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Two-mode terms in Wigner transport equation elucidate anomalous
thermal transport in amorphous silicon
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Over the past decades, our understanding of thermal transport in amorphous materials has predominantly relied
on the inherently harmonic Allen-Feldman theory, which has been found to be insufficient. In this study, the
Wigner transport formalism is adopted to explicitly account for anharmonicity. In studying the thermal transport
in amorphous silicon, the results highlight that amorphous materials are not generally computationally equivalent
to crystals with disordered primitive cells. A method that leverages the properties of the two-mode terms in the
Wigner transport formalism is proposed to predict the bulk thermal conductivity of amorphous materials using
finite-size models. In doing so, the need for mode classification schemes required in the Allen-Feldman theory
is eliminated, and similarities are discovered between the two-mode terms and the carriers commonly used to
describe thermal transport in amorphous materials, i.e., propagons, diffusons, and locons. Two competing trends
are identified that shed light on the recently discovered anomalous decrease in the high-temperature thermal
conductivity in some amorphous materials.
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I. INTRODUCTION

Amorphous materials play a vital role in diverse techno-
logical sectors, powering nanoscale electronics [1], enabling
affordable solar energy [2], reclaiming waste heat [3], and
serving as a cornerstone in optics industries [4]. The thermal
transport characteristics of these materials are paramount in
influencing the efficiency and durability of the associated
devices. However, our comprehension of the heat carriers in
this class of materials frequently hinges on the decades-old
yet incomplete Allen-Feldman (AF) theory [5], leaving ample
space for improvements.

As a heat carrying vibrational mode in an amorphous mate-
rial may have a mean free path (�) smaller than its wavelength
(λ) or the interatomic spacing (a), the applicability of the
term “phonon” becomes questionable [6–9]. Consequently,
the terminology of “propagons” (i.e., low-frequency propagat-
ing modes that adhere to the phonon-gas model), “diffusons”
(i.e., nonpropagating but delocalized modes), and “locons”
(i.e., localized modes with zero diffusivity under the harmonic
approximation) became accepted [8,9]. Thus, calculating the
total thermal conductivity of an amorphous material required
a priori categorization of the vibrational modes and methods
for obtaining their contributions to thermal conductivity. The
AF theory, for example, calculates the thermal conductivity
contribution from diffusons using a formula derived from
Kubo theory under the harmonic approximation [5].

*Contact author: weeong@intl.zju.edu.cn

Despite significant progress in past decades, ambiguities in
classifying the three heat carriers persist, which impacts their
relative contributions to thermal conductivity [8–22]. Often,
a frequency crossover (ωc) is used to distinguish propagons
and diffusons. Because ωc lacks a precise definition, thermal
transport studies on amorphous materials usually employ ad
hoc criteria for determining ωc, leading to inconsistencies
between their results [7–10]. Considering the example of
amorphous silicon (a-Si), different approaches have been used
to define ωc, the angular frequency-dependent linewidth of
propagons [�p(ω)] to account for anharmonic scattering, and
the propagon velocity (vp). Different choices have led to a
substantial disparity in the relative contribution of propagons
to the total thermal conductivity of a-Si, ranging from 25% to
90% at room temperature [7–9,12,13,17,21]. A similar contro-
versy exists in using the mobility edge to distinguish diffusons
from locons due to different methods used for determining
the edge location [7–9,14,16,23–26]. Although Green-Kubo
modal analysis-based results for a-Si concur with previous
studies to show negligible thermal conductivity contributions
from participation ratio (PR)-determined locons [15], such
PR-determined locons can contribute appreciably in amor-
phous silica (a-SiO2) and polymers [23,25,26].

Recently, different groups revisited the heat flux opera-
tor [27] and proposed unified thermal transport theories for
crystalline and amorphous solids, namely, the Wigner trans-
port equation [28] (WTE) and the quasiharmonic Green-Kubo
(QHGK) theory [29]. The WTE encompasses the wave na-
ture of phonon transport, allowing phonons with a mean free
path below the spatial Ioffe-Regel limit (i.e., a mean free
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path less than the interatomic spacing, � < a) to transfer heat
through a “coherence channel” and still be considered as well-
defined entities [28,30]. Simoncelli and co-workers [31–33]
later applied the WTE with the Voigt regularization protocol
to several amorphous materials and alloys. This regularization
protocol avoids the divergence of the low-temperature thermal
conductivities predicted by the WTE with a finite Brillouin
zone k-point sampling. Their work concluded that glasses
can be computationally regarded as crystals with disordered
primitive cells, making classification of the heat carriers and
models for calculating their contribution to thermal conductiv-
ity unnecessary, as also implied in an earlier study [34]. On the
other hand, others continue to assert that amorphous materials
are computationally not similar to crystals. In their study of
a-Si, a-SiO2, and amorphous silicon carbide, Fiorentino et al.
used the QHGK approach to include anharmonicity in deter-
mining the thermal conductivity contributions from diffusons
and locons, but argued that the contributions of propagons
should be addressed separately [21,35]. Despite this recent
progress, further analysis can clarify the use of these methods
on different amorphous materials for accelerating the conver-
gence of thermal conductivity calculations.

To address the above issues, we conducted numerical cal-
culations on a-Si with the Stillinger-Weber (SW) potential
[36]. This potential has been successfully employed in prior
studies for a-Si [5,7–10,13,15,17]. The structure of this paper
is as follows: we first determine that a-Si cannot be treated as a
crystal with a disordered primitive cell for thermal conductiv-
ity calculations. Then, we demonstrate that by leveraging the
properties of the two-mode terms in the WTE, it is sufficient
to obtain the bulk thermal conductivity of a-Si using a finite-
size model, without invoking any other assumptions. Next,
we discuss a possible relationship of the two-mode terms in
the WTE with propagons, diffusons, and locons. Finally, we
illustrate how our framework naturally captures and explains
the a-Si thermal conductivity trend across temperatures, and
notably the recently discovered anomalous decrease at high
temperatures.

II. METHODS

A. Unified theories for amorphous materials

The unified theories (i.e., WTE and QHGK) can describe
thermal transport in crystals and amorphous materials. Al-
though their final expressions differ due to the nonuniqueness
of the heat flux operator and approximation schemes used,
subsequent studies have confirmed negligible differences in
their results in the quasiparticle regime (� < ω) [30,37,38].
Focusing on the WTE, its thermal conductivity expression is
written as [30,37]

κ = 1

3V

∑
k

∑
s,s′

κ (k)s,s′

= 1

3V

∑
k

∑
s,s′

ω(k)s + ω(k)s′

4

(
C(k)s

ω(k)s
+ C(k)s′

ω(k)s′

)

× ‖v(k)s,s′ ‖2 [�(k)s + �(k)s′ ]/2

[ω(k)s − ω(k)s′ ]2 + [�(k)s + �(k)s′ ]2/4
,

(1)

where the wave vector k and the indexes s and s′ distinguish
vibrational modes, V is the volume, and ω(k)s, �(k)s, and
C(k)s are the angular frequency, linewidth, and heat capacity

of a vibrational mode (k)s. C(k)s = h̄2ω2(k)s
kBT 2

exp[h̄ω(k)s/kBT ]
(exp[h̄ω(k)s/kBT ]−1)2

for quantum statistics and C(k)s = kB for classical statis-
tics. The quantity ‖v(k)s,s′ ‖2 = ∑

α=x,y,z |vα (k)s,s′ |2 where
vα (k)s,s′ is the two-mode group velocity of vibrational modes
(k)s and (k)s′ along the Cartesian α direction [33]. The WTE
captures the particle-wave duality inherent in the transport
process using the interband (s �= s′) coherence-channel trans-
port for the wavelike tunneling and the intraband (s = s′)
population-channel transport for the particlelike propagation
[28,30].

Theoretically, an infinitely large primitive cell is needed for
studying an amorphous material. Computational constraints,
however, restrict the possible size, leading to missing con-
tributions from low-frequency modes [6]. Two approaches
have been proposed to address this issue [6,33]: (1) treating
nonperiodic glasses as crystals with disordered primitive cells
and evaluating the thermal conductivity using a small, finite
Brillouin zone (herein, the k-mesh approach); and (2) only
considering vibrational modes at the Gamma point (i.e., the
center of the Brillouin zone where k = 0) and adding the
missing contributions from propagons, with their properties
extrapolated from the density of states (DOS) [N (ω)] and
linewidth [�p(ω)] [7–9]. Consequently, the total thermal con-
ductivity (κT ) is the sum of contributions from propagons κP

and diffusons/locons κD/L, giving

κT = κP + κD/L

= v2
s

3V

∫ ωc

0
N (ω)C(ω)

1

�p(ω)
dω

+ 1

V

∑
s,s′

�(ωs/s′ − ωc)κs,s′ , (2)

where ωc is the crossover frequency to classify propagons
and diffusons, and vs is the sound speed. �(ωs/s′ − ωc) = 1
if ωs or ωs′ is larger than ωc and �(ωs/s′ − ωc) = 0 otherwise.
We emphasize that anharmonicity is effectively accounted for
when κs,s′ is calculated using the WTE [Eq. (1)] instead of
the AF theory. A more straightforward approach than Eq. (2)
to get the bulk thermal conductivity is to enlarge the primi-
tive cell successively and calculate the corresponding thermal
conductivity using only the Gamma-point modes with Eq. (1),
and then extrapolate to an infinite system size (herein, the
Gamma-point approach).

B. Generating a-Si models

In the Gamma-point approach, a melt-quench technique
[17] was used to generate models with different numbers of
atoms (from 216 to 46 656). In the k-mesh approach, the
216-atom primitive cell was replicated N×N×N in space to
generate supercell models with the same number of atoms as
the Gamma-point models. It should be noted that the WTE
thermal conductivity obtained using a supercell model in the
Gamma-point approach yields the same result as that obtained
using the primitive cell with a k-mesh approach [39]. To re-
duce computational cost in the k-mesh approach, the primitive
cell was employed with its k-mesh size set as N×N×N to
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match the size of the supercell model [39]. For example,
if the Gamma-point approach uses a supercell model which
is a 3 × 3 × 3 expansion of the primitive cell, the k-mesh
approach uses the primitive cell with the k-mesh size set as
3 × 3 × 3.

The molecular dynamics (MD) calculations were exe-
cuted using LAMMPS [40,41] with a time step of 0.5 fs
and periodic boundary conditions were applied in all direc-
tions. Initial structures were formed by melting crystalline
silicon at 3500 K for 1 ns in the NVT ensemble utilizing
a Nose-Hoover thermostat. Subsequently, the liquid silicon
underwent quenching to 1000 K with a quench rate of
100 K ps−1, followed by annealing at 1000 K for 25 ns to
mitigate metastabilities. Lastly, the domain was quenched at a
rate of 100 K ps−1 to 300 K and stabilized at 300 K for 10 ns
in the NVT ensemble. The resulting average density of the
samples is 2351 ± 7 kg m−3, which agrees well with previous
calculations and experiments [13,42]. The radial distribution
functions are calculated using LAMMPS in the NVE ensemble
at 300 K.

C. Molecular dynamics simulations for thermal conductivity

Equilibrium molecular dynamics (EMD) simulations were
carried out in LAMMPS with a time step of 0.5 fs. The struc-
tures were initially equilibrated at 300 K for 0.5 ns in the NVT
ensemble and then in the NVE ensemble for another 0.5 ns.
Subsequently, the heat flux was computed for 10 ns in the
NVE ensemble to determine the thermal conductivity. Ho-
mogeneous nonequilibrium molecular dynamics (HNEMD)
simulations and their spectral decomposition were performed
using GPUMD [43,44]. The above equilibration protocol was
also applied for the HNEMD calculations, with a driving force
parameter of 10−4 Å−1. In the spectral heat flux calculations,
the data was collected every two time steps, and the maximum
correlation time used was 500 fs. Five independent runs were
averaged for each EMD point and three for each HNEMD
point.

D. Harmonic lattice dynamics calculations and normal mode
decomposition method

The structures were initially optimized using the conju-
gate gradient algorithm in LAMMPS. Subsequently, the finite
difference method implemented in PHONOPY [45,46] was em-
ployed to calculate the harmonic interatomic force constants.
The vibrational frequencies, eigenvectors, and DOS were also
computed from PHONOPY. For the normal mode decomposi-
tion (NMD) calculations that require time-dependent atomic
velocities, NVE simulations were performed for 1 ns using a
time step of 0.5 fs in LAMMPS after the structure relaxation.
The atomic velocities were dumped with an interval of 12.5
fs. The spectral energy density for a specific vibrational mode
(k)s is given as [47–49]

	(k, ω)s =
∣∣∣∣
∫ +∞

0
q̇(k, t )s exp (−iωt )dt

∣∣∣∣
2

, (3)

q̇(k, t )s =
3∑
α

n∑
b

Np∑
l

√
mb

Np
vl,b,α (t )e∗

b,α (k)s exp
(
ik · r0

l,b

)
,

(4)

where n is the number of atoms in one primitive cell, Np is
the number of primitive cells in the model, v is the velocity,
e∗ is the complex conjugate of the eigenvector, and r0 is
the equilibrium position. α, b, and l represent the Cartesian
direction, the atom index in a primitive cell, and the primitive
cell index. We then use Eq. (5) to fit Eq. (3) to extract the
anharmonic frequency ωA and the linewidth � of the corre-
sponding vibrational mode,

	F(k, ω)s = c(k)s

[ω − ωA(k)s]
2 + [

�(k)s
2

]2 , (5)

where c is a fitting parameter.

E. Interpolation for the frequency-dependent linewidth

The large computational cost required to obtain the
linewidths required for WTE using the NMD method limits
our ability to study large-size models with tens of thousands
of atoms. To circumvent this limitation, we first employed the
NMD method using a model containing 5832 atoms to extract
the modal linewidths. Then, the following equations are used
to obtain the frequency-dependent linewidth �(ω) [21,33,50]:

�(ω) = 1√
1

�1(ω)2 + 1
�2(ω)2

, (6)

where �1(ω) and �2(ω) are

�1(ω) =
∑

k,s
1√

2πσ 2
exp

[− [ω(k)s−ω]2

2σ 2

]
∑

k,s
1

�(k)s

1√
2πσ 2

exp
[− [ω(k)s−ω]2

2σ 2

] , (7)

�2(ω) = c1ω
2 + c2ω

4. (8)

Specifically, we applied a Gaussian filter [Eq. (7)] on
modal linewidths extracted using the NMD method to obtain
a frequency-dependent relationship [�1(ω)]. Because of the
limited sampling points in the low-frequency region, it is a
common practice to employ �2(ω) to correct the linewidths
of low-frequency modes [21,33,50,51]. The parameters c1 and
c2 are determined from the data points with frequencies lower
than 8 rad ps−1 using a least-square fitting. A larger frequency
cutoff at 10 rad ps−1 gave negligible differences in the results.
The parameter c2 is set to 0 to study the relation �2(ω) = cω2.
See Supplemental Material [52] (including Refs. [53–55])
Note A for more discussions about the accuracy of the rela-
tions �2(ω) = c1ω

2 + c2ω
4 and �2(ω) = cω2.

III. RESULTS AND DISCUSSION

A. k-mesh versus Gamma-point approaches in the WTE

Prior results [33] on the thermal conductivity of a-SiO2

suggested that the WTE with a finite k-mesh using finite-size
models is accurate for temperatures larger than a lower bound
(around 100 K), and that a regularization protocol is required
to correctly evaluate the thermal conductivity below this
temperature. However, a subsequent study [21] argued qual-
itatively that the k-mesh approach might introduce artificially
long-lived modes with low frequency, leading to a spurious
increase in thermal conductivity. We investigated the above
question with the a-Si system by comparing the WTE calcu-
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FIG. 1. Thermal conductivity of a-Si at 300 K using the k-mesh and Gamma-point approaches. (a) The comparison between the size-
converged HNEMD results and WTE results at different sizes. The shaded area of HNEMD results indicates the uncertainty calculated from
three independent simulations. Both quantum statistics and classical statistics are employed in WTE calculations. The solid lines and dashed
lines are linear extrapolations from the data points in the WTE calculations to obtain the size-independent thermal conductivity. (b) Normalized
spectral thermal conductivity of the HNEMD and classical WTE calculations at their corresponding sizes. (c) The size effects of the population-
and coherence-channel thermal conductivity of the classical WTE calculations using the k-mesh approach. (d) The spectral decomposition of
the WTE classical thermal conductivity obtained from the k-mesh approach for the 81.1 Å model with 27 000 atoms into the population and
coherence channels.

lations with those from HNEMD simulations at 300 K. This
comparison is appropriate as both results explicitly include
anharmonicity and the WTE calculation can be performed
using classical statistics to be consistent with the MD simula-
tions. As the WTE requires modal linewidths and amorphous
systems have no symmetry, performing anharmonic lattice
dynamics to get the linewidths can be computationally pro-
hibitive for models exceeding 10 000 atoms. To circumvent
this limitation, we combined the MD-based NMD method
[47–49] with an interpolation method [21,33,50] to extract
the required modal linewidths (see Methods and Supplemental
Material Note A [52]).

Figure S1 [52] contains the radial distribution function and
DOS calculated using our models, which agree with previ-
ous simulation studies [8,13]. The calculated DOS, however,
deviates from experiments, as also seen in earlier simula-
tions [42,56]. This deviation is expected as most potentials

can only approximate the behavior of real-world materials.
It is also well known that there is a large range of mea-
sured thermal conductivities for a-Si based on different film
thickness and sample quality, so comparison with experiment
would be difficult [57]. Thus, we only benchmarked results
from the HNEMD with the WTE to ensure an equitable
comparison, as both calculations are based on the same SW
potential. From Fig. 1(a), a 300-K size-converged HNEMD
thermal conductivity of 1.45 ± 0.01 W m−1 K−1 is obtained
using the Gamma-point approach (i.e., supercells are obtained
using the melt-quench technique). This result agrees with
a prior nonequilibrium molecular dynamics result [58]. See
Supplemental Material Note B [52] for discussion of the size-
dependent HNEMD thermal conductivity and the comparison
with results obtained using the EMD Green-Kubo approach.

We draw two significant conclusions from Fig. 1(a), where
the WTE-calculated thermal conductivities are plotted versus

094206-4



TWO-MODE TERMS IN WIGNER TRANSPORT EQUATION … PHYSICAL REVIEW B 111, 094206 (2025)

FIG. 2. The size dependence of (a) the spectral thermal conductivity and (b) the two-mode mean free path–dependent accumulative thermal
conductivity at 300 K under quantum statistics.

the inverse of the simulation box length. First, when extrapo-
lated to infinite size, the classical WTE thermal conductivities
based on the k-mesh and Gamma-point approaches agree
well with the corresponding size-converged HNEMD results.
This result is further discussed below. Second, the thermal
conductivity results from the k-mesh approach are higher
than the Gamma-point approach in both the HNEMD and
the WTE (classical and quantum) calculations. Comparing
the normalized thermal conductivity spectra for the HNEMD
and classical WTE approaches in Fig. 1(b) reveals that the
discrepancy primarily stems from low-frequency vibrational
modes that have higher contributions in the k-mesh approach.
For more insight, we decomposed the classical WTE k-mesh
thermal conductivity into its population channel and coher-
ence channel in Figs. 1(c) and 1(d). These plots indicate that
the increase in the thermal conductivity of the bigger super-
cells comes from the population channel [Fig. 1(c)], which
displays a prominent spectral thermal conductivity peak at
low frequencies [Fig. 1(d)]. A similar peak is also observed
in the results for a larger a-Si model with 5832 atoms (Fig. S2
[52]), indicating that size effects are not impacting our con-
clusion. As a reminder, the population channel is contributed
by vibrational modes at k points other than the Gamma point,
because Gamma-point modes of the primitive cell have zero
modal group velocity due to symmetry constraints. The above
observations imply that a considerable fraction of the thermal
conductivity from low-frequency modes (up to ∼96% for
ω < 10 rad ps−1) in the supercell models originates from the
population channel, which is contributed by fictitious vibra-
tional modes with wavelengths longer than the size of our
simulated amorphous structures. These vibrational modes are
induced by the imposed translational symmetry, raising con-
cerns about the correctness of the k-mesh approach. Hence,
for the rest of this paper, we will only present the WTE results
obtained from the Gamma-point approach.

B. Two-mode terms from WTE for describing thermal
transport in amorphous silicon

Our classical WTE thermal conductivity values, when lin-
early extrapolated to infinite size in Fig. 1(a), agree well with
the HNEMD results for both the k-mesh and the Gamma-
point approaches. However, a nonlinear extrapolation method

has been previously employed for a-Si [21]. This difference
suggests that an investigation using a mode-level analysis is
required, which can additionally clarify the mode-level carrier
physics that are important for manipulating and engineering
the thermal transport in amorphous materials. To investigate
the underlying mode-level physics, we utilize the two-mode
terms in the WTE. Inspired by an earlier work [29], we start
by rewriting Eq. (1) into

κ =
∑

k

∑
s,s′

κ (k)s,s′ = 1

3V

∑
k

∑
s,s′

C(k)s,s′ ‖v(k)s,s′ ‖2τ (k)s,s′ ,

(9)

where the two-mode heat capacity and the two-mode life-
time are defined as C(k)s,s′ = ω(k)s+ω(k)s′

4 [C(k)s
ω(k)s

+ C(k)s′
ω(k)s′

] and

τ (k)s,s′ = (�(k)s+�(k)s′ )/2
(ω(k)s−ω(k)s′ )2+(�(k)s+�(k)s′ )2/4

. The two-mode mean

free path is accordingly defined as �(k)s,s′ = ‖v(k)s,s′ ‖τ (k)s,s′ .
The spectral thermal conductivity and the two-mode mean
free path–dependent accumulative thermal conductivity at
300 K under quantum statistics plotted in Fig. 2 reveal that
thermal conductivity increases with increasing size due to the
presence of more low-frequency modes with longer two-mode
mean free paths. Based on this observation, we would expect
the modal properties to also converge when properly extrap-
olated to infinite size. To validate this hypothesis, we convert
Eq. (9) to a frequency-dependent form for easier extrapolation
of the transport properties of the lower frequency modes that
are unavailable due to our model size:

κ =
∫ ωmax

0

∫ ωmax

0
κω,ω′dω dω′

= 1

3V

∫ ωmax

0

∫ ωmax

0
Nω,ω′Cω,ω′ ‖vω,ω′ ‖2τω,ω′dω dω′, (10)

where the frequency-dependent two-mode DOS Nω,ω′ =∑
s,s′ δ̃(ωs − ω,ωs′ − ω′). δ̃(ωs − ω,ωs′ − ω′) is a rectangu-

lar approximation to a two-dimensional δ function centered at
discrete frequencies (ω, ω′) with a width equal to 1 rad ps−1.
The frequency-dependent two-mode group velocity is
defined as ‖vω,ω′ ‖ = ∑

s,s′ ‖vs,s′ ‖δ̃(ωs − ω,ωs′ − ω′)/Nω,ω′ ,
while Cω,ω′ and τω,ω′ are the frequency-dependent two-mode
heat capacity and lifetime, with similar definitions as ‖vω,ω′ ‖.
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FIG. 3. Frequency-dependent two-mode properties of a-Si at 300 K. (a)–(f) The frequency-dependent two-mode thermal conductivity,
lifetime, size-invariant group velocity, size-invariant mean free path, square root of DOS, and heat capacity at 300 K under quantum statistics.

It is notable that the ‖vω,ω′ ‖ terms are dependent on V ,
creating an inconsistency for thermal conductivity predictions
when models with different sizes are used (see Supplemental
Material Note C [52]). Therefore, we define a size-invariant
frequency-dependent two-mode group velocity as ṽω,ω′ =
vω,ω′N1/4

ω,ω′ (see Supplemental Material Note C [52]). Equation
(10) can then be recast into

κ = 1

3V

∫ ωmax

0

∫ ωmax

0

√
Nω,ω′Cω,ω′ ‖ṽω,ω′ ‖2τω,ω′dω dω′.

(11)

Accordingly, the size-invariant frequency-dependent two-
mode mean free path is given as �̃ω,ω′ = ‖ṽω,ω′ ‖τω,ω′ . Using
the above frequency-dependent two-mode terms and the
Gamma-point approach, the frequency-dependent two-mode
properties of a-Si at the temperature of 300 K under quan-
tum statistics are illustrated in Fig. 3. The nonzero thermal
conductivity contribution of the two-mode terms in Fig. 3(a)
closely mirrors their lifetime in Fig. 3(b). This similarity arises
as the two-mode lifetimes depend on the linewidth overlap of
the two coupling vibrational modes. Thus, two-mode terms
with significantly different frequencies will have a negligible
two-mode lifetime.

As the lowest nonzero frequency in our largest model is
2.68 rad ps−1, the properties of lower frequency vibrational
modes are extrapolated to obtain a more accurate thermal
conductivity prediction (see Supplemental Material Note D
[52] for details of the extrapolation procedure). Including
contributions from the extrapolated modes, the κ calculated
using Eq. (11) under classical statistics is 1.40 W m−1 K−1.

This value agrees well with the 1.39 W m−1 K−1 from linear
extrapolation of κ to infinite size [i.e., red crosses in Fig. 1(a)]
and the HNEMD value of 1.45 W m−1 K−1 [i.e., blue line in
Fig. 1(a)]. The κ under quantum statistics is 1.25 W m−1 K−1

versus 1.21 W m−1 K−1 [linear extrapolation of κ to infinite
size, indicated by the red plus signs in Fig. 1(a)]. The close
agreement between these results supports the credibility of
our method using the two-mode terms, ensuring a consistent
calculation approach under one framework with no need to
invoke the concept of propagons and Eq. (2) to calculate
thermal conductivity.

C. Connections between the two-mode terms and propagons,
diffusons, and locons

Propagons are commonly used to recover the contributions
from the low-frequency vibrational modes that are inacces-
sible due to the limited size of amorphous models [8,9,21].
By comparing Eq. (11) with the κP in Eq. (2), we identified
that the contribution from propagons is only similar to that
from the two-mode terms along the diagonal. In addition,
the former adopts a constant sound speed when calculating
the thermal conductivity. This assumption, however, does not
always hold true, particularly when anharmonicity is large
[28,30] and/or when a large crossover frequency is used to
distinguish propagons from diffusons. The two-mode terms
in the low-frequency range can have a size-invariant group
velocity exceeding 1000 m s−1 and a lifetime longer than 100
ps, resulting in two-mode mean free paths up to 1000 Å
[Figs. 3(b)–3(d)]. These features underscore their “propagat-
ing” characteristics. In addition, the two-mode terms in the
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FIG. 4. Temperature-dependent thermal conductivity of a-Si.
The thermal conductivity values in each study are normalized to
their highest value (κmax) across the temperature range, with ab-
solute values shown in the inset. Our Gamma-point WTE results,
the HNEMD results of Wang et al., and Isaeva’s QHGK results are
based on the SW potential, a machine learning potential (MLP) [62],
and the Tersoff potential [29], respectively. The WTE and QHGK
results use quantum statistics, while the HNEMD results are quantum
corrected. Experiments are taken from Refs. [60,61] with the sample
thicknesses provided in the legend.

high-frequency range exhibit an approximately zero group
velocity [Fig. 3(c)], accordingly negligible mean free path
[Fig. 3(d)], and thermal conductivity [Fig. 3(a)], suggest-

ing they are “Anderson localized” [33,59]. The two-mode
terms between the above frequency ranges can be treated
as “diffusive” in nature. Thus, the spectrum of two-mode
terms has characteristics that resemble those of the three heat
carriers typically used to describe amorphous materials. We
emphasize that we are not attempting to classify the different
two-mode terms into these three heat carriers. Rather, we seek
to demonstrate that the WTE theory naturally encompasses
contributions from all vibrational modes, and the total thermal
conductivity can be obtained without classifying them into
propagons, diffusons, and locons.

D. Two-mode terms elucidate physics behind the anomalous
high-temperature thermal conductivity trend in some

amorphous materials

We now explore how increased anharmonicity in amor-
phous materials is captured in the two-mode properties in the
WTE. In Fig. 4, the temperature dependence of the thermal
conductivity of a-Si is plotted for our quantum Gamma-point
WTE calculations, using models with 5832 atoms and in-
corporating extrapolated low-frequency contributions. In the
main part of the plot, thermal conductivity is normalized by
the maximum value calculated or measured, while the inset
contains the actual values. Previous experiments [60,61] and
calculations performed using other potentials and approaches
[29,62] generally agree well with our normalized trend. Any
discrepancies are probably due to the different potentials and
computational structures used [57]. An intriguing observation
from Fig. 4 is the anomalous thermal conductivity peak at
around 400 K. A similar high-temperature peak was reported

FIG. 5. Frequency-dependent two-mode Cω,ω′ , τω,ω′ , and κω,ω′ for a-Si at temperatures of (a)–(c) 30 K and (d)–(f) 1000 K. These variables
have the same meaning as those in Figs. 3(f), 3(b), and 3(a), respectively.
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FIG. 6. The temperature dependence of (a) two-mode lifetime-dependent accumulative thermal conductivity (κac
τ ) normalized by its

maximum κ and (b) the percentage of contributing two-mode elements and the average two-mode lifetime of these contributing elements.
The red solid line in (b) (left axis) illustrates changes in the percentage of contributing two-mode elements over the total number of two-mode
elements (N/Ntot) at different temperatures. The blue dashed line (right axis) represents changes in the average two-mode lifetime τ ave

i j of the
contributing elements across temperatures.

in recent theoretical studies for a-Si and amorphous HfO2

(a-HfO2) [62,63], which challenges the conventional no-
tion that the thermal conductivity for amorphous materials
increases with increasing temperature [5–7]. Such a peak,
however, has not been observed in a-SiO2 [33,64]. The origin
of the peak can be explained using the two-mode terms in the
WTE.

Figure 5 illustrates the two-mode properties of a-Si at
temperatures of 30 and 1000 K. Given that our linewidths
are from the classical NMD method, they may deviate from
the quantum case at low temperatures. However, such devi-
ations become mostly immaterial when using the quantum
heat capacity [Fig. 5(a)] for calculating the two-mode thermal
conductivity [Fig. 5(c)] [62]. As there are small differences
between the two-mode lifetimes at 300 K in Fig. 3(b) and at
30 K in Fig. 5(b), the thermal conductivity of a-Si at 30 K
is dictated primarily by its smaller heat capacity [compar-
ing Figs. 3(f) and 5(a)] and not the linewidths. At 1000 K,
however, most of the two-mode elements are activated as
seen from the heat capacity plot in Fig. 5(d). In addition,
as expected, a higher number of two-mode elements at the
elevated temperature display a nonzero lifetime in Fig. 5(e).
This increase comes from the stronger anharmonicity, which
broadens the linewidths, allowing more vibrational modes
with larger dissimilar frequencies to couple. When comparing
the two-mode lifetimes at 300 K in Fig. 3(b) and 1000 K in
Fig. 5(e), however, the color for two-mode elements active at
300 K becomes less intense at 1000 K, indicating a decrease
in the lifetime. This drop in the two-mode lifetime with in-
creasing temperatures can be clearly seen in the normalized
accumulated thermal conductivity curves plotted in Fig. 6(a).
Two-mode elements with a shorter lifetime dominate the ther-
mal transport at higher temperatures.

In Fig. 6(b), we compare the percentage of the contributing
two-mode elements and the average lifetime of the con-
tributing two-mode elements across temperatures to identify

two competing trends. A contributing two-mode element is
defined here using the criterion τi j > 0.01 ps. Two-mode el-
ements that satisfy this criterion contribute more than 90%
to the total thermal conductivity from 10 to 1000 K and
around 88% at 1200 K. These results are not affected if a
smaller criterion for τi j is adopted at 1200 K to ensure a 90%
contribution. Although the number of contributing two-mode
elements increases with increasing temperatures, the average
two-mode lifetime of these contributing two-mode elements
decreases. The latter effect dominates in a-Si to decrease its
high-temperature thermal conductivity. We postulate that the
decrease in the two-mode lifetimes is also responsible for the
trend in a-HfO2 at higher temperatures [63]. In contrast, these
two competing trends possibly balance out in a-SiO2, leaving
its total thermal conductivity unchanged [33,64].

IV. CONCLUSION

In summary, we explored issues surrounding thermal trans-
port in amorphous materials using theoretical calculations on
a-Si. We first showed that the k-mesh approach introduces fic-
titious translational symmetry leading to an overprediction of
thermal conductivity. We proceed to use the two-mode terms
in the WTE theory to derive a frequency-dependent formula
tailored for amorphous materials, which effectively captures
thermal conductivity contributions from low-frequency vi-
brational modes that exceed the limitations of the model
size. In addition, we argue that classifying the modes as
propagons, diffusons, and locons is not necessary, as their
characteristics are naturally captured through the two-mode
properties in WTE. We also identified the mechanisms be-
hind the anomalous high-temperature thermal conductivity
decrease in amorphous materials. Our study provides insights
for identifying new thermal transport physics and developing
new methodologies to manipulate thermal transport in amor-
phous materials.
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