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Quantum criticality and universality in the stationary state of the long-range Kitaev model
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We investigate the signature of quantum criticality in the long-time stationary state of the long-range Kitaev
chain by performing various quench protocols. In this model, the pairing interaction decays with distance
according to a power law with exponent «. Using quantum information-theoretic measures, such as mutual
information and logarithmic negativity, we show that irrespective of the values of «, critical-to-critical quench
displays quantum criticality even in the stationary state. Remarkably, in the presence of long-range pairing
interactions, where fermionic correlators decay algebraically even at noncritical points, the signature of quantum
criticality persists in the stationary state. Furthermore, the effective central charge, calculated from both mutual
information and logarithmic negativity of the stationary state following a critical-to-critical quench, agrees with
the central charge of the corresponding ground states for both ¢ = 0 and o = 2. Therefore, information of the

universality class can be inferred from the stationary state.

DOI: 10.1103/PhysRevB.111.104308

I. INTRODUCTION

Understanding quantum phase transitions (QPTs) has been
a central topic of interest over the past few decades due to
its significant implications for understanding the collective
behavior of many-body systems [1]. QPTs have been both the-
oretically and experimentally studied extensively in various
systems, including quantum spin chains [1-12], Bose-Einstein
condensates [ 13-20], and strongly correlated electron systems
[21-25]. QPT occurs at specific values of the parameter(s)
present in the Hamiltonian, called critical points, where the
system exhibits scale invariance. A universal behavior ensues
due to the scale invariance, which can be classified into certain
universality classes based on the space dimension and symme-
try of the order parameter [26—29]. This universality is studied
using conformal field theories and the corresponding central
charge value is commonly used to identify the underlying
universality class [30-32]. For instance, systems belonging to
the Ising universality class are described by a minimal model
with a central charge ¢ = 1/2, while the Luttinger liquid uni-
versality class corresponds to a conformal bosonic theory with
¢ = 1 [33,34]. Note that at quantum critical points, the devel-
opment of long-range correlations leads to an algebraic decay
of correlators over distance, in contrast to the exponential
decay typically observed at noncritical points in Hamiltonians
with only short-range interactions [35—-38]. This is often used
to identify critical points.

While the existence of quantum criticality and long-range
correlations in the ground states of many-body quantum sys-
tems are widely studied, their presence in stationary states
is not yet well explored. In Ref. [39], it is shown that when
two sides of a one-dimensional (1D) noninteracting fermionic
chain with nearest-neighbor hopping are prepared at different
temperatures, the mutual information scales logarithmically
with subsystem size in the steady state, indicating the presence
of long-range correlations. Another example of the survival
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of quantum criticality in the long-time stationary state is
shown in the anisotropic XY chain under a sudden quench
protocol [40]. Using quantum information measures such as
mutual information and logarithmic (log-) negativity, it is
shown that when both the pre- and postquench parameters
of the Hamiltonian are set at the critical point, both mutual
information and log-negativity exhibit a peak, indicating the
presence of criticality in the stationary state. In contrast, the
peak in mutual information and log-negativity vanishes for
other quench protocols when either/both pre- and postquench
parameters differ from critical values. The signature of quan-
tum criticality in the stationary state is attributed to a change in
correlation pattern from exponential to algebraic decay, which
was captured by mutual information and log-negativity.

A natural question follows: What about the scenario when
correlators decay algebraically, even at noncritical points?
Long-range interacting systems provide an ideal platform
to explore this question as fermionic correlators have been
shown to decay algebraically over distance, even when the
Hamiltonian is gapped [41-44], i.e., at noncritical points.
These long-range interacting systems have been studied in
different contexts both theoretically and experimentally in
atomic, molecular, and optical lattice systems [45-601]. We
take the 1D long-range Kitaev model with a pairing term
that decays with distance as a power law o /™%, with o
being the exponent [44]. From an experimental perspective,
this model is particularly relevant as it is closely related to
the Ising model with tunable long-range interactions, which
can be experimentally realized using trapped ion setups
[53-55,57,58,62]. In the ground state, this model undergoes
an exotic transition from the Ising-type universality class,
observed for o > 3/2, to a Luttinger liquid universality class
ata =0.

In this paper, we investigate whether it is possible to cap-
ture quantum criticality in the stationary state when fermionic
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correlators decay algebraically even at noncritical points. Ad-
ditionally, we examine whether the stationary state can be
described by the same universality class as the ground state
by analyzing the central charge obtained via scaling of mutual
information and log-negativity for various quench protocols.
Specifically, we consider three values of o corresponding to
different universality classes observed in the ground state:
first, corresponding to the Ising universality class (¢ = 2);
second, the Luttinger liquid universality class (¢ = 0); and
a third value (¢ = 1) where there is no universality [44].
To understand the tripartite information in the postquench
stationary state and whether signatures of criticality will man-
ifest, we study tripartite mutual information.

II. THE MODEL AND GROUND-STATE
PHASE TRANSITION

The Hamiltonian of the 1D long-range Kitaev model
(LRK) for a lattice site of length N is expressed as [44]

Y ; ; co 1
Hirk = Z |:_t(fjlfj+1 +fjl+1fj) - M(fj}fj - E)
Jj=1
N-1

1
D wFlat - f,-Hf,»)}, (1

=1

+

where f;( f}') is the fermionic annihilation (creation) operator
at site j, satisfying the canonical anticommutation relations
Ui 1Y = 8ij (i fiY = (£, f]} = 0. The parameters  and
1 represent the tunneling rate between two neighboring sites
and the chemical potential, respectively. We set 2 = 1 in
the rest of the paper. The parameter A denotes the strength
of the fermion p-wave pairing interaction, while its range is
governed by the exponent « € [0, o). The two limits, i.e.,
o =0 and ¢ — oo, correspond to all-to-all interaction with
equal strength and nearest-neighbor interaction, respectively.
We consider the antiperiodic boundary condition throughout
the paper. The Hamiltonian in Eq. (1) is exactly solvable. To
see this, we first perform a Fourier transformation to transform
Eq. (1) in the momentum space as

N1
1
+
Hirk = 5 Z[fkn Snv—k,]

n=0

[—(M + cosky,)

inga(k) [ i
—iAga(ky) ][ } @

(1 +coskn) [ fyy,

where gq(k) = 300" 24D and k, = Z(n+1/2). In the

large-N limit, g, (k) takes the form

ga(k) = —%[Lia(e”w — Lig(e ™). 3)

The function Li, (z) represents the polylogarithm of the com-
plex variable z of order «. The Hamiltonian in Eq. (2) can
further be cast to a diagonal form by performing the following

Bogoliubov transformation:
I, cos 6y, —isinb, Mk,
+ = e T ) (4)
N isin 6, cos b, NN_k

TABLE I. Summary of the effective central charge c. for differ-
ent values of o and u for the ground state of the long-range Kitaev
model [42,44,63,64].

a=0 O<a<1 o — 00
1
n= 1 ceii(a, A) #0 5
n#=xl1 % cefr(a, A) #0 0

with 8 being the Bogoliubov angle, and defined as
Aga(ky)
tan (26, ) = ————. 5
( k") u + cosk, ®)

The diagonal form of the Hamiltonian in Eq. (1) in the basis
of Bogoliubov fermions 7 then becomes

N—1
. 1
Higg =) Aa(kn(n,;” M, — 5), (6)

n=0

where the dispersion relation is

A (k) = \/ (1 + cos ky)? + [Aga (kn)]*. ™

Equation (6) signifies that each mode is independent, im-
plying the integrability of the system. In the limit o« — o0,
only nearest-neighbor terms contribute to the sum in gy (k),
resulting in go.(k) = sin(k). The Hamiltonian in Eq. (1) in
this limit coincides with the Hamiltonian of the XY model
obtained via the Jordan-Wigner transformation. For the XY
model, a ground-state phase transition occurs from the gapped
ferromagnetic ordered phase to the gapped paramagnetic dis-
ordered phase with increasing the chemical potential ||, with
the two critical gapless points at & = 1 [44]. The spectrum
in Eq. (7) continues to be gapless at u© = £1, even with the
smaller values of «, i.e., in the presence of long-range interac-
tions as long as « > 1. However, the phase diagram changes
for « < 1. This regime is referred to as “strong” long-range
regime since o < d, with d representing the dimension of the
system. In comparison to & > 1, one significant change is that
u = —1is no longer a critical point, and the phase diagram is
no longer symmetric across the line © = 0 [42,44]. A good
probe to identify these critical points is the von Neumann
entropy Sy, expressed as S,y = —Tr(pz In pr), where p is
the reduced density matrix of the subsystem of length L. At
these critical points, where the spectral gap closes, S,y for
short-range interacting system scales as [65—68]

N L
Son ~ gln |:; sin (%)} +c, (8)

where ¢ is the central charge of the underlying conformal
field theory (CFT), N is the total system size, and ¢ is a
nonuniversal constant. In fact, Eq. (8) is also valid for all
values of o and w, but the central charge ¢ is now replaced
with an effective central charge cs [44,63]. The values of
the c. for the ground state are summarized in Table I. It
is worth mentioning that o = O signifies all-to-all coupling
between the sites and falls under the Tomonaga-Luttinger
liquid universality class [69].
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III. METHODS

In the last section, we summarized criticality seen in the
ground state of the LRK model and (effective) central charge
of the underlying CFT. A natural question then arises: Does
this criticality survive when the system undergoes out-of-
equilibrium dynamics? In other words, in a stationary state,
can we find any signature of quantum criticality? A common
way to achieve the nonequilibrium dynamics is through sud-
den quench where the local or global parameters of the system
are suddenly changed [70]. As a consequence, the ground
state of the prequench Hamiltonian is no longer a ground
state of the postquench Hamiltonian, but a superposition of its
eigenstates. The long-time stationary state of the LRK model
under sudden quench is the system of interest. To probe the
criticality, much like the ground state, entanglement entropy
would be our first choice. However, as the long-time station-
ary state typically involves highly excited states, S,y exhibits
volume-law scaling eclipsing the logarithmic dependence on
subsystem size which may be present due to criticality. So, to
extract these logarithmic correlations, we consider quantum
information-theoretic measures such as mutual information
and log-negativity. For the ground state, mutual informa-
tion has already been established to capture the criticality in
fermionic systems [71].

Mutual information. The mutual information between two
subsystems A and A, is defined as

Iy = Sy + S0 — S ®

where %1 (572 ) is the von Neumann entropy of the subsystem
A1(A) and Sf‘,{,UAZ is the von Neumann entropy of A; U A,.
Throughout the paper, we consider the subsystem sizes |A;| =
|A2] = L. The mutual information between two subsystems
measures the total amount of information (both classical and
quantum) that one subsystem contains about the other [72].
Furthermore, if S,y of the long-time stationary state contains
both the volume and logarithmic terms, the mutual informa-
tion should scale as I4,.a, ~ bInL. Thus, if the long-range
correlations are present in the stationary state, then the mutual
information should behave as [39,40,73-76]
cl
Ip,a, ~ %ff In L + const, (10)

where we define c; as the effective central charge of the
stationary state extracted using mutual information. In this
way, mutual information can capture the logarithmic correla-
tion that is hidden in S,y . However, whether these correlations
are truly quantum in nature remains to be investigated. In this
context, log-negativity serves as a useful measure.

Log-negativity. Similar to mutual information, log-
negativity, an entanglement monotone, also quantifies the
nonlocal correlation between two subsystems. But unlike
mutual information, it captures only quantum correlations
[77-80]. It is defined as [77,78]

. an

where ||-|| denotes the trace norm, and p/? signifies
the partial transposition of the reduced density matrix of
A = (A; UAy). It is worth mentioning that for a CFT, the
expression of log-negativity for two adjacent subsystems each

Eaa, =In||p)|| = InTr|py

of length L; and L,, respectively, is shown to be [81]

£ (bl (12)
. = — 1n s
Ay 4 Li+ L,

where ¢ is the central charge. For the XY model, during a
critical-to-critical quench, the log-negativity of the long-time
stationary state scales as £4,.4, = %ln L, where Ly =L, =L
[40]. The logarithmic divergence of &4,.4, is consistent with
the critical ground state, as the XY model belongs to the Ising
universality class with ¢ = 1/2. Based on this, we assume that
if there is any signature of long-range quantum correlations in
the long-time stationary state, the log-negativity would exhibit
the following scaling behavior:

N
% In L + const, (13)

§A1:A2 ~
where ¢, represents the effective central charge of the sta-
tionary state extracted using the log-negativity.

Time evolution. For noninteracting free-fermionic chains,
owing to the simple relationship between the eigenvalues of
the reduced density matrix and two-point correlation function,
we can calculate the entanglement entropy more efficiently by
defining correlation matrix W as

(Snm — L“num an

where n,m =1, ..., L. The functions C,,, and F,,, are two-
point correlation functions, defined as C,, = ( f,; fm) and
Fun = (fufm). The expectation value (-) is taken with respect
to the state of interest and the overbar represents complex
conjugation. The correlation matrix W is a Hermitian matrix
with eigenvalues lying on the real interval [0,1]. Given the
correlation matrix, S,y can be evaluated as [64,66,82]

S=—IT[d =W)nd —W)+WhWw]. (15

At any finite time ¢, the correlation functions are given by
Cnm(l) = (f;(t)fm(t» and an(t) = <fn(t)fm(t)>s where the
expectation values are taken with respect to the time-evolved
state obtained under the operation of the postquench Hamil-
tonian. The two time-dependent correlation functions, C, (f)
and F,, (1), are expressed as [83]
| V!
FiOfim®) = 5 ZO el (— sin [21 (k, )] sin (286,)
+ i{ sin (264, ) cos (286, )

— cos [22],(k, )t ] sin (286, ) cos (26;,) }),

1=
O f@) = TN nzzg e~ ™1 — cos (26y,) cos (2864, )

— sin (264, ) sin (286, ) cos 241 (k,)t]}.
(16)

where 66, = Okf — 9,31 is the difference between pre- and

postquench Bogoliubov angles defined in Eq. (5) and )\ﬁ(kn)
is defined by Eq. (7) for the postquench Hamiltonian.

In the limit + — oo, the time-dependent sine and cosine
functions become highly oscillatory and the respective sum
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would tend to zero. Using this approximation, the expression
for the correlation functions in the long-time stationary state
is given by

. N—1
1 .
(fifi+t)se = == Y €™ sin (26, ) cos (286y,),
" S 2N n=0
, 1=
(S s = 5 e®[1 — cos (26,) cos (286,,)]. (17)
n=0

where ( f; fi+1)st and (f;fj11)s are the two-point correlation
and two-point anomalous correlation functions for the station-
ary state. We utilize the above two expressions to generate the
correlation matrix W, as defined by Eq. (14), and then apply
Eq. (15) and Eq. (9) to obtain S,y and I4,.4,, respectively, for
the long-time stationary state.

Numerical estimation of log-negativity. Equation (11) sug-
gests that to evaluate log-negativity, the crucial part is to
perform the partial transposition. Unfortunately, the partial
transposition of a fermionic Gaussian state is not a Gaussian
state [84,85]. This makes it difficult to efficiently calculate
log-negativity in noninteracting fermionic systems. However,
by expressing the partial transposition as a linear combination
of two Gaussian operators, an upper bound on log-negativity
can be obtained and is expressed as [40,84—-89]

g, =InTr(04,0-)} +Inv?2, (18)
where the trace norm of O is given by

1041] = Tr(040-):

0 .
:det [( +ZFX>
2

1-14D
x det ( ——— ), 19)

ol
+
/N
ol L

=
=
—
=
I

with
Ie=ill-1+if)a -0 'd+ifpl (20
The quantities Iy, [in Egs. (19) and (20) are defined as

s ~ (1, 0
Iy =MoIiMy, M, = [ 0 illL]’ 2n
and the size of the subsystems |A;| = |A,| = L. The correla-

tion matrices I'; and I’y are defined as

1 0
I=T" T,=MI'M, M= [OL _HJ, (22)

where I' is the correlation matrix corresponding to the sub-
system A (A = A; UA,) and is defined as ' = 2W — I. With
Egs. (19), (21), and (22), the upper bound of log-negativity
can be evaluated using Eq. (18).

IV. RESULTS
A. Signature of criticality in stationary state

As we look for the signature of quantum criticality in the
long-time stationary state for different « values, we consider
two types of quench protocols which differ in the initial
states. In the first protocol, we consider the initial state as

Critical Initial State  Non-Critical Initial State

1.5 1 -

O.B-Wﬂ‘j‘ . -MW

1.5 1 -

Ia,:a,

0.5 4

éj‘lll]:Az

1.0 ] T Wy isvisrins
go.5 —B,-’JU-A&\W-&*& 4
0.0 - T T T h - -
0.5 1.0 1.5 0.5 1.0 1.5
1 1

FIG. 1. Top row: The mutual information between two subsys-
tems, Iy, .4,, of the stationary state as a function of the postquench
chemical potential py = p, for three values of a: o =0 (black
squares), « = 1 (magenta stars), and o = 2 (orange pluses). The
prequench chemical potential u; is set at the critical point (left
column), i.e., u; = 1, and at a noncritical point (right column), i.e.,
i = 1.5. For noncritical initial state (right column), blue triangles
correspond to o = 0, red circles to @ = 1 and green crosses to o = 2.
Middle row: The log-negativity of the stationary state using the
same symbols and quench parameters as the top row. Bottom row:
The occupation probability n; of Bogoliubov fermions at the soft
mode, calculated from Eq. (23), with the same symbols and quench
parameters as in the top row. For all figures, the quench protocol
for the strength of the p-wave pairing interaction A is chosen as
Aj=—land Ay =1.

the ground state of the LRK Hamiltonian corresponding to
the parameter values u; = 1 and A; = —1 and is henceforth
referred to as the critical state. The second protocol corre-
sponds to the initial state as the ground state of the LRK
Hamiltonian corresponding to parameters u; = 1.5 and A; =
—1, which is henceforth referred to as the noncritical state.
The final Hamiltonian parameters, 1y and Ay, are varied to
include both the critical and noncritical regimes. Note that it
has already been established that mutual information of the
ground state shows a peak at the critical point, namely, © =
+1 for large (= 10), while only at © =1 for o < 1 [71].
Mutual information Iy,.4, calculated for the stationary state
for both quench protocols, i.e., (u; =1, A; = —1) — (uy =
M, Af = 1) and (/,Ll‘ = 15, Ai = —1) — (,LLf = U, Af = 1),
is plotted in Fig. 1 (row 1). For the final quench parameters
corresponding to critical values, a peak in Iy, .4, for the critical
initial state is clearly visible, indicating the signature of the
criticality in the stationary state for all values of «. In the
other quench protocol with the noncritical initial state, I4,.4,
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does show a nonanalytic behavior in the form of a sharp dip
for py = 1 for all values of «. To confirm that this behavior
is indeed due to the quantum nature of correlations, we plot
log-negativity £4,.4, in Eq. (11) in Fig. 1 (row 2) for the
same quench protocols. The similar peak and dip structure is
unmistakably seen in the behavior of £4,.4, whenever the final
Hamiltonian is critical. Such behavior of I4, .4, for the nearest-
neighbor free-fermionic model has earlier been explained in
terms of a soft mode for which the energy vanishes near
criticality. For a critical-to-critical quench, the soft mode does
not get excited, resulting in a peak structure in Iy,.4, while
it heats up to infinite temperature for a noncritical-to-critical
quench displaying a dip in I4,.4,. This further manifests as
an algebraic decay of fermionic correlation for critical-to-
critical quench, akin to ground-state behavior, while for the
noncritical-to-critical quench, it decays exponentially, indicat-
ing a noncritical behavior. However, such an explanation falls
short for the LRK model for @ < 1, as the correlation decay
pattern in the ground state is always algebraic.

For this nonanalytic behavior of entanglement measure at
ny =1, we offer an alternate explanation in terms of the
mode occupation probability n; for the soft mode (k. = )
where the energy vanishes near criticality. Let us recall that
ng, = 1/2 would imply a contribution from multiple modes
and therefore leads to higher entanglement entropy for the
union of two subsystems, S;a],vqu_ As in I4,.4, in Eq. (9),
Sf,‘vUAz is being subtracted; this leads to a decrease in Iy,.4,.
In contrast, n,, = 1, 0 will lead to a reduction of Sf]‘\,UAZ and,
consequently, leads to an increment of the mutual information.

The occupation probability, n; = (nan) of the Bogoli-
ubov modes, 7, in the stationary state of the LRK model is
obtained as

1
nime) = 51 = cos(266,)]

1 |:1 (g +cosk)(ui +cosk) + AfAigi(k):|
2 9

T2 3L (A (k)
23)

where )\fx (k) (Ag (k)) denotes the energy corresponding to the
prequench (postquench) Hamiltonian. From Eq. (23), it can
be shown that if we start with the noncritical initial state, i.e.,
wi = 1.5, in the limit K — 7, the occupation probability ny is
given by

for u < 1,
forpu =1, (24)
for p > 1,

ny =

O—= —

as illustrated in Fig. 1 (row 3). This explains the dips observed
in I4, 4, in the long-time stationary state for a noncritical-to-
critical quench. In contrast, for the quench protocol involving
the critical state, n; near the soft mode is

% for u < 1,
=131 foru=1, (25)
% for u > 1.

Non-Critical Initial State
x 1072

Critical Initial State
x1072

2.1
2.0
1.9

IA1:A2:A3

FIG. 2. We plot the tripartite mutual information for different
values of postquench w by fixing the prequench w; at u; = 1 (left
column) and p; = 1.5 (right column) for @ = 0 (black squares),
a =1 (red circles), and o = 2 (blue triangles). The quench protocol
for A is chosen to be the same as in Fig. 1.

This explains the peak observed in I4,.4, for the critical-to-
critical quench protocol.

Going beyond the search for signatures of criticality in
the bipartite information-theoretic measures such as mutual
information and log-negativity, we now study the tripartite
mutual information whose negative, zero, and positive val-
ues indicate perfectly delocalized or scrambled information,
extensivity of mutual information, and redundancy of infor-
mation [90-92]. For the completeness, the tripartite mutual
information (TMI) is defined as

Inayay = Iaga, + a4y — 14,4045, (26)

where La;a, is the mutual information between A; and A;
[93]. It is known that for 1D noncritical systems, Iy,.4,:4,
approaches zero in the large system limit [94]. For the same
quench protocols used in the study of mutual information,
TMI for the stationary state is presented in Fig. 2. Similar to
the bipartite mutual information, the TMI for the stationary
state obtained post critical-to-critical quench also exhibits a
peak at u = 1. In contrast, a nonanalytical behavior of TMI
for the stationary state is visible for noncritical-to-critical
quench. This indicates that the criticality associated with the
stationary state can also be captured through tripartite mutual
information, which is a measure of nonlocal correlations.
Moreover, a negative TMI for u < 1 shows the presence of
nonlocal information, but a redundancy of information for
@ > 1 for @« = 1. The short-range pairing term, i.e., @ = 2,
displays zero TMI everywhere except at the critical point, in
agreement with the existing literature. An all-to-all pairing
term, however, has an entirely different behavior where TMI
is always positive, suggesting a redundancy of information,
which peaks at the critical point, . = 1.

B. Signature of universality in stationary state

After establishing the nonanalytic behavior of mutual in-
formation (and log-negativity) for the postquench stationary
state at the critical point of the postquench Hamiltonian, a
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Critical initial state
(a) a=0

S

I

0.0 0.5 Coff 1.0

Non-critical initial state
(b) =0

0 1.5 2.0
0

(d)a=1
) a=2
.0 0.5 1.0
o
.00 0.25

T
cls 050

FIG. 3. Phase plot of effective central charge ¢/ extracted from mutual information in the postquench A —  plane for both critical (left
column) and noncritical (right column) initial state for ¢ = 0 (top row), 1 (middle row) and 2 (bottom row). The parameter A; is fixed at —1

for all the plots.

natural question arises: Does the information of the effective
central charge, cl (), calculated from the scaling of Iy, .4,
(&4,:4,), depend on the quench protocol? And is this effective
central charge universal, i.e., independent of quench protocols
in A; if yes, is the central charge of the ground state con-
served? To address these questions, we analyze both ¢l and
cﬁf for both of the quench protocols discussed in Sec. IV A.
Here, it is useful to recall that central charge provides a pow-
erful tool to understand the underlying CFT that describes
the particular universality class [33]. For instance, the Ising
universality class and the Luttinger liquid universality class
are described by a completely different CFT and characterized
by distinct central charges. The central charge gives a measure
of the number of degrees of freedom or the “size” of the
symmetry in the theory [95,96].

Figure 3 displays ¢’ as a function of the postquench pa-
rameters py and Ay. The columns of Fig. 3 represent cl
for quenches starting with two distinct initial states, while
the rows correspond to a varying range of «. Let us focus
on the left column, i.e., the quench from the critical state
for different values of «. For both « =0 and « =2, ¢l is
independent of A quenches and retains the same value as
the ground state for a critical-to-critical quench protocol. For

other values of s, ¢l calculated from the stationary state
takes the value of the noncritical ground state, i.e., 0.5 for
o =0 and O for « = 2 [97]. For a = 1, the effective central
charge for the ground state at the critical point depends on the
value of A and this character is retained in the postquench
stationary state as well. Therefore, the universality can only
be discussed in the cases of « = 0 and « = 2 from a critical-
to-critical quench. It is clearly seen that ¢y calculated from
the postquench stationary state conserves the central charge
(see Table I). This implies that the universality class for the
critical ground state can also be inferred from the stationary
state.

Now for the right column of Fig. 3, the universal charac-
teristic of the ¢l of the stationary state is reflected through
the independence of A quenches for « = 0 and o = 2, while
o = 1 remains A dependent. Note that even though the entan-
glement measures showed a nonanalytic behavior at py =1
for the noncritical initial state, the effective central charge
does not show any such transition for either « =0 or 2.
Therefore, despite the nonanalytic behavior of entanglement
measures at puy =1, we do not attribute it as a signa-
ture of criticality or a universal description in terms of the
underlying CFT.
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TABLE II. Summary of effective central charge values calcu-
lated from the postquench stationary state for critical-to-critical,
noncritical-to-critical, and critical-to-noncritical quenches of the
LRK model for different values of .

a=0 O<a<x1 a=2
Mni = LMf =1 1 Cet(at, A) # 0 %
wi# =1 % Ceir(et, A) #0 0
wi=1,puy#1 % cerp(ar, A) # 0 0

Therefore, to summarize, the signature of universality in
terms of effective central charge is seen in the postquench
stationary state for a critical-to-critical quench. The effective
central charges values in this case are summarized in tabular
form in Table II, and are in agreement with the values in
Table I calculated for the ground state.

Now, to investigate whether the long-range correlations
in the stationary state are genuinely quantum in nature, we
have evaluated the effective central charge ¢l extracted from
the finite-size scaling of the log-negativity for the station-
ary state. While the details are in Appendix A, the findings
of the effective central charge behavior and therefore uni-
versality remain the same as those calculated using mutual
information.

V. SUMMARY

In summary, we studied the quench dynamics of the long-
range Kitaev chain to investigate the possible signatures of
quantum criticality in the long-time stationary state for dif-
ferent values of the exponent o characterizing the range
of p-wave pairing interaction. To probe the criticality, we
consider the quantum information-based measures such as
bipartite and tripartite mutual information, and log-negativity.
Our results show that a peak emerges at © = 1 in bipartite
mutual information, tripartite mutual information, and log-
negativity for a critical-to-critical quench for all values of o
studied in this work, exhibiting behavior similar to that of
the critical ground state. This clearly indicates the presence
of criticality in the stationary state. Importantly, in contrast to
the short-range XY model, the appearance of this peak cannot
be attributed to the change in decay pattern of the fermionic
correlation from exponential to algebraic at the critical point,
as the fermionic correlators decay algebraically even at non-
critical points for @ < 1. We argue that the peak in bipartite
mutual information arises due to the change in the occupation
probability of the Bogoliubov fermions in the soft mode at
the critical point. To understand the longer-range quantum
information in a postquench stationary state, we studied the
TMI, which not only captures the signature of criticality but
also shows that quantum correlations are delocalized for the
u < 1 case and have redundancy for u > 1 for « = 1. For

pairing exponent o = 2, the mutual information is extensive
for all values of  except u = 1, while for @ = 0, the quantum
correlations show redundancy.

We further show that for o = 2, long-range correlations
develop only for the critical-to-critical quench. This result is
obtained by analyzing the effective central charges extracted
from bipartite mutual information and log-negativity scaling
analysis. The effective central charge of the corresponding
stationary state matches the same for the critical ground state,
regardless of the quench in the strength of the p-wave pair-
ing interaction, A. This match indicates that the universality
class for the critical ground state can also be inferred from
the stationary state. In contrast, for « = 0, the effective cen-
tral charge is nonzero for all quench protocols, leading to
long-range correlations, except when the final Hamiltonian
parameter A = 0. When A # 0, the effective central charge
is 1 only for the critical-to-critical quench and is 1/2 for all
other quench protocols, consistent with the ground state. This
consistency suggests that the stationary state for the critical-
to-critical quench protocol belongs to the same universality
class as the ground state.

For o = 1, the stationary state, similar to the ground state,
cannot be described by any universality class, as the pres-
ence or absence of long-range correlations depends on the
A quenches. However, long-range correlations develop for
the critical-to-critical quench protocol, regardless of the A
quenches.
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APPENDIX: OVERVIEW OF CENTRAL CHARGE
FOR POSTQUENCH STATIONARY STATE
FROM LOG-NEGATIVITY

Starting with the critical initial state, as shown in the top
row, left column of Fig. 4, we find that for « =0, ¢, =
1/2 for uuy # 1 and Ay # 0, while clfy =1 for ur =1 and
Ay # 0. In contrast, starting with a noncritical initial state, as
shown in the top row, right column of Fig. 4, ¢, = 1/2 for all
values of 11y and Ay, except for Ay = 0. This implies that for
a =0, N = clj; for all quench protocols. For o = 2, similar
to cly, Y is nonzero and equal to 1/2 only for a critical-
to-critical quench protocol (with the exception of Ay =0,
where ¢ = 0). For all other quench protocols, ¢y = 0. This
confirms that the long-range correlations associated with a
nonzero effective central charge for botho =0 and @ =2 in
the stationary state are strictly quantum in nature. On the other
hand, for @ = 1, long-range correlations develop, irrespective
of A quenches in the critical-to-critical quench protocol (see
middle row, left column of Fig. 4). Interestingly, for this
quench protocol, ¢l is slightly larger than ¢l In contrast,
for the critical-to-noncritical quench protocol, the presence of
long-range correlations in the stationary state depends on the
A quenches. Specifically, if AyA; > 0, both ¢l and cl¥; are
nonzero, whereas both are zero if AAy < 0. For all the quench

protocols where ArA; 2> 0, ¢y > cly.
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Critical initial state
(a) =0

Non-critical initial state
(b)a=0

FIG. 4. Phase plot of the effective central charge from log-negativity ¢l for both critical (left column) and noncritical (right column) initial
state for « = 0 (top row), 1 (middle row) and 2 (bottom row). The quench parameters are the same as for Fig. 3.
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