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Enhancement of superconductivity in thin films of Sn under high pressure
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We investigated the pressure effects of superconductivity on thin films of Sn. The elemental superconductor Sn
with a body-centered-tetragonal structure, 8-Sn, exhibits superconductivity below the superconducting transition
temperature (7. = 3.72 K) at ambient pressure. 7. of Sn increases with lowering dimension such as in thin-
film and nanowire growth, or by high-pressure application. For thin films, 7; exhibits a slight increase up to
approximately 4 K compared to the bulk value, attributable to the crystalline size and lattice disorder. By applying
pressure on a bulk Sn, 7; initially decreases from 3.72 K as the pressure increases. Further increasing pressure
up to 10 GPa, T; increases to 5.3 K with the structural transformation. However, the combination of these effects
on thin films of Sn, namely, thin-film growth and pressure effects, remains underexplored. In this paper, we
combined film-growth and pressure-application techniques to further increase 7; using a diamond anvil cell with
boron-doped diamond electrodes. The drop of electrical resistance suggesting the onset of 7. on the thin film
reached above 6 K in the y-Sn phase. Further, the upper critical magnetic field was drastically enhanced. Atomic
force microscopy suggests that the refinement of the grain size of the thin film under nonhydrostatic pressure
conditions contributes to stabilizing the higher T; of y-Sn.
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I. INTRODUCTION

Applying high pressure to directly compress a material is
a useful approach to investigate intriguing physical properties
and search for new materials [1,2]. For instance, oxygen—
a gas at ambient conditions— exhibits metallic behaviors
and superconductivity at high pressures [3,4]. Recently, high-
temperature superconductors such as hydrogen-rich materials
and nickelates under high pressure have attracted consid-
erable attention [5-18]. In addition, recent discoveries of
high-temperature superconducting states in elemental solid
Ti and Sc at extreme pressures imply the potential of high-
temperature superconductivity in the high-pressure phases of
other elements [19-21].

Some elemental superconductors with thin-film dimen-
sions show an increase in superconducting transition tem-
perature (7;) compared to the bulk value, attributable to the
crystalline size and lattice disorder [22-25]. In the case of
Sn, T for thin films and nanowires varies slightly depending
on the size and surface morphology [26-29]. The mechanism
of T, enhancement is not thoroughly clear although it has
been proposed to arise from changes in the phonon density of
states, the electron density of states, and the electron-phonon
coupling [30-32].

Sn exhibits various crystal structures at high pressures
[33-35]. Half a century ago, Wittig investigated the electrical
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transport properties of bulk Sn at high pressures of up to
16 GPa and revealed the highest 7. is 5.3 K at 11.3 GPa
on the pressure-induced phase, y-Sn, where B-Sn shows
superconductivity below 3.72 K at ambient pressure [36].
However, research on the combination of pressure application
and thin-film growth on elemental superconductors is inad-
equate. Here, we hypothesize that changing the crystalline
size of a thin film via pressure application could stabilize the
higher T..

In this paper, we combined thin-film growth and pressure-
application techniques to increase 7. using a diamond anvil
cell (DAC) with boron-doped diamond (BDD) electrodes
[37-39]. We investigated the pressure effects on the supercon-
ductivity of thin films of Sn compared to the bulk sample. We
observed a higher 7. for the thin film compared to previous
studies on the high-pressure phase. Further, we observed a
drastically enhanced critical magnetic field on the thin film
under high pressure.

II. EXPERIMENTAL PROCEDURE

Thin films of Sn were deposited on a diamond anvil by re-
sistance heating evaporation. The target metal was high-purity
Sn, purchased from Kojundo Chemical Laboratory Company,
Ltd. Comparing with the high-pressure measurements, we
also prepared Sn thin films on a diamond substrate for elec-
trical transport measurements at ambient pressure. The film
deposition on the two diamonds was performed simultane-
ously. The optical images of the thin films on the diamond
anvil and the diamond substrate are shown in Fig. 1(a) and the
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FIG. 1. (a) Optical image of a thin film of Sn on a diamond anvil with BDD electrodes. The dotted area indicates one of the BDD electrodes.
(b) T dependence of the in-phase component of m’ on the bulk Sn. (¢) T dependence of R on a thin film of Sn on a diamond substrate. The
magnetic field was applied perpendicularly to the film. The inset shows the optical image of a thin film of Sn on a diamond substrate. The
thickness of the thin film was approximately 100 nm. (d) T dependence of the critical magnetic field on the thin film and bulk Sn.

inset of Fig. 1(c), respectively. The film thickness and surface
morphology of the films were evaluated via atomic force
microscopy (AFM; Nanocute, SII NanoTechnology, Inc.) at
room temperature. For the magnetic measurements of the bulk
Sn, a wire of high-purity Sn (Nilaco Corporation) was used.
High-pressure generation was performed using DAC. The
pressure value at room temperature was evaluated using ruby
fluorescence and the Raman shift of diamond [40,41]. In the
electrical transport measurements, a diamond anvil with BDD
electrodes with a culet size of 300 um was used [37-39].
The BDD electrodes were deposited homoepitaxially on the
diamond anvil by microwave plasma chemical vapor depo-
sition [42]. This electrode exhibits high durability and can
be reused until the diamond anvil itself fractures. Further,
thin films could be deposited directly on the diamond anvil
with BDD electrodes, eliminating the need for an electrode
fabrication process after thin-film deposition [37,43,44]. The
pressure-transmitting media in the solid, liquid, and gaseous
states are compatible with this system. A gasket of stain-
less steel was preindented and a 200-um-diameter hole was
drilled. The insulating layer was prepared using a MgO-epoxy
mixture. We termed this setup as nonhydrostatic. We also
performed high-pressure generation with a better hydrostatic
pressure condition than the nonhydrostatic measurement us-
ing glycerol as the liquid pressure-transmitting medium. A
150-um-diameter hole was drilled in the insulating layer of the
MgO-epoxy mixture to prepare the sample space, which was
filled with glycerol. We termed this setup as quasihydrostatic.

In quasihydrostatic pressure measurements, the pressure value
was evaluated using the Raman shift of diamond [41]. The
electrical transports under a magnetic field (H) perpendicu-
lar to the surface were measured by a four-terminal method
by a physical properties measurement system (Quantum
Design).

For magnetic measurements, we used a miniature DAC
in combination with a superconducting quantum interference
device magnetometer (MPMS, Quantum Design) [45-50]. A
nanopolycrystalline diamond with culet size of 600 um and a
preindented tungsten gasket with a hole size of 200 um were
used [51]. Bulk Sn pieces and ruby powders were loaded into
the sample space without a pressure-transmitting medium.
The in-phase component of the ac magnetic response (m') was
measured. The frequency and amplitude of the ac field were
3 Hz and 0.2 mT, respectively.

III. EXPERIMENTAL RESULTS
A. Ambient pressure

Figure 1(b) shows the temperature (T') dependence of m’
for the bulk Sn under H, where no background signal from
DAC is subtracted. Below 3.7 K, a diamagnetic signal sug-
gesting a superconducting state was observed at H = 0. The
T. onset was decreased by applying H. Figure 1(c) shows the
T dependence of the electrical resistance (R) under H perpen-
dicular to the film surface. The residual resistance ratio (RRR)
was estimated to be 11. At H = 0, an R drop suggesting the
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FIG. 2. (a) T dependence of m’ on bulk Sn under high pres-
sures. (b) T dependence of m' at 2.7 GPa under varying magnetic
fields. The inset shows the 7' dependence of the critical magnetic
field.

onset of a superconducting transition was observed at 3.75 K.
T. slightly increased compared to the bulk value and was
similar to values from previous studies on thin films [27,28].
By applying H, the onset of 7. decreased with increasing H.
However, the critical magnetic field was three times higher
than that of the bulk Sn [Fig. 1(d)]. An H, of 100 mT estimated
using H.(T) = H.[1 — (T /T.)*] was similar to that of a previ-
ous study [28]. Considering H., the thin film transformed into
a type-1I superconductor, as previously reported [28,52,53].

B. Nonhydrostatic pressure on bulk Sn

Figure 2(a) shows the T' dependence of m’ on the bulk Sn
under high pressures. On applying pressure, 7. decreased, as
previously reported. Figure 2(b) shows the 7 dependence of
m' at 2.7 GPa under varying H. A decrease of T, was observed
by applying H = 2 mT. At H = 10 mT, T; was below 2 K. H,
was evaluated to be 13 mT, as shown in the inset of Fig. 2(b).
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FIG. 3. T dependence of electrical R under nonhydrostatic pres-
sure with a (a) pressurizing process and (b) depressurizing process.
The number in (b) indicates the order of measurements.

C. Nonhydrostatic pressure on thin film

Figure 3(a) shows the T' dependence of R on a thin film of
Sn under high pressures on pressurization. As shown in the
inset of Fig. 4(a), RRR was estimated to be 1.4 at 2.5 GPa,
which was much lower than that under ambient pressure.
We speculate that the crystallographic defect was intro-
duced because of the nonhydrostatic pressure condition. A R
drop suggesting the superconducting transition was observed
around 4 K, whereas 7. was 3.75 K under ambient pressure.
T. decreased on further increasing the pressure, as previously
reported. R showed peak behavior just above T; at 5.5 GPa,
possibly due to the granularity or disorder on the thin films.
Above 9.5 GPa, R tended to slightly decrease around 6 K,
suggesting the superconducting transition, where the y-Sn
phase could emerge. With further pressure application, the
R drop became significant, and 7. slightly decreased. After
applying 20 GPa, the pressure was decreased to 10.5 GPa.
Figure 3(b) shows the T dependence of R for a thin film of
Sn under high pressures with depressurization. The onset of T
increased to 6.3 K at 10.5 GPa, and y-Sn remained at 8.5 GPa.
y-Sn vanished when the pressure was decreased to 3.5 GPa.
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FIG. 4. (a) and (b) T dependence of R under a magnetic field
at (a) 2.5 and (b) 10.5 GPa. The inset of (a) shows T dependence
of R between 2 and 300 K at 2.5 GPa without an external magnetic
field. (c) T dependence of the upper critical magnetic field at 2.5 and
10.5 GPa. The solid lines represent the fitting curves estimated by the
WHH model.

the ambient pressure measurement. This value is consistent
with those reported in previous studies [28,53]. In contrast, the
electrical resistivities of the thin films for 2.5 GPa of run 1 and
5 GPa of run 2 were approximately 1.7 x 103 and 81 u2 cm,
respectively. The increase in the electrical resistivity near 7
suggests that the mean free path of the electrons is shortened
by the application of pressure.

D. Quasihydrostatic pressure on thin film

We performed high-pressure generation with a better hy-
drostatic pressure condition using glycerol as the liquid
pressure transmitted medium. Figure 6(a) shows the R-T of
the thin film at 9 GPa under quasihydrostatic pressure con-
ditions. The optical image of the thin film inside the DAC
is shown in the inset of Fig. 6(a). The RRR was within
2-3 in quasihydrostatic pressure measurements, which was
slightly higher than those for the nonhydrostatic pressure
condition. An R drop suggesting a superconducting transition
was observed around 5 K. Figure 6(b) shows R-T under a
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FIG. 6. (a) T dependence of R at 9 GPa. The inset shows the
optical image of the thin film. (b) T dependence of R under high
pressures between 2 and 8 K.

quasihydrostatic pressure condition between 2 and 8 K with
the warming process. The R value was normalized using the
value at 8 K. At 9 GPa, R slightly decreased with decreasing
T around 5.3 K, suggesting the superconducting transition on
y-Sn. An R drop was also observed around 3 K. The y-Sn
phase became significant on further pressure application. The
onset of T; slightly increased at 12 GPa. We also decreased
the pressure from 12 to 8 GPa. A decrease of R suggesting
the superconducting transition of y-Sn was slightly observed,
whereas y-Sn was clearly observed at 8.5 GPa under the
nonhydrostatic pressure condition. With a further pressure
decrease, y-Sn vanished at 2 GPa.

IV. DISCUSSION

A. Pressure dependence of T,

Figure 7 shows the pressure dependence of 7; for the thin
film and bulk samples compared with results from a previous
study [36]. For the bulk Sn, the behavior of 7, with respect
to pressure was in good agreement with the previous study. A
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FIG. 7. Pressure dependence of the superconducting transition
temperature. The green triangles indicate the results by Wittig [36].
The dotted line indicates a guide for the eyes.

similar tendency was observed for the thin film in the §-Sn
phase, however, its 7. was higher compared to bulk Sn. One
possible reason is the geometry of the thin film. As shown in
Fig. 1(a), the thin-film area occupies approximately 70% of
the culet of the diamond anvil, which produces the pressure
distribution. In the y-Sn phase, T, with quasihydrostatic pres-
sure measurements showed a trend similar to previous results
[36]. Meanwhile, 7; with nonhydrostatic pressure showed a
higher value. We observed the highest 7, of 6.3 K at 10.5 GPa,
which was approximately 10% higher than that reported in
a previous study [36]. The highest T; is not fully explained
by the pressure gradient. Assuming that the 7. of bulk y-Sn
continues to change at a rate of —0.11 K/GPa, it is necessary
to decrease the pressure to 4 GPa from the y phase above
10 GPa. However, the y phase cannot exist metastably under
this pressure as was observed during the y to B phase transi-
tion on the decompression process [Fig. 3(b)]. We emphasize
that we observed the midpoint of 7; to be greater than 6.0 K
[Fig. 4(b)].

B. Atomic force microscopy

To investigate the morphology on the thin films, we
performed AFM measurements before and after apply-
ing pressure under the nonhydrostatic pressure condition.
Figures 8(a) and 8(b) show the optical and AFM im-
ages of the thin film before pressurization. The thin
film of Sn was deposited on a diamond anvil with-
out BDD electrodes. The average film thickness was
evaluated to be 70 nm. A magnified AFM image is shown in
Fig. 8(c). The average grain size was estimated to be approxi-
mately 300 nm. Figure 8(d) shows the optical image of the thin
film after applying pressure up to 4.2 GPa. The pressure was
evaluated by the diamond Raman shift. Most of the thin film
was peeled off and transferred to the MgO-epoxy mixture.
We measured the small remaining thin-film area. Figure 8(e)
shows the AFM image of the thin film after pressurization.
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FIG. 8. (a) Optical image of the thin film of Sn on a diamond
anvil before pressurization. (b) and (c) AFM image on the thin film
before pressurization. (d) Optical images of the thin film of Sn on the
diamond anvil after pressurization. (e) and (f) AFM image of the thin
film after pressurization.

The average film thickness was evaluated to be 60 nm. A
magnified view is shown in Fig. 8(f). The grain size was
reduced to several tens of nanometers on pressure application.
Next, we performed AFM measurements under a quasi-
hydrostatic pressure condition for comparison with the
nonhydrostatic pressure measurements. The thin film was the
same as that used in the R-T' measurement. Figures 9(a) and
9(b) show the AFM images of the thin film before applying
pressure. The average thickness and average grain size were
evaluated to be 82 and 600 nm, respectively. Figures 9(c) and
9(d) show the AFM images on the thin film after applying
pressure up to 12 GPa. The pressure-transmitting medium was
removed using ethanol and nitrogen gas. The average thick-
ness was evaluated to be 91 nm. Unlike the nonhydrostatic
pressure measurements, grain refinement was not observed.
The AFM results revealed that the grain refinement was
observed only under the nonhydrostatic pressure condition.
In the R-T results, the maximum 7. value under the non-
hydrostatic condition was 10% higher than that under the
quasihydrostatic condition, suggesting that grain refinement
plays a pivotal role in stabilizing the higher 7;. Smaller grain
sizes tend to have higher T, because of phonon softening
under ambient pressure [32]. Houben et al. performed nu-
clear resonant inelastic x-ray scattering on nanostructured
films and bulk Sn to investigate the phonon density of states
and observed a decrease in the high-energy phonon modes
and a slight increase in the low-energy phonon modes in

+ 209 nm

FIG. 9. AFM under quasihydrostatic pressure condition. (a) and
(b) AFM image of the thin film before pressurization. (c¢) and
(d) AFM image of the thin film after pressurization.

nanostructured films [31,32]. Using the obtained phonon
spectra, calculations based on the Allen-Dynes-McMillan
formalism yielded 7. values in good agreement with the ex-
perimental data. In nanostructured films, the electron-phonon
coupling increased by up to 10%, suggesting that phonon
softening and the associated change in electron-phonon cou-
pling play a major role in the 7. increase. We consider that
the T, increase under the nonhydrostatic pressure condition is
related to the grain size and that grain refinement could induce
changes in the electron-phonon coupling.

C. Possible higher 7, on Sn

Recently, anomalies in magnetization, resistance, and heat
capacity suggesting the superconducting transition were ob-
served around 5.5 K in nanowires of Sn [57]. Further, based

93.6

93.2

050 15 20 25 30
93.0L ' ' ' '
5 10 15 20 25 30

T[K]

FIG. 10. Temperature dependence of the electrical resistance at
9.5 GPa. The downward arrows indicate the onset of the anomalies
in the resistance.
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on scanning tunneling microscopy, a thin film of Sn deposited
on the SrTiO3 substrate exhibited superconductivity around
8 K [58]. Indeed, in our thin film, a decrease of R was
observed at 11 K under 9.5 GPa, suggesting the signature
of the superconducting transition, and the anomaly shifted
to lower T by applying the magnetic field (Fig. 10). On the
other hand, some granular or amorphous thin films exhibit a
decrease in resistance at higher T than T; due to the effects of
fluctuations [59-62]. Further investigations such as magnetic
measurements [63,64], heat capacity measurements [65], and
scanning tunneling microscopy [66] under high pressure may
offer insights for the possible stabilization of higher 7.

V. CONCLUSION

In conclusion, we demonstrated the pressure effect on the
superconductivity of thin films of Sn. We observed super-
conductivity below 6.3 K in the y phase of Sn, which was

approximately 10% higher than previous bulk results. Fur-
ther, the H., drastically increased under the nonhydrostatic
high-pressure condition. We also observed the signature of the
superconducting transition at higher T than 7;. AFM results
suggest that the grain refinement under nonhydrostatic pres-
sure contributes to the stabilization of the higher 7. of y-Sn.
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