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Photoinduced pattern formation and melting of charge density wave order
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We investigate the out-of-equilibrium dynamics of a photoexcited charge-density-wave (CDW) state in the
square-lattice Holstein model, in a setup similar to a pump-probe experiment. At half-filling, the ground state of
this system is characterized by a checkerboard modulation of particle densities, accompanied by a concomitant
lattice distortion. An efficient real-space dynamics method integrating the von Neumann equation for electron
density matrix and Newton equation for classical lattice dynamics is developed to simulate the dynamical
evolution of a photoexcited Holstein system. We find that the energy injected by a short pump pulse results
in the reduction of the CDW order and the generation of coherent phonons. At strong photoexcitations, while
the CDW order is melted in the sense that the time-averaged order parameter vanishes, a dynamical CDW
state is self-sustained by the strong coherent phonon oscillations. Our large-scale simulations further uncover a
dynamical regime of intermediate fluence where complex pattern formation is induced by the pump pulse. The
emergent spatial textures are characterized by super density modulations on top of the short-range checkerboard
CDW order. Our demonstration of pattern formation highlights the significance of dynamical inhomogeneity in
quantum many-body systems in pump-probe experiments.
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I. INTRODUCTION

The nonequilibrium time evolution of quantum systems has
garnered significant attention in recent years. This surge in
interest is fueled in part by remarkable experimental progress,
particularly in ultrafast techniques such as pump-probe spec-
troscopy [1–6]. By exciting a sample with a short laser pulse
(pump pulse), this technique allows one to study the ultra-
fast relaxation dynamics of quasiparticles [7,8]. Recently,
pump-probe techniques have also been utilized to investi-
gate photoinduced ultrafast collective behaviors [9–15], for
example, by measuring the time-resolved dynamics of order-
parameter fields. Moreover, photoinduced phase transition
[16,17] with an intensive pump pulse offers an avenue to
detect long-lasting meta-stable states or even the so-called
hidden states which are nonequilibrium many-body states
without an equilibrium counterpart [18–28].

Charge density wave (CDW) states are one of the promi-
nent platforms for exploring ultrafast phenomena associated
with a symmetry breaking phase. This is partly due to the
ubiquity of CDW states which have been observed in a wide
class of materials [29,30]. Since many CDW states are sta-
bilized by electron-phonon coupling, CDW order is often
found to compete or coexist with a proximate supercon-
ducting state. Moreover, as the charge degrees of freedom
directly couples to external electric field, CDW materials are
idea candidates for manipulating and tracing photoexcited
phase transitions. For example, photoinduced insulator-to-
metal transitions through the melting of CDW order have been
observed in many materials [31–49].

While a CDW order can be stabilized through a purely
electronic mechanism, the majority of CDW states are accom-
panied by a concomitant structural distortion. This points to
the important role of electron-phonon coupling in both the

static and dynamical behaviors of CDW states. In particu-
lar, the dynamics of CDW order is also intimately related
to that of lattice degrees of freedom. The interplay between
the photoexcited electron-hole pairs and the combined CDW
and structural order could lead to rich dynamical phenomena.
For example, it has been shown that the melting of a CDW
is often accompanied by the generation of coherent phonons
[46–48,50,51].

Phenomenologically, the CDW dynamics is usually mod-
eled by the time-dependent Ginzburg-Landau theory with
either real or complex order parameter fields [52–56]. The
effective energy functional of a CDW order parameter can
be viewed as obtained by integrating out the electron degrees
of freedom. While such empirical approach might capture
the general adiabatic CDW dynamics, it cannot properly ac-
count for the ultrafast processes that involve photoexcited
electron-hole pairs and their interplay with the collective
CDW behaviors. However, ultrafast CDW dynamics have
also been simulated using many-body techniques ranging
from time-dependent Hartree-Fock (TDHF) [57,58], the trun-
cated Wigner method [59,60], and nonequilibrium Green’s
functions [61] to computationally very demanding nonequi-
librium dynamical mean-field theory (DMFT) [62–66] and
time-dependent generalizations of the density matrix renor-
malization group (DMRG) methods [67,68].

Due to the computational complexity, most of these nu-
merical studies are restricted to well-defined model systems.
For example, the nonequilibrium DMFT was used to ob-
tain exact photoemission of the melting of CDW order in
the Falicov-Kimball model in the infinite dimension limit
[62–64]. The nonequilibrium nature of the photoexcited CDW
order manifests itself in the emergence of a gapless transient
state yet with a finite charge modulation. The time-evolving
block decimation (TEBD) algorithm based on matrix-product

2469-9950/2025/111(9)/094208(15) 094208-1 ©2025 American Physical Society

https://ror.org/0153tk833
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.111.094208&domain=pdf&date_stamp=2025-03-24
https://doi.org/10.1103/PhysRevB.111.094208


LINGYU YANG AND GIA-WEI CHERN PHYSICAL REVIEW B 111, 094208 (2025)

states was employed to simulate the scenario of CDW melt-
ing in one-dimensional (1D) Holstein model [67,68], which
is another canonical system that hosts CDW states. These
works uncovered the importance of domain-walls or solitons,
which are unique topological defects for 1D systems, in the
destruction of the CDW order.

The soliton-driven scenario of CDW melting in 1D also
highlights the crucial role of topological defects and spatial in-
homogeneity in photoinduced nonequilibrium states. Indeed,
due to the locality principle, relaxation of a perturbed system
often proceeds in a spatially incoherent manner. This naturally
leads to inhomogeneous intermediate states, similar in spirit
to the Kibble-Zurek mechanism [69,70]. However, the effects
of photoinduced spatial fluctuations and heterogeneous struc-
tures in the melting of higher-dimensional CDW order remain
unexplored. This is partly due to the intrinsic difficulty of mul-
tiscale dynamical modeling of many-body quantum systems.
For example, reliable TEBD or other time-dependent DMRG
simulations are restricted to 1D systems, while spatial fluctu-
ations are ignored in the nonequilibrium DMFT approaches.

Another intriguing possibility is the emergence of complex
patterns in order-parameter fields induced by a laser pulse. For
timescales shorter than the quasiparticle relaxation time, the
coherent dynamics of order parameter fields is governed by
a nonlinear system of coupled von Neumann equations for
electrons and Newton dynamics for lattice. A hallmark of
highly nonlinear dynamical systems is the formation of com-
plex patterns. Indeed, dynamically self-organized structures
have been extensively studied for decades in contexts such
as reaction-diffusion systems and Turing instability [71–75].
However, much less is known about similar pattern forma-
tion phenomena in out-of-equilibrium quantum systems. For
example, it remains to be seen whether some of the unify-
ing themes and universal behaviors of pattern formation in
classical systems can be applied to nonequilibrium quantum
systems.

In this paper, we present large-scale real-space simulations
of photoinduced ultrafast CDW dynamics in a 2D semiclassi-
cal Holstein model [76]. This model is a prototypical system
for studying phenomena related to electron-phonon cou-
pling, such as phonon-mediated superconductivity [77,78],
polaron dynamics [79,80], and in particular CDW physics
[81–84]. Also notably, CDW orders in the Holstein model are
intimately related to lattice distortion, thus providing a plat-
form for investigating the interplay between collective CDW
behaviors and lattice dynamics. To account for dynamical
inhomogeneities induced by laser pulses, an efficient real-
space method is developed by combining the von Neumann
equation for the electron density matrix with the Newton
equation for the lattice degrees of freedom.

We find that while the CDW order is reduced due to the
injected energy, the photoexcitation also generates a coherent
oscillation of both the CDW order and lattice distortion. The
melting of the CDW order depends critically on the amplitude
as well as the frequency of the laser pulse. Our large-scale
simulations show that the melting process proceeds through
the breakup of the initially homogeneous CDW domain into a
highly inhomogeneous state with a finite CDW order locally.
Intriguingly, we find that for intermediate laser fluences the
system exhibits stripe modulations of the CDW amplitude,

which in some cases evolve to more complex patterns at
later times. At strong photoexcitations, we further observe
that spatial inhomogeneity is suppressed by a large coherent
phonon oscillation, giving rise to a self-sustained dynamical
CDW order.

The rest of the paper is organized as follows. In Sec. II, we
briefly review the Holstein model and the Peierls substitution
for modeling the laser pulse excitation. We also discuss the
governing equations of the CDW state in the semiclassical
Holstein model and the efficient implementation of the real-
space method. The ultrafast dynamics of photoinduced CDW
states is summarized in Sec. III. A systematic analysis of the
CDW order on the fluence and frequency of the pump pulse is
also presented. Detailed descriptions of the pattern formation
and its structures in some specific frequency are summarized
in Sec. IV. Finally, we conclude the paper with a summary
and outlook in Sec. V.

II. MODEL AND METHODS

We consider a Holstein model [76] with spinless fermions
on a square lattice, described by the following Hamiltonian
with three parts

Ĥ = Ĥe + ĤL + ĤeL. (1)

The first term Ĥe describes the hopping of electrons between
nearest-neighboring sites

Ĥe = −tnn

∑
〈i j〉

(ĉ†
i ĉ j + ĉ†

j ĉi ), (2)

where ĉ†
i (ĉi) denotes the creation (annihilation) operator

of an electron at lattice site-i. The second part describes a
dispersion-less Einstein phonon model:

ĤL =
∑

i

(
1

2m
P̂2

i + 1

2
m�2Q̂2

i

)
, (3)

where m is the effective mass, � is the intrinsic oscillation
frequency, and K ≡ m�2 is the force constant of phonons.
The third term describes a local coupling between the electron
density n̂i = ĉ†

i ĉi and the phonon mode

ĤeL = −g
∑

i

(
n̂i − 1

2

)
Q̂i. (4)

Physically, the phonon Qi can be viewed as the breathing
mode of an oxygen octahedron surrounding each lattice site-i
in a perovskite structure. The above coupling can be thought
of as a local version of the deformation potential electron-
phonon interaction.

The Holstein model on various bipartite lattices exhibits
a robust CDW order that breaks the sublattice symmetry
[81–84]. In the case of square lattice, the CDW order is
characterized by a K = (π, π ) checkerboard charge modula-
tion. Unlike the superconducting phase, which requires a full
quantum treatment, the CDW order remains robust even in the
semiclassical approximation. Indeed, the semiclassical phase
diagram of the CDW order obtained by a hybrid Monte Carlo
method agrees very well with that obtained from determinant
quantum Monte Carlo simulations [84]. Here the semiclas-
sical approximation is invoked to describe the dynamical
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evolution of photoinduced CDW states in the 2D Holstein
model. A similar semiclassical dynamics method was recently
employed to study the photoemission and long-time behaviors
of CDW states in the 1D Holstein model [85,86]. Our focus
here, however, is on dynamical phenomena related to spatial
inhomogeneity and pattern formation.

For an initial state of a homogeneous CDW order whose
wave function is described by a Slater determinant, the dy-
namics of the semiclassical Holstein model can be exactly
solved, at least numerically. To this end, we assume a prod-
uct form for the quantum state of the system: |�(t )〉 =
|�(t )〉 ⊗ |�(t )〉, where |�(t )〉 and |�(t )〉 denote the phonon
and electron wave functions, respectively. The semiclassical
approximation for the lattice subsystem amounts to a direct
product wave function |�(t )〉 = ∏

i |φi(t )〉 for the phonons.
As a result, the expectation value of phonon operators, e.g.,
〈�(t )|Q̂i|�(t )〉 reduces to Qi(t ) ≡ 〈φi(t )|Q̂i|φi(t )〉, and sim-
ilarly for the momentum operators, Pi(t ) ≡ 〈�(t )|P̂i|�(t )〉 =
〈φi(t )|P̂i|φi(t )〉. The assumption of product states in the semi-
classical approximation thus excludes nontrivial quantum
entanglement and also fails to account for effects of quantum
fluctuations.

To derive the equation of motion for the “classical”
variables Qi(t ) and Pi(t ), we consider the expectation of
Heisenberg equation of motion, d〈P̂i〉/dt = −i〈[P̂i, Ĥ]〉/h̄,
where 〈...〉 is the expectation value computed using the full
wave function |�(t )〉. Direct calculation of the commutators
yields the coupled Hamiltonian dynamics

dQi

dt
= Pi

m
,

dPi

dt
= g

(
ni − 1

2

)
− KQi, (5)

which is equivalent to the Newton equation of motion for a
simple Harmonic oscillator with an additional force gni due
to the coupling to electron density. Here the time-dependent
electron density is given by ni(t ) = 〈�(t )|n̂i|�(t )〉. Thanks to
the product form of the system quantum state, this can be
reduced to ni(t ) = 〈�(t )|n̂i|�(t )〉, i.e., its value only depends
on the many-electron wave function |�(t )〉. It is worth noting
that, while the electron and phonon quantum states are not
entangled, the lattice dynamics is still coupled to the evolution
of the electrons.

The time evolution of the electron wave function is gov-
erned by Schrödinger equation ih̄∂|�〉/∂t = Ĥ|�〉. Since the
Holstein Hamiltonian is bilinear in fermion operators, the
many-electron state remains in a Slater determinant through-
out the dynamical evolution. Instead of directly evolving the
Slater determinant, a more efficient approach is based on the
dynamical equation for the single-particle density matrix,

ρi j (t ) = 〈�(t )|ĉ†
j ĉi|�(t )〉. (6)

The on-site electron number, which is a driving force of the
lattice dynamics in Eq. (5), is readily given by the diagonal el-
ements: ni(t ) = ρii(t ). The dynamical equation for the density
matrix can be derived from the Heisenberg equations for the
creation and annihilation operators. A more intuitive approach
is to consider the effective single-particle Hamiltonian Hi j

defined as

Ĥe(t ) + ĤeL(t ) =
∑

i j

ĉ†
i Hi j[{Qi(t )}] ĉ j . (7)

The matrix elements of H can be read from Eqs. (2) and (4):

Hi j = −ti j − gδi jQi(t ), (8)

where ti j = tnn for nearest-neighbor pairs 〈i j〉 and zero oth-
erwise. Given the single-particle Hamiltonian, the evolution
of the density matrix ρ is governed by the von Neumann
equation dρ/dt = (i/h̄)[ρ, H]. Explicitly, we have

ih̄
dρi j

dt
=

∑
k

(ρiktk j − tikρk j ) + g(Qj − Qi )ρi j . (9)

The above semiclassical approach, which can also viewed as
a mean-field treatment of phonon degrees of freedom, cor-
responds to the special single-trajectory Ehrenfest approach
within the truncated Wigner approximation (TWA) frame-
work [59,60]. In the more general multitrajectory methods,
the dynamical evolution of the system is still described by the
coupled Newton and von Neumann equations, yet with initial
conditions sampled from the full quantum state of Holstein
system in equilibrium. The semiclassical single-trajectory ap-
proach is expected to provide a descent description of the
coherent dynamics of the photoexcited Holstein system and
the emergence of nontrivial inhomogeneous states. Effects of
quantum fluctuations, which are neglected in this mean-field
type approximation, will be discussed later.

To model the laser excitation, the Peierls substitution is
employed to incorporate the coupling to the electric field of
a laser pulse. Consider a uniform linearly polarized electric
field E(t ) = −∂A/∂t , where A(t ) = êA(t ) is the time-varying
vector potential, and ê is the polarization vector. In the pres-
ence of an electric field, the electron hopping integral acquires
a phase factor

ti jc
†
i c j → ti je

iA(t )·(ri−r j )c†
i c j . (10)

In our simulations below, we assume a Gaussian function for
the laser pulse

A(t ) = A exp[(t − t0)2/σ 2] cos [ω(t − t0)], (11)

where A represents the amplitude of the pulse, t0 is the peak
time, σ is the pulse width, and ω is the center frequency of
the pulse. By setting the lattice constant a = 1, the Peierls
phase in Eq. (10) is exp[iA(t )] for the nearest-neighbor bonds.
The amplitude parameter A is then dimensionless and can
be viewed as the maximum phase angle caused by the pump
pulse.

There are two characteristic timescales for the dynamics of
the Holstein model. First, from the bandwidth of the electron
tight-binding model W = 8tnn, one can define a timescale
τe = h̄/tnn for the electron dynamics. However, the natural
frequency � of the Einstein phonons gives a characteristic
time τL = 1/� for the lattice dynamics. The dimension-
less adiabatic parameter is defined as the ratio r = τe/τL =
h̄�/tnn. which characterizes the relative timescales of the two
subsystems. A characteristic Q∗ for lattice distortions can be
estimated from the balance of elastic energy and electron-
phonon coupling: KQ∗2 ∼ g〈n〉Q∗. Assuming electron num-
ber 〈n〉 ∼ 1, we obtain Q∗ ∼ g/K . This in turn gives a
momentum scale P∗ = m�Q∗ via Eq. (5). Based on this char-
acteristic scale, the electron-phonon coupling can be charac-
terized by a dimensionless parameter λ = gQ∗/W = g2/W K .
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FIG. 1. Time evolution of (a) the injected energy per site �ε(t ) = [E (t ) − E0]/N , (b) the CDW order parameter �K(t ), and (c) amplitude
of staggered distortion QK(t ), for laser pulse excitation with different center frequencies. The width of the laser pulse is fixed at σ = 2, the
peak time is at t0 = 5, and the amplitude is A = 0.5.

For all simulations discussed below, these two dimensionless
parameters are set to r = 0.4 and λ = 1.0. The simulation
time is measured in unit of τe, energies are measured in units
of tnn, and the lattice distortion is expressed in terms of Q∗.

While the simulation results presented in the main text
is based on an adiabatic parameter r = 0.4, similar simula-
tions were also performed for two other adiabatic parameters
r = 0.1 and 0.8 for comparison; the results are summarized
in Appendix A. The main conclusion remains consisten—
photoinduced melting of CDW order, photogeneration of
coherent phonon oscillations, and pattern formation, although
the numerical details are different.

III. PHOTOINDUCED MELTING OF CDW ORDER

The method discussed in Sec. II, namely, the real-space von
Neumann equation (9) coupled with Newton equation (5), is
applied to simulate the photoinduced ultrafast CDW dynamics
in a pump-probe setup. In all simulations below, we con-
sider a polarization along the symmetric diagonal direction
ê = (x̂ + ŷ)/

√
2, and a system size of 60×60. The system is

initially prepared in a ground state with a homogeneous CDW
order and a concomitant checkerboard lattice distortion. This
initial CDW state is then subject to a short laser pulse of the
wave form (11). It is worth noting that the square-lattice tight-
binding model exhibits a divergent Lindhard susceptibility at
half-filling due to a perfect nesting of the Fermi surface. As
a result, the system is unstable against the formation of a
staggered lattice distortion Qi = Q exp(iK · ri ), where K =
(π, π ) is the ordering wave vector of the checkerboard pattern
and Q is the distortion amplitude. As detailed in Appendix B,
the staggered distortion induces a concomitant charge mod-
ulation and opens a spectral gap εgap = 2gQ, rendering the
system a CDW insulator. The energy gap is determined by the
competition between the gain of electronic energy through gap
opening and the cost of elastic energy.

The finite spectral gap also means that electron-hole pairs
cannot be excited by photon energies less than the CDW band
gap. This implies a threshold frequency h̄ωth = εgap = 2gQ
for continuous wave excitations. Yet, instead of a sharp thresh-
old transition as a function of frequency, a crossover behavior
is expected due to a combination of nonlinear effects and
finite width of the pump pulse. A laser pulse of width σ

comprises photons of energies in a finite range h̄(ω ± δω)

around the center frequency, where the bandwidth δω ∼
σ−1. Consequently, for a pulse with a subthreshold center
frequency, photons in the higher energy end of the pulse
spectrum could exceed the CDW gap and excite electron-hole
pairs, a process that is further enhanced by nonlinear effects
with a large laser fluence.

A quantitative measure of the above-gap photoexcitation is
the average energy (per site) �ε deposited to the system by
the laser pulse. Fig. 1(a) shows the injected energy �ε(t ) as
a function of time for various center frequencies. The pulse
width is fixed at σ = 2, and the peak time is at t0 = 5. Most
of the energy injection occurs during the pulses width. The
total energy remains nearly a constant after the pulse excita-
tion, indicating a closed-system evolution under the coupled
von Neumann and Newton dynamics. Importantly, although
the threshold frequency from the initial condition is h̄ωth =
2gQ = 7.142, significant energy transfer takes place already
at h̄ω ∼ 3. The overall energy deposition increases with the
center frequency.

To quantify the dynamics of the nonequilibrium CDW
state, we introduce a time-dependent order parameter for the
checkerboard density modulation

�K(t ) = 1

N

∑
i

〈�(t )|n̂i|�(t )〉eiK·ri , (12)

where |�(t )〉 is the single Slater determinant state, and the
phase factor exp(iK · ri ) = +1 and −1 for sites in the A and
B sublattice, respectively. Figure 1(b) shows the CDW order
versus time for laser pulses of varying center frequencies. The
photoinduced nonequilibrium CDW states exhibit a diverse
range of complex dynamical behaviors. Importantly, for most
cases the laser pulse induces a prominent coherent oscillation
of the CDW order which persists for a long time. This oscilla-
tion is accompanied by a nearly synchronized lattice dynamics
as shown in Fig. 1(c), where we plot the time dependence
of the order parameter QK(t ) that characterizes the overall
staggered distortion

QK(t ) = 1

N

∑
i

Qi(t ) eiK·ri . (13)

The time evolution of the staggered lattice mode closely fol-
lows that of the CDW order parameter.
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FIG. 2. Time evolution of (a) the injected energy per site �ε(t ) = [E (t ) − E0]/N , (b) the CDW order parameter �K(t ), and (c) amplitude
of staggered distortion QK(t ), for laser pulse excitation with different amplitude A. The width of the laser pulse is fixed at σ = 2, the peak
time is at t0 = 5. The center frequency of the laser pulse is set at h̄ω = 3, which is well below the threshold h̄ωth = 7.142.

As discussed above, subthreshold excitation results in the
reduction of CDW order already for frequencies as low as
h̄ω ∼ 3, which is well below the threshold h̄ωth = 7.142.
Upon increasing the center frequency of laser pulses, more
energy is injected into the CDW state, giving rise to a reduced
CDW order on average. Moreover, the photoexcitation with
a subthreshold center frequency is further enhanced by an
increasing laser intensity due to nonlinear effects. For exam-
ple, Fig. 2 summarizes simulation results of laser excitations
with a subthreshold frequency h̄ω = 3 and varying fluences
characterized by the parameter A. Upon increasing the laser
fluence, more energy is deposited onto the system, which in
turn results in a reduced average CDW order and an enhanced
coherent oscillation. For laser excitations with a large enough
fluence, e.g., A = 2.0, even a pulse with subthreshold fre-
quency can completely melt the CDW order, as shown in the
case of A = 2.0 in Figs. 2(b) and 2(c).

The mechanism of photoinduced suppression and melting
of the checkerboard CDW order and the emergence of co-
herent oscillation can be understood as follows. Assuming
negligible momentum of the incoming photons, the laser pulse
excites a quasiparticle from the filled valence band E−

p to
the empty conduction band E+

p of the initial CDW state, i.e.,

| ± p〉 ∝ γ̂
†
+,pγ̂−,p|CDW0〉, where γ̂±,p are the quasiparticle

operators; see Appendix B for details. The characteristic fre-
quency of a pair of quasiparticle and quasihole is h̄νp = E+

p −
E−

−p = 2
√

ε2
p + (gQ)2 , where εp is the dispersion relation

of the square-lattice tight-binding model. In the absence of
electron-electron scattering, the dynamics of a quasiparticle-
hole pair is an oscillatory motion with their natural frequency.
Importantly, the photoexcited quasiparticles will modify the
density matrix in Fourier space ρp,p+K, which in turn con-
tributes to the CDW order parameter

�K(t ) =
∑

p

ρp,p+K(t )

=
∑

p,μν=±
Cμν

p 〈�(t )|γ †
μ,pγν,p|�(t )〉. (14)

Here ρp,p+K(t ) = 〈�(t )|ĉ†
p+Kĉp|�(t )〉 describes the correla-

tion of a electron-hole pair with a momentum difference
K = (π, π ) that characterizes the checkerboard charge mod-
ulation, and C±,±

p are determined by coefficients that relate

the quasiparticle operators to the electron operators; details
can be found in Appendix B. The independent oscillations of
different pairs with their respective natural frequencies give
rise to a reduced CDW order due to destructive interferences
in the summation of Eq. (14).

Through the electron-phonon coupling, the oscillations of
electron-hole pairs also initiate an oscillation of the checker-
board lattice distortion QK via the displacive excitation
mechanism. Indeed, from the Fourier transform of Eq. (5), the
equation of motion for the staggered distortion is that of a
simple Harmonic oscillator driven by an external force that is
proportional to the CDW order parameter

d2QK

dt2
+ �2QK = g

m
�K. (15)

In equilibrium, a nonzero CDW order gives rise to a lattice
distortion QK = (g/K )�K. As the CDW order is reduced
from its initial value by the pulse excitation, the sudden shift to
a new equilibrium results in the coherent phonon oscillation.
The oscillation of the checkerboard lattice mode in turn drives
the dynamics of electron-hole pairs ρp,p+K(t ) which follows
the dynamical equation

ih̄
dρp,p+K

dt
= 2εpρp,p+K + gQK(ρp,p − ρp+K,p+K ). (16)

Although the oscillation of different electron-hole pairs favor
their own natural frequencies, the dynamical coupling to a
common checkerboard lattice oscillation promotes partial co-
herence among the various electron-hole pairs and locks them
into a coherent oscillation of the CDW order that lasts for a
long time.

Depending on laser fluences, the oscillation amplitude can
be seen to decay with time, although in most cases shown
here the decay is rather slow. Since the system is isolated
from any reservoir other than the initial short pulse excitation
in our simulations, the damped oscillations of the CDW or
staggered distortion are not caused by energy dissipations.
Such dissipationless damping could result from a mechanism
known as Landau damping where the energy of the collec-
tive mode, such as CDW order, is transferred to individual
quasiparticle excitations. Indeed, Landau damping of coherent
oscillations have been reported in quench dynamics of var-
ious symmetry-breaking phases including superconductivity
[87–89], spin-density wave [90], and CDW [58]. Detailed
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FIG. 3. The late-stage CDW order parameter �K averaged over
several oscillation periods versus the center frequency ω of the
laser pulse. The dashed line indicates the threshold frequency ωth =
2gQ = 7.142 determined from the energy gap of the initial CDW
state.

analysis of the coherent CDW oscillatory dynamics and their
damping will be discussed elsewhere.

The photoinduced melting of CDW order as a dynamical
phase transition is summarized in Fig. 3 which shows the
late-stage CDW order �K, averaged over several oscillation
periods, as a function of the center frequency ω. Complete
melting of CDW order occurs for frequencies h̄ω � 6.5,
which is below the threshold frequency h̄ωth = 7.142. Yet,
the relation between the quasisteady CDW order �K and laser
frequency is neither a sharp transition nor a smooth crossover.
Immediately before the complete melting, the perturbed CDW
state exhibits an intriguing charge-order inversion, indicated
by a sharp dip at frequency h̄ω ∼ 6.4 in the �k versus ω curve
shown in Fig. 3. The corresponding time dependence of the
CDW order �K(t ) and the associated staggered distortion are
shown in Figs. 1(b) and 1(c); see the curves of h̄ω = 6.4. After
the short pulse excitation, the CDW order quickly decays
to zero, seemingly indicating a complete melting. However,
instead of staying at zero, the CDW order flips sign and slowly
grows to a steady state with a small oscillation around the
average value.

Similar photoinduced charge-order inversion phenom-
ena were reported in previous theoretical studies of Z2

type CDW/lattice order [86,91,92]. Experimentally, a laser-
induced ultrafast reversal of combined excitonic order and
lattice distortion has been observed in phonon coupled ex-
citonic insulator Ta2NiSe5 [92,93]. In general, the reversal
occurs when the laser fluence is just large enough to induce
a complete melting of CDW order (or the excitonic order).
The physical picture of the charge-order reversal is as follows.
The dephasing effect from different photoexcited electron-
hole pairs quickly reduces the CDW order to zero when the
pulse excitation is over. Through the electron-phonon cou-
pling, the lattice distortion follows the vanishing CDW order
and tends to zero itself. Yet, when the CDW order is being
recovered partially, a nonzero lattice momentum carries the
system across the zero and toward a state that is characterized
by a CDW order of opposite sign.

Another interesting feature of the photoinduced dynamical
transition in Fig. 3 is a broad dip at the midgap frequency ωr ∼
ωth/2. The reduced CDW order at this subthreshold frequency
indicates an enhanced photoexcitation. A similar intensified
photoinduced dynamics was also reported in CDW states of
the 1D t-V model [57] and BCS superconductors [12,94].
Since there is no in-gap state in the initial homogenous CDW
insulator, this midgap dip cannot be ascribed to a linear
resonant absorption. However, as the resonant frequency is
roughly half the CDW band gap, photoexcitations of quasipar-
ticles can be achieved through a nonlinear two-photon process
with 2h̄ωr ∼ εgap. Moreover, since the electron DOS exhibits
a divergence at the band edge �(E ) ∼ E/

√
E2 − (εgap/2)2,

the resonance at the midgap ωr results from the heightened
two-photon absorption assisted by an enhanced electron den-
sity of states at the edge of the CDW band gap.

IV. DYNAMICAL INHOMOGENEITY
AND PATTERN FORMATION

For the cases immediate preceding the complete melting,
e.g., ω ∼ 6.4 or 6.5, the coherent oscillation amplitudes ex-
hibit a significant damping. Yet, for laser frequency above
the threshold such as ω = 7.0, the complete melting of the
CDW order is followed by a pronounced coherent oscillation
that lasts for a long time. Although damped oscillations can
be understood as arising from the Landau damping mecha-
nism discussed above, the strong damping of the CDW order
at excitation frequencies near the threshold is related to the
emergence of spatial inhomogeneity.

The real-space simulations discussed in Sec. II can provide
information about the spatial inhomogeneity. In particular, to
characterize the emergence of nonuniform CDW states, we
define the following local CDW order parameter

φ(ri ) =
(

ni − 1

4

∑
j

′n j

)
exp (iK · ri ). (17)

Here, the prime indicates that the summation is restricted to
the four nearest neighbors of site i. This quantity measures
the difference in electron density between a given site and
its nearest neighbors. The phase factor, exp(iK · ri ) = ±1, is
introduced to account for the ultrashort range checkerboard
modulation within a CDW domain. A homogeneous CDW
state is thus described by a constant local order parameter, and
any inhomogeneity is manifested as a spatially varying φ(r)
field.

First we compare the two cases where laser excitations
result in complete melting of the CDW order. Figure 4 shows
the time dependence of the global CDW order parameter
�K(t ) and the real-space configuration of the local CDW or-
der φ(r, t ) at various times for the two frequencies h̄ω = 6.5
and 7.0. In the former case, the global CDW order exhibits a
damped oscillation with the oscillation amplitude decays to
zero at late times; see Fig. 4(a). As the snapshot at t = 18
shows, the CDW order parameter φ(r) remains roughly ho-
mogeneous when �K changes to the negative sign. Yet, when
the global CDW order bounces back to the positive side at
t = 35, significant inhomogeneity has developed in the CDW
state. As the damped oscillation reaches a steady state with a
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FIG. 4. The time dependence of global CDW order �K(t ) and representative CDW configurations during the photoexcitation process for
laser pulses with a frequency of (a) h̄ω = 6.5 and (b) h̄ω = 7.0.

nearly vanishing global CDW order �K ≈ 0 at times t � 125,
the system stays in a highly inhomogeneous state with a stan-
dard deviation of the local CDW order parameter as high as
σφ =

√
〈φ2

i 〉 − 〈φi〉2 ∼ 0.3. It is worth noting that, since the
snapshot shows the spatial configuration of the local order-
parameter field φ(r) (instead of the charge density itself), the
observed inhomogeneity corresponds to a super-modulation
of charge density on top of the underlying (π, π ) checker-
board charge pattern.

For laser excitation with a center frequency h̄ω = 7.0,
the snapshots at times t = 22 and 28 also exhibit noticeable
inhomogeneity; see Fig. 4(b). In particular, the inhomoge-
neous CDW states at t = 22 clearly shows a pattern of
stripes running along the y = −x diagonal direction, which
is perpendicular to the direction of electric field of the laser
pulse. The initial CDW order is melted in the sense that the
time-averaged global CDW order tends to zero at late times.
However, a pronounced coherent oscillation of both the CDW
order and staggered lattice distortion remains. Moreover, in

stark contrast to the previous melting scenario which ends
with a rather disordered CDW state, the local CDW order pa-
rameter field φ(ri ) in this dynamical state is found to be rather
homogeneous, as demonstrated in the snapshots of t = 100
and 150 in Fig. 4(b).

The emergence of this dynamical regime in the h̄ω = 7.0
case can be understood as follows. The pump pulse with a
larger center frequency produces electron-hole pairs at higher
energies. While such excitations quickly leads to the destruc-
tion of the static CDW order, a coherent phonon oscillation
QK with a larger amplitude is also generated. The incoherent
dynamics of photoexcited quasiparticles manifests itself not
only in the time domain, as described by the Landau-damping
mechanism, but also in the spatial dimension which leads
to the inhomogeneous CDW states in the early stage of the
melting process. Yet, the enhanced oscillations of the phonons
reinforce the coherence of the electron-hole pairs both in tem-
poral and spatial domains, giving rise to a sustained oscillation
of the CDW order in a relatively homogeneous state. Indeed,
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FIG. 5. The time dependence of global CDW order �K(t ) and representative CDW configurations during the photoexcitation process for
laser pulses with a frequency of (a) h̄ω = 6.3 and (b) h̄ω = 6.4.

although there is no static global CDW order after averaging
over time, the relatively homogeneous CDW state shown in
Fig. 4(b), sustained by a coherent phonon oscillation, can be
viewed as a dynamical counterpart of the conventional CDW
state.

As discussed in Sec. III, the photoexcited electron-hole
pairs have a relative momentum K = (π, π ), which would
modify the initial checkerboard CDW pattern. The incoher-
ence of the electron-hole pairs only reduces the amplitude
of checkerboard CDW, which is expected to remain spatially
homogeneous. A spatial modulation of the particle density
with a wave vector q requires electron-hole correlations with
the same relative momentum, i.e.,

�q(t ) =
∑

i

ρii(t ) eiq·ri =
∑

p

ρp,p+q(t ). (18)

Consequently, the emergence of spatial inhomogeneity in-
dicates the spontaneous generation of electron-hole pairs

ρp,p+q = 〈c†
p+qcp〉 with a relative momentum q 
= K, i.e.,

different from the initial checkerboard K. The generation of
such additional density modulations is often achieved through
an instability mechanism of pattern formation. More pre-
cisely, the spatial patterns arise from the amplification of
initial infinitesimal density fluctuations of certain wave vec-
tors through nonlinear effects of the dynamical evolution.

This scenario is illustrated in the two cases shown in Fig. 5.
For the first case, the initial CDW order is reduced by the laser
pulse with h̄ω = 6.3, yet a finite static time-averaged global
CDW order parameter �K ∼ 0.28 remains at late times. Im-
portantly, a spatially inhomogeneous CDW state with stripes
running along the y = −x diagonal can be seen at t = 30. At
time t = 60 in Fig. 5(a), there are several diagonal streaks
where the local CDW order parameter φi changes sign. In-
terestingly, such stripe pattern is similar to those observed in
Fig. 4 with larger laser frequencies. The additional density
modulations �q are characterized by wave vectors q ‖ E,
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parallel to the electric field direction. As the system settles
into a self-sustained coherent oscillation with the phonons,
the diagonal patterns are gradually suppressed. This is another
example of restoration of partial homogeneity by the coherent
dynamics. However, a small residual inhomogeneity remains
even at late times.

The nonequilibrium CDW state induced by a laser pulse
with h̄ω = 6.4 not only shows the phenomenon of charge-
order reversal, but also exhibits the a pronounced pattern
formation as shown in Fig. 5(b). Contrary to the previous
h̄ω = 6.3 case, the global CDW order �K(t ) shows nearly
indiscernible oscillations and quickly settles to a steady-state
value (with a sign opposite to the initial CDW state). This lack
of late-time coherent oscillation is also intimately related to
the emergent dynamical inhomogeneity. Indeed, stripe modu-
lations of the local CDW order can be seen at times as early
as t = 28 and 40 in the charge-inverted state. As the system
further evolves, more complicated patterns emerge with an
even stronger modulation of the φ field.

It is worth noting that, in terms of the on-site electron
density ρii, these stripe patterns correspond to a super mod-
ulation of charge density on top of an underlying ultrashort
range checkerboard charge pattern. The more complicated
patterns at late times, e.g., t = 200, seem to originate from
the breaking up of the original stripes. To further characterize
this inhomogeneous state, we compute the structure factor of
the charge density

S(q, t ) = |�q(t )|2, (19)

where �p(t ) is the density modulation defined in Eq. (18).
Figure 6 shows the structure factors of the nonequillibrium
CDW states induced by a h̄ω = 6.4 laser pulse at various
times in a pump-probe setup. The peak time of the pump
pulse is at t0 = 5, and the pulse width is σ = 2. The sharp
peak at K = (π, π ) that can be seen at structure factors of
different times indicates that a finite checkerboard CDW per-
sists throughout the post-pump evolution. The photoinduced
pattern formation, in the form of super density modulation,
manifests itself in the emergence of two broad diffusive peaks
along the diagonal direction at q∗

± = K ± (2π/λ)ê, where
ê = (x̂ + ŷ)/

√
2 is also the electric field direction, and λ can

be viewed as a characteristic, or average, period of the stripe
modulations.

The two diffusive peaks are also highly anisotropic in
shape; the spreading is predominately along the same diagonal
direction ê. The widths of the diffusive peaks parallel and
perpendicular to the diagonal direction provide a measure
of corresponding correlation lengths ξ‖ and ξ⊥. The break-
ing up of the stripes at late times, e.g., t = 100 and 200 in
Fig. 5(b), indicates a decreased correlation in the perpendicu-
lar direction, which is consistent with the fact that ξ⊥ seems
to remain roughly the same. However, the longitudinal corre-
lation seems to be enhanced, as ξ‖ inferred from the structure
factor is increased at late times.

A possible scenario for the emergence of the stripe patterns
is the decay of the checkerboard CDW order parameter into
a pair of such unstable modes at q∗

± through the parametric
instability mechanism. The standard scenario would be that
the checkerboard coherent phonon oscillation QK(t ), acting as

FIG. 6. Structure factors S(q, t ) at various time steps after the
pump-probe excitations with a laser frequency h̄ω = 6.4. The peak
time is t0 = 5 and pulse width is σ = 2. The simulated system
size is N = 60×60. The results are obtained by averaging over 20
independent von Neumann dynamics simulations. The white dot at
K = (π, π ) corresponds to a dominant checkerboard CDW order.
The scale of the color bars in all panels are chosen to highlight the
emergent unstable modes.

pump wave, couples to the two unstable Qq∗± modes through
an effective three-wave nonlinear coupling mediated by the
electrons. However, for general modulation period λ, the mo-
mentum is not conserved in this process, q∗

+ + q∗
− 
= K. This

consideration thus rules out the standard parametric instabil-
ity as the mechanism of the stripe patterns observed in our
simulations. However, the fact that the unstable modes appear
in pairs still strongly indicates a parametric-like mechanism,
possibly through an intermediate pump wave of electronic
origin. A detailed study of the instability mechanism will be
left for future.

V. CONCLUSION AND OUTLOOK

In summary, we have conducted a comprehensive inves-
tigation into the ultrafast dynamics of CDW states in a
semiclassical Holstein model in a pump-probe setup. For the
square-lattice model at half-filling, the ground state of the
Holstein model exhibits a checkerboard CDW order character-
ized by the wave vector K = (π, π ). Within the semiclassical
approximation where phonons are treated as classical degrees
of freedom, an efficient real-space method, based on von Neu-
mann equation for electrons and Newton equation for lattice
dynamics, is developed to simulate the pump-probe process.
Our extensive simulations uncover intriguing dynamical be-
haviors such as the melting of CDW order with or without a
late-time coherent oscillations, midgap nonlinear resonance,
and reversal of CDW order near the melting threshold. But
most importantly, our large-scale real-space approach reveals
the crucial role of dynamical inhomogeneity and pattern for-
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FIG. 7. Phase diagram showing three dynamical regimes: (I)
Coherent oscillations of homogeneous CDW and staggered lattice
distortion, with a finite time-averaged order parameter. (II) The emer-
gence of pattern formation of the local CDW order parameter. (III)
Dynamical CDW order sustained by a checkerboard coherent phonon
oscillations with a zero time-averaged order parameter �K = 0.

mation in the ultrafast dynamics of nonequilibrium CDW
states.

Our main results are summarized in the phase diagram
shown in Fig. 7. Depending on the laser fluence A and center
frequency ω (which determines the photon energy), there are
three dynamical regimes of the photoinduced nonequilibrium
CDW states in the phase diagram. They can be characterized
by two parameters: the time-averaged global CDW order �K
at late times and the standard deviation σφ of the local CDW
order parameter φi. In dynamical phase I, induced by pump
pulses of a small photon energy and a moderate fluence,
the phtoexcitation suppresses the CDW order and initiates a
coherent oscillation. Yet, the averaged CDW order remains fi-
nite, �K 
= 0, with a negligible inhomogeneity σφ ≈ 0. Upon
increasing the laser frequency, dynamical phase II shows pro-
nounced spatial inhomogeneity and the emergence of pattern
formation; the CDW states in this regime are mostly charac-
terized by σφ 
= 0. Finally, for the third dynamical regime at
large fluence and frequency, the static CDW order is melted
down in the sense that the time-averaged order vanishes �K ≈
0. Moreover, a strong coherent phonon oscillation partially
restores the homogeneity. The nonequilibrium states in this
regime are described by a dynamical global CDW order pa-
rameter �K(t ) ∼ cos(�t + ϕ0). Since there is no static CDW
order after averaging over oscillation periods, phase III can
be viewed as a dynamical version of the conventional CDW
phase.

Previous works on similar CDW order in 1D systems
already indicated the importance of inhomogeneity during
the melting process, for example, the soliton-driven melting
scenario [57,67]. A similar result of photoinduced dynamical
inhomogeneity was reported in the case of 2D checkerboard
CDW, although the electron degrees of freedom are modeled
by a classical two-level molecular bond charges [91]. The in-
homogeneity, especially due to the proliferation of topological
defects, is a well-studied theme already in equilibrium physics
and thermal-induced out-of-equilibrium processes such as the
conventional Kibble-Zurek mechanism. It is worth noting that

the emergence of inhomogeneity in such scenarios is due
to the lack of spatial coherence during a relaxation process.
Yet, our work here highlights another route to inhomogeneity
through a pattern formation instability, a defining feature of a
nonequilibrium system with a highly nonlinear dynamics.

The checkerboard CDW which breaks the Z2 sublattice
symmetry is perhaps one of the simplest symmetry-breaking
phases. Our work shows that pattern formation instability
could take place even in a many-body quantum system with
such relatively simple Ising order. While the CDW order
is stabilized by electron-phonon coupling in the Holstein
model considered in this work, similar pattern formation
phenomena were also observed in the quench dynamics of
checkerboard CDW of pure electronic origin [58]. Previous
theoretical works have also reported pattern-formation insta-
bility as the source of Cooper pair turbulence in BCS type
superconductors [95,96]. It is expected that pattern formation
would be rather ubiquitous in ultrafast dynamics of quantum
systems with more complex order parameters. Although the
mechanisms and dynamics of pattern formation have been
extensively studied in many branches of classical physics,
a comprehensive picture of similar phenomena in quantum
many-body systems is still lacking. It is likely that a com-
plete theoretical description would require techniques and
ideas beyond the classical theories. For example, preliminary
analysis already points out the importance of nonlinear cou-
plings between electron-hole pairs and collective behaviors
(e.g., order-parameter dynamics) in the instability mechanism.
Further investigations, both theoretical and experimental, will
be needed to explore this exciting new field.

Beyond the semiclassical approximation, full quantum dy-
namical simulations of the Holstein model can be performed
using time-dependent extensions of methods such as DMFT
[62–66] or DMRG [67,68]. However, the high computational
cost of these methods significantly limits the accessible scales.
For example, MPS-based TEBD methods so far are only
applied to 1D systems with up to less than 20 sites [68].
Additionally, some implementations explicitly exclude spatial
fluctuations due to feasibility constraints, thereby precluding
the potential scenarios of formation of spatially inhomoge-
neous states. A more feasible approach to partially include
effects of quantum fluctuations is based on the truncated
Wigner framework [59,60]. In the multitrajectory Ehrenfest
methods, the dynamical evolution of the Holstein system is
still modeled by the semiclassical equations of motions, yet
the initial states are sampled from a quantum wave function.

To understand the intriguing interplay between spatial in-
homogeneity and quantum effects, it is crucial to develop
numerical methods that can account for both quantum and
spatial fluctuations. Recent studies have demonstrated that
quantum effects appear as additional stochastic noise in the
classical equation of motion for phonons [60,85,97]. This
scenario is further supported by an alternative approach based
on quantum measurement theory [98]. For instance, it has
been reported in a different context that the inclusion of
quantum fluctuations, acting as effective Langevin noise, is
expected to induce damping in the coherent persistent oscil-
lations of order parameters. Given that spatial inhomogeneity
and pattern formation likely arise from the nonlinearity of the
coherent dynamics, one possibility is that effective noises due
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to quantum fluctuations act as the seed for the instability that
drives spatial inhomogeneity. The resulting spatial patterns are
thus closely linked to the spectrum of quantum fluctuations.
Since the coherent dynamics are expected to be well described
by the semiclassical equations of motion, the multitrajectory
Ehrenfest method can be employed to explore this intriguing
scenario, which will be addressed in future work.
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APPENDIX A: TIME EVOLUTIONS OF CDW ORDER
PARAMETERS UNDER r = 0.1 AND r = 0.8

The results presented in the main text are based on an adia-
batic parameter r = τe/τL = h̄�/tnn = 0.4. Here we consider
two additional values of this parameter to investigate how the
differences in timescales affect the photoinduced dynamics
of the CDW state within the coherent dynamics regime, as
modeled by the semiclassical approximation. Figures 8(a) and
8(b) shows the time dependence of CDW order parameter �K
for various laser frequencies with adiabatic parameter r = 0.1
and 0.8, respectively. In both cases, photoinduced oscillations
of the CDW order, accompanied by lattice oscillations at the
same wave vector K are observed. Since the CDW is primarily
stabilized through the electron-lattice coupling, the oscillation
frequency depends strongly on the intrinsic frequency of the
phonons � = r(tnn/h̄). As a result, systems with a larger adi-
abatic parameter r exhibit coherent oscillations with a higher
frequency, as observed in our simulations.

In addition to the coherent oscillations, similar photoin-
duced melting of the CDW order is also observed for systems
of adiabatic parameters r = 0.8 and 0.1. At small laser fre-
quency ω, the photoexcitation reduces the CDW amplitude
and generates a coherent oscillation. Similar to the case of
r = 0.4 discussed in the main text, complete melting in the
sense that the time-averaged CDW order vanishes only occurs
when the photon energy is large enough to overcome the CDW
energy gap, h̄ω � h̄ωth = εgap. The CDW gap is related to
the dimensionless electron-phonon coupling parameter λ as
εgap = 2gQ = 2λ/W , where Q is the amplitude of the initial
CDW order, λ = gQ/W = g2/W K is the dimensionless cou-
pling constant, and W = 8tnn is the electronic bandwidth of
the tight-binding model. In both simulations presented here,
the same value of λ = 1 is used as in the main text. As a
result, the initial energy gap remains consistent across all three
simulations, leading to similar threshold photon energies in
simulations with different adiabatic parameters. Finally, we
note that the melting of the CDW resembles a crossover rather
than a sharp transition as a function of photon energy h̄ω,
due to the combined effects of finite pump pulse width and
nonlinearities.

FIG. 8. The time evolution of CDW order parameter �K in
(a) adiabatic limit in which r = 0.1 and (b) nonadiabatic limit where
r = 0.8. The width of the laser pulse is fixed at σ = 2, the peak time
is at t0 = 5, and the amplitude is A = 0.5.

APPENDIX B: QUASIPARTICLES AND ENERGY GAP
OF A CHARGE DENSITY WAVE STATE

We consider a staggered lattice distortion described by

Qi = Q exp(iK · ri ), (B1)

where Q is the amplitude of lattice distortion and K = (π, π )
is the wave vector of the checkerboard pattern. By introducing
electron creation/annihilation operators in momentum space,
e.g., ĉ†

p = 1√
N

∑
i ĉ†

i eip·ri , the electron Hamiltonian Ĥe + ĤeL

can be expressed as

ĤCDW =
∑

p

ĉ†
pH (p)ĉp, (B2)

where the summation is restricted to the reduced Brillouin
zone, ĉp = (ĉp, ĉp+K )t is a column vector of the electron
operators, and H (k) is the one-particle Hamiltonian given by

H (p) =
(

εp −gQ
−gQ −εp

)
. (B3)

The diagonal elements are given by the dispersion relation of
the square-lattice tight-binding model

εp = −2tnn(cos qx + cos qy), (B4)

and we have used the relation εp+K = −εp in the matrix equa-
tion for H . The CDW Hamiltonian can be straightforwardly
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diagonalized by the Bogoliubov transformation. To this end,
we introduce quasiparticle operators

γ̂
†
+,q = uqĉ†

q − vqĉ†
q+K, γ̂

†
−,q = vqĉ†

q + uqĉ†
q+K, (B5)

where the transformation coefficients are given by

up = 1√
2

⎛
⎜⎝1 + εp√

ε2
p + (gQ)2

⎞
⎟⎠

1/2

,

vp = 1√
2

⎛
⎜⎝1 − εp√

ε2
p + (gQ)2

⎞
⎟⎠

1/2

. (B6)

The diagonalized Hamiltonian becomes

ĤCDW =
∑

p

∑
μ=±

Eμ
p γ̂ †

μ,pγ̂μ,p, (B7)

where the quasiparticle energies are

E±
p = ±

√
ε2

p + (gQ)2. (B8)

A spectral gap εgap = 2gQ is opened in the excitation spec-
trum. At half-filling, the electron energy is obtained by filling
up all negative energy states, giving rise to an energy density
of the CDW state

ε(Q) = − 1

N

∑
p

√
ε2

p + (gQ)2 + 1

2
KQ2. (B9)

The order parameter of the staggered lattice distortion Q is
determined from the minimum energy condition ∂ε/∂Q = 0.

The electron-hole correlation function ρp,p+K = 〈ĉ†
p+Kĉp〉

can be expressed in terms of quasiparticle operators, as shown
in Eq. (14), with the following expansion coefficients

C+,+
p = −upvq, C−,+

p = u2
q,

C−,−
p = upvq, C+,−

p = −v2
q. (B10)
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[86] M. D. Petrović, M. Weber, and J. K. Freericks, Theoretical
description of pump-probe experiments in charge-density-wave
materials out to long times, Phys. Rev. X 14, 031052 (2024).

[87] A. F. Volkov and Sh. M. Kogan, Collisionless relaxation of
the energy gap in superconductors, Sov. Phys. JETP 38, 1018
(1974).

094208-14

https://doi.org/10.1103/PhysRevB.102.161105
https://doi.org/10.1103/PhysRevB.12.1197
https://doi.org/10.1088/0953-8984/25/40/404206
https://doi.org/10.1103/PhysRevLett.123.097601
https://doi.org/10.1103/PhysRevB.99.104111
https://doi.org/10.1103/PhysRevB.101.054203
https://doi.org/10.1103/PhysRevB.98.235150
https://doi.org/10.1103/PhysRevB.109.195133
https://doi.org/10.1103/PhysRevB.109.174303
https://doi.org/10.1063/5.0092063
https://doi.org/10.1103/PhysRevB.97.155136
https://doi.org/10.1103/PhysRevLett.112.176404
https://doi.org/10.1103/PhysRevB.94.115167
https://doi.org/10.1088/1402-4896/aa5b6c
https://doi.org/10.1103/PhysRevB.91.045128
https://doi.org/10.1103/PhysRevB.107.165102
https://doi.org/10.1103/PhysRevB.96.035154
https://doi.org/10.1103/PhysRevB.101.035134
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.66.1481
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1103/PhysRevLett.120.187003
https://doi.org/10.1103/PhysRevB.103.235104
https://doi.org/10.1103/PhysRevB.60.1633
https://doi.org/10.1103/PhysRevLett.113.166402
https://doi.org/10.1103/PhysRevLett.66.778
https://doi.org/10.1103/PhysRevLett.122.077602
https://doi.org/10.1103/PhysRevLett.122.077601
https://doi.org/10.1103/PhysRevB.99.174516
https://doi.org/10.1103/PhysRevE.105.025301
https://doi.org/10.1103/PhysRevX.14.031052
http://www.jetp.ras.ru/cgi-bin/dn/e_038_05_1018.pdf


PHOTOINDUCED PATTERN FORMATION AND MELTING OF … PHYSICAL REVIEW B 111, 094208 (2025)

[88] R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Collective
Rabi oscillations and solitons in a time-dependent BCS pairing
problem, Phys. Rev. Lett. 93, 160401 (2004).

[89] E. A. Yuzbashyan, O. Tsyplyatyev, and B. L. Altshuler, Re-
laxation and persistent oscillations of the order parameter in
fermionic condensates, Phys. Rev. Lett. 96, 097005 (2006).

[90] I. V. Blinov, P. Ribeiro, and A. N. Rubtsov, Post-quench dy-
namics and suppression of thermalization in an open half-filled
Hubbard layer, Phys. Rev. B 95, 024309 (2017).

[91] M. van Veenendaal, Photoinduced ultrafast charge-order melt-
ing: Charge-order inversion and nonthermal effects, Phys. Rev.
B 94, 115101 (2016).

[92] H. Ning, O. Mehio, M. Buchhold, T. Kurumaji, G. Refael,
J. G. Checkelsky, and D. Hsieh, Signatures of ultrafast reversal
of excitonic order in Ta2NiSe5, Phys. Rev. Lett. 125, 267602
(2020).

[93] M. Guan, D. Chen, Q. Chen, Y. Yao, and S. Meng, Co-
herent phonon assisted ultrafast order-parameter reversal and

hidden metallic state in Ta2NiSe5, Phys. Rev. Lett. 131, 256503
(2023).

[94] H. Krull, N. Bittner, G. S. Uhrig, D. Manske, and
A. P. Schnyder, Coupling of Higgs and Leggett modes in
non-equilibrium superconductors, Nat. Commun. 7, 11921
(2016).

[95] M. Dzero, E. A. Yuzbashyan, and B. L. Altshuler, Cooper pair
turbulence in atomic Fermi gases, Europhys. Lett. 85, 20004
(2009).

[96] G.-W. Chern and K. Barros, Nonequilibrium dynamics of su-
perconductivity in the attractive Hubbard model, Phys. Rev. B
99, 035162 (2019).

[97] A. Picano, F. Grandi, P. Werner, and M. Eckstein, Stochastic
semiclassical theory for nonequilibrium electron-phonon cou-
pled systems, Phys. Rev. B 108, 035115 (2023).

[98] L. Diósi and J. J. Halliwell, Coupling classical and quan-
tum variables using continuous quantum measurement theory,
Phys. Rev. Lett. 81, 2846 (1998).

094208-15

https://doi.org/10.1103/PhysRevLett.93.160401
https://doi.org/10.1103/PhysRevLett.96.097005
https://doi.org/10.1103/PhysRevB.95.024309
https://doi.org/10.1103/PhysRevB.94.115101
https://doi.org/10.1103/PhysRevLett.125.267602
https://doi.org/10.1103/PhysRevLett.131.256503
https://doi.org/10.1038/ncomms11921
https://doi.org/10.1209/0295-5075/85/20004
https://doi.org/10.1103/PhysRevB.99.035162
https://doi.org/10.1103/PhysRevB.108.035115
https://doi.org/10.1103/PhysRevLett.81.2846

