation value of the local charges is given by

ni =
∑

a

∫
dθρa(θ )hi;a(θ ). (A11)

The expression of the current densities, conjectured in
Refs. [14,15,94] and then rigorously established in [95–97]
reads

ji =
∑

a

∫
dθρa(θ )hi;a(θ )veff

a (θ ), (A12)

where the effective velocity veff
a accounts for the accumulated

contributions of scattering delays as described in Sec. II B, and
is given by

veff
a [{ρb}](θ ) = (∂θea)dr(θ )

(∂θ pa)dr(θ )
. (A13)

Here, the superscript ‘dr’ denotes the so-called dressing oper-
ation which is defined for any one-particle quantity ωa(θ ) as

ωdr
a = ηa

(
ωa +

∑
b

�ab ∗ ϑbω
dr
b

)
, (A14)

where

ϑa(θ ) = 1

1 + eε
a(θ )

= ρa

ρ tot
a

(A15)

is the filling fraction.
Exploiting the completeness of the charges, one arrives at

the GHD equation [14,15]

∂tρa(x, t, θ ) + ∂x
(
veff

a [{ρb}](θ ) ρa(x, t, θ )
) = 0 (A16)

for the densities ρa(t, x, θ ) of quasiparticle species a and ra-
pidity θ that are space and time-dependent on the Euler scale.

Note that veff
a carries an implicit dependence on t and x via

the densities {ρ j} used to dress the derivatives of energy and
momentum. These equations are supplemented by the dress-
ing equations (A14) and the density equations (A2) necessary
to reconstruct the filling fractions needed for the dressing from
the quasiparticle (root) densities ρa.

APPENDIX B: DIFFUSION IN GHD

The number of collisions experienced by a quasiparticle
undergoes fluctuations in the local equilibrium state, resulting
in diffusive corrections [50,51] which can be interpreted in
terms of a Gaussian broadening of the quasiparticle trajecto-
ries [9]. Diffusion leads to higher-derivative corrections to the
hydrodynamic equations, representing subleading corrections
to the leading ballistic behavior at the Euler scale. As a result,
the expression (A12) can be viewed as the first term in a
derivative expansion of the currents. Diffusive corrections are
accounted for by terms depending on the spatial variation of
the charges:

jh =
∑

a

∫
dθha(θ )

[
ρa(θ )veff

a (θ )

− 1

2

∫
dα

∑
b

Dab[{ρ}](θ, α) ∂xρb(α)

]
, (B1)

leading to the diffusive GHD (Navier-Stokes) equation

∂tρa + ∂x
(
veff

a [{ρ}] ρa
) = 1

2

∑
b

∂x(Dab[{ρ}] · ∂xρb), (B2)

where we suppressed the arguments (x, t, θ ) and the dot on
the right-hand side denotes action with the integral kernel.

APPENDIX C: EFFECTIVE LOW-TEMPERATURE
EQUATIONS

Here, we give explicit formulas for the low-temperature
asymptotics of the solutions for the Bethe ansatz densities,
effective velocities and dressed kernels which are used in our
calculations.

1. Reflectionless points

At the reflectionless points ξ = 1
NB−1 , the only relevant

scattering events for the charge and momentum Onsager ma-
trices involve the kinks S (antikinks have equal contribution)
and first breather type B1. The relevant thermodynamic soli-
tonic quantities read

ρS (θ ) = mS cosh (θ )

2π
exp

(
−mS

T
cosh (θ )

)
,

ρ tot
S (θ ) = mS cosh (θ )

2π
,

veff
S (θ ) = tanh (θ ),

qdr
S (θ ) = 1,

pdr
S (θ ) = mS sinh (θ ), (C1)

while for the first breather

ρB1 (θ ) = mB1 cosh (θ )

2π
exp

(
−mB1

T
cosh (θ )

)
,

ρ tot
B1

(θ ) = mB1 cosh (θ )

2π
,

veff
B1

(θ ) = tanh (θ ),

qdr
B1

(θ ) = 0,

pdr
B1

(θ ) = mB1 sinh (θ ), (C2)
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where the first breather mass is mB1 = 2mS sin(πξ/2). The
relevant dressed scattering kernels take the form

�dr
B1B1

(θ ) = 4 sin (πξ ) cosh (θ )

cos (2πξ ) − cosh (2θ )
,

�dr
B1S (θ ) = − 4 sin (πξ/2) cosh (θ )

cos (πξ ) + cosh (2θ )
. (C3)

2. Attractive two-magnon points

At the couplings ξ = 1
NB+1/2 , where NB is the number of

the breather species, the only relevant scattering events for the
charge and momentum Onsager matrices involve the soliton
S, the first breather B1, and the two magnon species, the
latter having equal contributions. The relevant thermodynamic
solitonic quantities read

ρS (θ ) = mS cosh (θ )

2π
exp

(
−mS

T
cosh (θ )

)
,

ρ tot
S (θ ) = mS cosh (θ )

2π
,

veff
S (θ ) = tanh (θ ),

qdr
S (θ ) = 0,

pdr
S (θ ) = mS sinh (θ ), (C4)

while for the first breather,

ρB1 (θ ) = mB1 cosh (θ )

2π
exp

(
−mB1

T
cosh (θ )

)
,

ρ tot
B1

(θ ) = mB1 cosh (θ )

2π
,

veff
B1

(θ ) = tanh (θ ),

qdr
B1

(θ ) = 0,

pdr
B1

(θ ) = mB1 sinh (θ ). (C5)

The magnonic quantities read

ρM2 (θ ) = 2

ξ cosh
(

2
ξ
θ
) ∗ ϑS (θ )mS cosh(θ )θ

4π2
,

ρ tot
M2

(θ ) = ρM2 (θ )

2
,

veff
M2

(θ ) = − T

mSρ
tot
M2

(θ )
∂θ (ρM2 (θ )),

qdr
M2

(θ ) = 2,

pdr
M2

(θ ) = 0. (C6)

The relevant dressed scattering kernels take the form

�dr
B1B1

(θ ) = 4 sin(πξ ) cosh(θ )

cos(2πξ ) − cosh(2θ )
,

�dr
M2S (θ ) = 1

2ξ cosh
(

2
ξ
θ
) . (C7)
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