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Interlayer excitons in double-layer transition metal dichalcogenide quantum dots
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Various properties of interlayer excitons in double-layer transition metal dichalcogenide quantum dots are
analyzed using a low-energy effective Hamiltonian with Coulomb interaction. We analytically solve the single-
particle Hamiltonian with and without a magnetic field, then present the electron-hole pairing features of
interlayer excitons by employing the exact-diagonalization technique, where the electron and hole are located in
two layers, respectively. In a magnetic field, the Landau-level gap, as well as the electron-hole separation of an
exciton, varies nonmonotonously as the interlayer distance increases, which is attributed to the pseudo-spin-orbit
coupling that also leads to the emergence of topological nontrivial pseudospin textures in the exciton states. We
examine the influence of different materials in quantum dots stacking on the exciton states, comparing their
impact to variations in layer distances and quantum dot sizes. We further explore two interacting interlayer
excitons numerically. The binding energy is significantly enhanced by the exchange interaction when the two
electrons have different spins. The optical absorption spectra from the ground state to low-lying excited states
reveal distinct behaviors for different interlayer excitons, which can be utilized to distinguish the spin of electrons
in excitons. Our results highlight the potential for controlling interlayer excitons and applications of optical
devices in a magnetic field and tunable layer distance.
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I. INTRODUCTION

Interlayer excitons form when an electron and a hole with
strong mutual Coulomb interaction are localized in differ-
ent monolayers. Recently, this emerging phenomenon has
received increasing attention, prompting extensive theoretical
and experimental studies, particularly within transition metal
dichalcogenides (TMDs) [1,2]. TMDs are a novel family of
two-dimensional (2D) materials with unique optoelectronic
properties and are highly useful in various fields, including
optoelectronic device, energy, and medical applications [3,4].
These materials, described by the formula MX2 (M = Mo, W
and X = S, Se) [5], are distinguished from graphene by their
strong spin-orbit couplings (SOCs) originating from heavy
transition metal atoms [6,7]. In contrast to their bulk counter-
parts, monolayer TMDs have a direct band gap of about 2 eV,
making them attractive for optical studies and applications.
Most heterostructures exhibit a type-II band alignment un-
der specific conditions, where the conduction band minimum
(CBM) and valence band maximum (VBM) lie in different
layers [8–10]. Alternatively, voltage modulation can also be
used to form the type-II band alignment [11,12]. These het-
erostructures facilitate the formation of interlayer excitons and
provide a versatile platform for exploring correlated electronic
states, paving the way for novel optical and electronic phe-
nomena [13]. Recent works on interlayer excitons in TMDs
have revealed different behavior from intralayer excitons, par-
ticularly that the lifetime of an interlayer exciton can be up
to two orders of magnitude longer than that of an intralayer
exciton [14–18].

*Contact author: luo.wenchen@csu.edu.cn

Excitons in bilayer two-dimensional electron systems have,
of late, garnered significant interest, which supports supercur-
rent, excitonic superfluidity, novel crystal phases, interlayer
exciton polarons, etc. [19–24]. The heterostructures, includ-
ing both homobilayers (made from the same TMDs) and
heterobilayers (made from different TMDs) [25], and hybrid
heterostructures combining perovskite and TMDs have been
recently fabricated [26–28]. These stacking structures have
been extensively researched for their optoelectronic properties
and applications, which underscores the primary focus of our
study.

The confined nanostructures such as quantum dots (QDs)
and quantum rings based on semiconductor heterostructures
were extensively investigated and were also utilized in op-
tical devices [29–32]. The optical absorption spectra in a
parabolic QD, first studied theoretically in Ref. [33], were
in excellent agreement with the observed low-energy emis-
sion lines in a subsequent experiment [34]. Theories and
experiments on electrons in elliptical and circular QDs have
displayed fascinating optical and transport properties influ-
enced by confinement effects, focusing on both single-particle
and few-body systems. Numerous studies on graphene and
TMDs demonstrate various techniques for implementing QDs
in 2D materials, which paves the way for exploring and ap-
plying these artificial atoms with novel electronic and optical
properties [32,35–41], in comparison to the QDs in con-
ventional semiconductors. Electrons trapped in bilayer and
trilayer graphene QDs have been studied numerically by us-
ing the finite-element method, where interlayer coupling is
considered [36,42]. The QD located in a monolayer TMD
nanoflake can also be experimentally achieved and are the-
oretically studied [43–49].
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Motivated by the vast application potential of TMDs, in
the present work, we explore interlayer excitons by construct-
ing a double QD structure based on TMDs, where electrons
and holes are located in different layers. Between the two
layers, aside from the Coulomb interactions, the particle hop-
ping across different layers is disregarded. The distance of
the two layers and an external magnetic field is externally
adjustable. We investigate how the layer distance and the
magnetic field influence the properties of interlayer excitons
within the double-layer QDs. Recent studies of TMDs under
out-of-plane magnetic fields of up to 31 T highlight their
impact on exciton behaviors [50]. Our device based on TMDs
would be ideal for studying its optical and transport prop-
erties. This system with strong Coulomb interactions is also
promising for studying electron-hole pairing and enhancing
the understanding of correlated electronic states [51,52].

The manuscript is organized as follows. In Sec. II, we
present our model for electron-hole pairs in double TMD
QDs, including the Hamiltonian formalism and a review of
single-particle solutions within the TMD QDs. We then intro-
duce the interlayer Coulomb interaction matrix elements used
for the numerical analyses. To streamline the discussion, we
address the Coulomb interaction matrix elements separately
in the absence and presence of an external magnetic field. In
Sec. III, we employ the exact-diagonalization (ED) techniques
to calculate the ground-state and low-lying excited energies,
electron-hole separation, and optical absorption strengths of
interlayer excitons for double TMD QDs. Additionally, the
discussion encompasses the topological properties of an inter-
layer exciton. In Sec. IV, the results of biexciton are discussed,
where the exciton-exciton interaction plays an important role.
In Sec. V, we present a summary and outlook on the exciton
features.

II. MODEL HAMILTONIAN

In our model, two monolayer TMDs are positioned in the
upper and lower planes, respectively, and are separated by
a hexagonal boron nitride (hBN) substrate [16,53]. For each
TMD layer, the single-particle behavior in the vicinity of
the K/K ′ points is described by the widely adopted gapped
Dirac Hamiltonian, especially in the low-energy region [6,7].
This study focuses on the impact of Coulomb interactions
on exciton formation within the QDs. Recent studies employ
the periodic moiré potential in moiré superlattices to form
quantum dot arrays [35,51,54]. However, we construct a dou-
ble QD structure confining electrons and holes in different
monolayers, respectively, by using an infinite potential with-
out twist. The advantage of our approach is that it allows for
convenient transport measurements and the study of optical
properties with minimal interference. In this work, we focus
on interlayer excitons with long-range Coulomb interaction
and ignore hopping between the layers given that the dis-
tance of the two layers is relatively large. The conduction
and valence bands thus remain approximately unchanged. The
system is described by the Hamiltonian

H = He + Hh + Heh + Hee + Hhh, (1)

where He and Hh, respectively, correspond to the single-
particle Hamiltonian in the upper and lower layer QDs, Heh

is the Coulomb interaction between the electron and the
hole located in different layers, Hee describes the intralayer
electron-electron interaction, and Hhh is the intralayer hole-
hole interaction. Without loss of generality, we suppose that
electrons are in the upper QD and holes are located in the
lower QD.

The Hamiltonian of the single particle in a TMD QD is

Hζ = aζ tζ
h̄

Hτ + �ζ

2
σz + λζ τ s

2
(1 − σz ) + V (rζ )σz, (2)

where ζ = e, h denotes the index of the electron or hole layer,
aζ is the lattice constant of the TMDs of the layer, tζ is the
hopping parameter, τ is the valley index that is ±1 for the
K and K ′ valley, respectively, σz is a Pauli matrix represent-
ing the sublattice pseudospin, Hτ = τσx(px + eAx ) + σy(py +
eAy) with vector potential A = (Ax, Ay) in a perpendicular
magnetic field represents the sublattice pseudo-SOC, � is the
energy gap between the valence and conduction bands, λ is
a constant coupling the spin and valley, s = ±1 represents
spin up and spin down acting as a good quantum number,
respectively, and re(h) are the position vectors in different
layers. Given that the Fermi velocity tζ can be different in
different bands, the effective masses of the electron and the
hole could be different. The small spin-splitting energy and
the Zeeman term are not explicitly shown in Eq. (2) since it is
not related to the binding energy of an exciton.

The QD can be produced by cutting a monolayer TMD
nanoflake of radius R or lateral confinement potential on an
extended monolayer [43–47]. Then we adopt the infinite mass
boundary [55] for the QD,

V (r) =
{

0, r < R
∞, r > R,

(3)

which allows us to obtain exact solutions of single-particle
wave functions. To solve the many-particle system, we should
first establish the single-particle eigenstates of the nonin-
teracting Hamiltonian as the basis. The solutions of the
single-particle Hamiltonian are given in the following.

A. Wave functions without a magnetic field

In the absence of a magnetic field, the wave function is
an eigenstate of the total angular momentum operator Jtot =
Lz + τ

h̄σz

2 since it commutes with the Hamiltonian [Jtot, Hζ ] =
0, where Lz = xpy − ypx is the z component of the angular
momentum. Given that the spin is a good quantum number,
we start from the eigenvalue equation Hζ �ζ = Eζ �ζ for spin
s in polar coordinate (r, θ ) with the wave function being a two-
component spinor. Consider that in either the upper or lower
layer, the eigenvalues equations are the same in form. We drop
the layer index in this section, unless otherwise specified. The
wave function should be labeled by four indices, i.e., principal
quantum number n, angular momentum j, valley τ , and spin
s. For simplicity, the wave function spinor, without the four
indices, can be written as

ψ (r, θ ) =
(

ei( j− τ
2 )θχ1(r)

iei( j+ τ
2 )θχ2(r)

)
, (4)

where the total angular momentum quantum number j =
m + τ

2 with orbital angular momentum quantum number
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m = 0,±1,±2, . . . , while χ1(r) and χ2(r) are the radial wave
functions that are the envelope functions containing the princi-
pal quantum number n. The eigenstate problem can be written
as two coupled differential equations for the two spinor com-
ponents,

at

(
τ∇r + j + τ

2

r

)
χ2(r) =

(
−�

2
+ Ej

)
χ1(r), (5)

at

(
τ∇r − j − τ

2

r

)
χ1(r) =

(
λτ s − �

2
− Ej

)
χ2(r), (6)

where Ej is the eigenenergy with total angular momentum
quantum number j. Following a series of mathematical steps
(see Appendix B for detailed derivations), we obtain the
single-particle wave function,

ψ = N

(
ei( j− τ

2 )θ 2at
2Ej−�

√
κ j�J( j− τ

2 )(
√

κ j r)

iei( j+ τ
2 )θ�J( j+ τ

2 )(
√

κ j r)

)
, (7)

where N is the normalization coefficient, J is a Bessel function
of the first kind, and we define κ j = (2Ej − �)(2Ej + � −
2τ sλ)/4a2t2. Here, � assumes distinct values corresponding
to the various angular momentum quantum states. The infinite
mass boundary condition implies that the eigenvalue equa-
tions satisfy

χ2(R) = iτχ1(R) (8)

at the border of the QD [55–59]. Through numerical solutions
of the boundary condition in Eq. (8), one can determine a
series of energies at the angular momentum j marked as
En, j labeled by quantum number n. Consequently, the energy
spectrum of the QD is obtained at zero magnetic field.

B. Wave functions in the presence of a magnetic field

We now proceed to solve the wave functions in a ho-
mogeneous perpendicular magnetic field B. In this case, the
Hamiltonian also takes the form of Eq. (2). We derive a pair
of coupled differential equations for a two-component spinor
in the presence of a magnetic field,(

τ∇ρ + j + τ
2

ρ
+ βρ

)
χ2(ρ) =

(
ε − 1

2
δ

)
χ1(ρ) (9a)

(
τ∇ρ − j − τ

2

ρ
− βρ

)
χ1(ρ) =

(
�τ s − 1

2
δ − ε

)
χ2(ρ),

(9b)

where we define a series of dimensionless parameters,
ρ = r

a , β = eB
2h̄ a2, ε = E

t , δ = �
t , and � = λ

t . Using the
same steps as mentioned in the last section, we substi-
tute Eq. (9b) into Eq. (9a), and make an ansatz χ1(ρ) =
ρ| j− τ

2 | exp(− βρ2

2 )χ0(ρ). Then a confluent hypergeometric
equation is obtained,

x∇2
x χ0(x) + (b − x)∇xχ0(x) − αχ0(x) = 0, (10)

where we define x = βρ2, b = | j − τ
2 | + 1, and

α = 1

2

(
j + τ

2
+ b

)
−

(
ε + 1

2δ − �τ s
)(

ε − 1
2δ

)
4β

. (11)

After some algebraic operations, we obtain the single-
particle eigenstate in the presence of an external magnetic

field,

ψ = N

⎛
⎝ei( j− τ

2 )θρ| j− τ
2 | exp

(− βρ2

2

)
1F1(α, b, βρ2)

iei( j+ τ
2 )θρ| j− τ

2 |−1 exp
(− βρ2

2

)
γ�(ρ)

⎞
⎠, (12)

where N is the normalization constant and 1F1(α, b, r)
is the confluent hypergeometric function. Here, we de-
fine �(ρ) = ξ1F1(α, b, βρ2) + τ 2α

b βρ2
1 F1(α + 1, b + 1, βρ2)

with ξ = τ | j − τ
2 | − j + τ

2 − (τ + 1)βρ2 and γ = −(ε +
1
2δ − �τ s)−1. Again, using the infinite mass boundary con-
dition in Eq. (8), we can numerically determine the energy
spectrum [32,55–59].

C. Many-body Hamiltonian

Once the single-particle wave functions are obtained,
we can construct the generic many-body basis as |i〉 ≡
|ie1 , . . . ieNe

; ih1 , . . . , ihNh
〉, which contains Ne electrons and Nh

holes. Each iek and ihk is a collective index containing the
indices nek , jek , sek for the electron and the indices nhk , jhk

for the hole, respectively. For simplicity, in this work, we
constrain ourselves to the case of one electron and one hole
(one exciton), and the case of two electrons and two holes (two
excitons). Without loss of generality, the electrons and holes
locate in the upper and lower layers, respectively. Considering
that the two conduction bands with different spins are close,
here the electron state is associated with the spin index. In the
second quantization, the many-body Hamiltonian is given by

H =
∑
s,n, j

Ee
j,n,sc

†
j,n,sc j,n,s +

∑
n, j

Eh
j,nd†

j,nd j,n

+ Hee + Hhh + Heh, (13)

Hee = 1

2

∑
s,s′

∑
n1,...,n4

∑
j1,..., j4

V (ee)n1,n2,n3,n4
j1, j2, j3, j4

× c†
j1,n1,s

c†
j2,n2,s′c j3,n3,s′c j4,n4,s, (14)

Hhh = 1

2

∑
n1,...,n4

∑
j1,..., j4

V (hh)n1,n2,n3,n4
j1, j2, j3, j4

× d†
j1,n1

d†
j2,n2

d j3,n3 d j4,n4 , (15)

Heh = −
∑

s

∑
n1,...,n4

∑
j1,..., j4

V (eh)n1,n2,n3,n4
j1, j2, j3, j4

× c†
j1,n1,s

d†
j2,n2

d j3,n3 c j4,n4,s, (16)

where c j,n,s and c†
j,n,s are the annihilation and creation opera-

tors for an electron with spin s, principal quantum number n,
and angular momentum j, Ee

j,n,s is the noninteracting energy

of the electron state, dj,n and d†
j,n are the operators for the hole,

and Eh
j,n is the energy of a hole state. Hee, Hhh, and Heh are

the electron-electron, hole-hole, and electron-hole Coulomb
interaction, respectively, where the Coulomb interaction ma-
trix elements V (ee)n1,n2,n3,n4

j1, j2, j3, j4
,V (hh)n1,n2,n3,n4

j1, j2, j3, j4
, and V (eh)n1,n2,n3,n4

j1, j2, j3, j4
are given in Appendix C in detail.

If there is only one electron and one hole in the system,
then the Hamiltonian in Eq. (13) should exclude Hee and
Hhh. In our numerical calculation, we adopt the ED scheme
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TABLE I. The parameters of two materials MoS2 and WS2,
including lattice constants a, effective hopping integrals t , band gaps
�, and SOC constant λ, are typically obtained through fitting first-
principles band structure calculations. Note that here the conduction
band of WS2 is not relevant. The units are nm for length and eV for
energy.

Material a � te th λ

MoS2 0.3193 1.66 1.1 1.1 0.075
WS2 0.3197 1.79 1.37 0.23

mentioned above to solve the many-body Hamiltonian in
Eq. (13). Then the energy spectra, electron-hole separation,
pseudospin textures, and light absorption of the excitons can
be studied. Considering the numerical complexity, we set an
energy truncation of 50 meV for electron or hole states in QDs
with radii 20 and 30 nm, when constructing the Hilbert space
of the many-body states. For the radius of the QD being 10 nm
(in the two-exciton case, we consider smaller QDs for saving
computations), the truncation is increased to 100 meV.

III. RESULTS ON A SINGLE EXCITON

We conducted numerical studies on TMD van der Waals
(vdW) heterostructures. Although there are numerous in-
teresting 2D TMD materials [60,61], such as MoTe2, with
electronic and structural phase transitions, and bulk ReS2,
behaving as decoupled monolayers [62,63], here we specif-
ically examine the exemplary MoS2/MoS2 double QDs and
MoS2/WS2 double QDs. This choice is based on the suit-
ability of the model, as well as the consideration of the
layer-specific effective masses. Specifically, in a MoS2/MoS2

double-layer system, both the electron and hole are con-
fined within the MoS2 layer, characterized by conduction and
valence band effective masses of approximately 0.7m0. In
contrast, for a MoS2/WS2 double-layer system, the electron
resides in the MoS2 layer, while the hole locates in the WS2

layer, with the ratio of effective mass of an electron in MoS2

to that of a hole in WS2 estimated at about 0.7/0.5 [7,64].
The TMDs family is vast and many members can be described
using similar Hamiltonians.

Other systems could be analyzed in the same method,
potentially yielding similar results. The parameters for MoS2

and WS2 used in numerical calculations are listed in
Table I [6]. For simplicity, we consistently consider the elec-
tron and hole within a single valley throughout our analysis,
which is deemed justifiable as the intervalley interaction is
negligible due to the large kinetic difference between the two
valleys. Additionally, achieving valley polarization through
optical techniques is feasible in practice [48,49]. We further
restrict the hole states with spin up and consider the electron
states of spin up and spin down separately in the conduction
band. It is motivated by the observation of a large splitting at
the valence band edge due to sublattice pseudo-SOC.

A. Single-particle energy spectra in TMD QDs

The low-lying energy levels of single-particle states in
TMD QDs with the magnetic field dependence are shown in

Fig. 1. The energies with and without a magnetic field are
calculated separately by using different formulas in Secs. II A
and II B, respectively. One can see that the energy transition
is smooth at the zero magnetic field limit, indicating that our
analytical solutions for the eigenvalues with and without mag-
netic field match. These energy spectra are discrete, which is
a direct consequence of finite-size confinement, compared to
the bulk energy bands. Unlike a conventional semiconductor
QD [29,65], the ground state of the conduction band is not
degenerate at zero magnetic field; two spin states have a gap
of ∼0.1 meV due to the spin-sublattice coupling. As the mag-
netic field increases, the two spins states are further separated;
the gap is about 0.6 meV up to 30 T. Similar phenomena have
also been observed in earlier studies [65]. Eventually, Landau
levels form with escalating magnetic field intensities. Notably,
the spin splitting for hole states is much more significant,
i.e., about 75 meV for MoS2 and 215 meV for WS2. This
motivated our decision to use electronic states with two spins
and spin-up hole states as the basis for constructing the Hilbert
space in ED.

B. Interlayer exciton energy spectra

After characterizing the single-particle states in TMD QDs,
we proceed to extend our investigation to two-particle sys-
tems, namely, electron-hole pairs within double-layer QDs.
For accurate numerical calculations of quantum systems
affected by Coulomb interactions, it is crucial to choose an ap-
propriate set of eigenstates as the basis. The radii of the QDs in
the electron and hole layers are the same, Re = Rh = 20 nm.
The radius is selected to manage the computational complex-
ity. In Figs. 2 and 3, we illustrate the dependency of interlayer
exciton energy on the magnetic field with varying interlayer
distances. In Fig. 2, we can clearly observe that Coulomb
interactions reduce the energy of excitons, and this reduction
diminishes with the increase in interlayer separation since the
Coulomb interaction is softened by the interlayer distance.
Moreover, with the increase of the magnetic field, the single
exciton still illustrates the Landau-type levels. It implies that
quantum Hall effects may occur in these bosonic systems. In
fact, the related phenomenon has been observed experimen-
tally in a bilayer TMD system [66]. The Landau-level gaps
in large magnetic fields are suppressed by the electron-hole
Coulomb interaction, but will be recovered to the values of
the noninteracting case when the separation of the two layers
approaches infinity. Notably, the Landau-level gaps seem not
to be increased monotonically with the increase of the distance
d between the two layers. As shown in Fig. 1, the first Landau-
level gap with d = 5 nm is obviously larger than that with
d = 10 nm. However, when d increases to 15 nm, this gap
increases and is more like the noninteracting case.

In Fig. 3, we extend our analysis to a MoS2/WS2 het-
erostructure, following the same context as depicted in Fig. 2.
These results collectively illustrate the dependency of inter-
layer exciton energy on the magnetic field across distinct
material systems. We observe that the energy of the low-lying
excitonic states formed in the MoS2/WS2 heterostructure is
lower than that in the MoS2/MoS2 heterostructure. This is
attributed to the band mismatch between the conduction and
valence bands while different materials are stacked. It leads to
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FIG. 1. The low-lying energy spectra of a single electron and a single hole in TMD QDs with radius R = 20 nm vary with perpendicular
magnetic fields. For simplicity, only the first five levels of a principal quantum number are displayed. The energy spectra are provided for
different TMDs with different spins: (a) MoS2, conduction band with spin s = 1; (b) MoS2, conduction band with s = −1; (c) WS2, conduction
band with s = 1; (d) WS2, conduction band with s = −1; (e) MoS2, valence band with s = 1; (f) MoS2, valence band with s = −1 which is
much farther away from the Fermi surface; (g) WS2, valence band with s = 1; and (h) WS2, valence band with s = −1. The electron and hole
states are, respectively, indicated in blue and red.

the formation of a type-II band alignment [9] where the hole
is confined in a WS2 QD with lower single-particle energy.
The Landau-type levels behavior of excitons in a magnetic
field exhibits characteristics similar to that in the MoS2/WS2

double-layer QDs.

FIG. 2. The dependence of low-lying energy spectra of interlayer
excitons on the magnetic field, where the electron and hole are con-
fined within MoS2/MoS2 double-layer QDs with a radius of 20 nm.
The left panels represent the excitons containing a spin-up electron,
while the right panels are for spin down, indicating distinct spin
arrangements. (a), (b) The interlayer exciton energy spectra with a
5 nm interlayer distance. (c), (d) The exciton spectra at a 10 nm
interlayer distance. (e), (f) The exciton spectra at a 15 nm distance.

The ground-state energy of the interlayer exciton as a func-
tion of distance is shown in Fig. 4 for a MoS2/MoS2 and
MoS2/WS2 double-layer QD. As shown in Figs. 4(a) and 4(b),
it is apparent that the excitonic energy profile contains an
initial augmentation followed by a slowly varied function

FIG. 3. Similar to Fig. 2, the dependence of low-lying energy
spectra of interlayer excitons on the magnetic field, where the elec-
tron and hole are confined within MoS2/WS2 double-layer QDs with
radius of 20 nm, respectively. The left and right panels represent the
excitons containing electrons with spin up and spin down, respec-
tively. (a), (b) The interlayer exciton energy spectra with a 5 nm
interlayer distance. (c), (d) A 10 nm interlayer distance. (e), (f) A
15 nm distance.
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Re = Rh 20 nm e↑h↑

Re = Rh 20 nm e↓h↑

Re = 30 nm, Rh = 20 nm e↑h↑

Re = 30 nm, Rh = 20 nm e↓h↑

FIG. 4. The ground-state and binding energies of the interlayer
excitons vary with the interlayer distance in the absence of a
magnetic field: (a) Ground-state energy of MoS2/MoS2 double-
layer QDs; (b) ground-state energy of MoS2/WS2 double-layer
QDs, (c) binding energy of MoS2/MoS2 double-layer QDs, and
(d) binding energy of MoS2/WS2 double-layer QDs. The solid line
represents the energy for an exciton with an upward-spin electron,
while the dashed line corresponds to a downward-spin electron. Both
equal and unequal radius configurations are illustrated. The inset
panels provide a detailed zoom-in of the energies.

of the interlayer separation. Consequently, from Figs. 4(c)
and 4(d), there is a stronger bound energy at smaller interlayer
distances. Nevertheless, the long-range nature of Coulomb
forces [20] remains influential at a larger distance. In com-
parison, we also show the results where the radii of the double
QDs differ, with the electron located in a 30-nm-radius dot
and the hole in a 20-nm-radius dot. Both the exciton ground-
state energy and binding energy slightly decrease compared to
QDs with uniform radii. This reduction occurs because of the
electron confined in larger QDs.

More results are presented in Fig. 5, showing the exciton
binding energy as a function of the magnetic field. The bind-
ing energies all increase with the magnetic fields, which is
attributed to the increase of the cyclotron motion, and decrease
as the interlayer distance grows. Another notable feature is
that excitons with spin-up electrons have lower binding en-
ergies than those with spin-down electrons. It is attributed to
the different wave functions for different spins induced by the
spin-valley coupling.

We also investigate a double-layer QD stacked with dif-
ferent radii, the upper QD providing an electron with radius
30 nm and the lower QD containing a hole with radius 20 nm.
In this case, as shown in Fig. 5, the binding energies in weak
magnetic fields are much lower than those in the double-layer
QDs with identical radius of 20 nm. The single-particle den-
sity of states in larger QDs is higher and the noninteracting
energy decreases more significantly than the Coulomb inter-
action, although the Coulomb interaction is also decreased

(a) (b)

(c) (d)

(e) (f)

d = 5 nm d = 5 nm

d = 10 nm

d = 15 nm

d = 10 nm

d = 15 nm

Re = Rh = 20 nm e↑h↑
Re = Rh = 20 nm e↓h↑

Re = 30 nm, Rh = 20 nm e↑h↑
Re = 30 nm, Rh = 20 nm e↓h↑

FIG. 5. Magnetic field dependence of binding energy of inter-
layer exciton ground state. The left panels are for MoS2/MoS2

double-layer QDs, while the right panels show results for MoS2/WS2

double-layer QDs. The interlayer distances are (a), (b) d = 5 nm,
(c), (d) d = 10 nm, and (e), (f) d = 15 nm. Different electron spin
configurations in the excitons are indicated by distinct colors, where
blue and red denote the exciton with electron spin up and spin
down, respectively. Circle symbol represents that two QDs have the
same radius Re = Rh = 20 nm, while the square symbol indicates
Re = 30, Rh = 20 nm.

by involving more single-particle states. When the magnetic
field is strong, the single-particle states approach degeneracy
in Landau levels, causing the binding energies for QDs of
different sizes to converge.

C. Electron-hole separation

The Coulomb interaction spatially constrains the electrons
and holes, differing from intralayer excitons. In the xOy plane,
the electron-hole separation is expressed as

〈re−rh〉 =
∑
i,k

C∗
i Ck〈ie; ih|re−rh|ke; kh〉. (17)

Here, Ci and Ck represent the expansion coefficients of the
ground state of the exciton obtained by diagonalizing the
Hamiltonian, |GS〉 = ∑

i Ci|ie; ih〉. This measure provides in-
sight into the spatial distribution and binding nature of the
exciton.

In Fig. 6, we show the electron-hole separation as a func-
tion of magnetic fields in the MoS2/WS2 double-layer QDs
only. For the MoS2/MoS2 heterostructure case, the electron
is generally located exactly upon the hole, and the separa-
tion 〈re−rh〉 approaches zero (up to ∼0.06 nm). Comparing
Fig. 6(a) with 6(b), and Fig. 6(c) with 6(d), the separation of
excitons with different spin electrons is minimal. Figures 6(a)
and 6(b) show results with identical radius 20 nm of the
electron and hole layers, indicating that the separation mag-
nitude is much smaller than the system’s size. In contrast, as
shown in Figs. 6(c) and 6(d), the separation of the system with
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(a) (b)

(c) (d)

FIG. 6. Evolution of the ground-state electron-hole separa-
tion 〈re−rh〉 with magnetic fields in different distances for the
MoS2/WS2 heterostructure. The top panels show separations in QDs
with identical 20 nm radius, while the bottom panels show separa-
tions in QDs with Re = 30 nm in the electron layer and Rh = 20
nm in the hole layer. The interlayer exciton separation for different
electron spin: (a), (c) electron spin up; (b), (d) electron spin down.

Re = 30 nm and Rh = 20 nm varies significantly with mag-
netic field. In weak magnetic field, the separation is one
magnitude larger than the case of identical radius since the or-
bit of a low-energy single-particle wave function is different.
In large magnetic field, due to the Landau quantization, the
difference of separation between the two cases is not obvious.

Notably, unlike the energy of the ground state, the absolute
value of separation |〈re−rh〉| does not vary monotonously
with either the magnetic field or the distance between the
two layers. With increase of distance, the separation starts to
increase and then decreases, in the case of identical radius
of two QDs. However, the situation is reversed in the case
of different radii of two QDs. As the magnetic field varies,
the change of the |〈re−rh〉| becomes even more complicated.
Comparing to the excitons in conventional semiconductor
QDs, the anomalous change of electron-hole separation as
well as the density shape of the exciton here is attributed to
the complex orbit of the wave function induced by SOC in
the system, which may be observed by detecting the wave
function’s orbitals [67].

D. Pseudospin textures of interlayer excitons

Topological textures of spin fields in QDs are induced by
SOC, which also plays an important role in TMDs. Studying
topological features in QDs boosts spintronics by refining
spin control and enhances quantum information processing
by improving qubit storage and manipulation [68]. Similar
to spin, the two sublattices of TMDs can be represented by
pseudospin. In the Hamiltonian of TMD QDs, the pseudo-
spin-orbit coupling, similar to Rashba and Dresselhaus SOC,
also results in a nontrivial pseudospin texture. The pseudospin
fields for electron and hole in an exciton can be defined as

–1 0 1 –1 0 1

–1

–1

0

1

0

1

x/R

y/
R (a)

(c)

(b)

(d)

×10-3n

0.5

1

1.5

2

2.5

3

3.5

FIG. 7. Ground-state pseudospin fields (σα
x , σ α

y ) of interlayer ex-
citons with electron and hole spin-up at magnetic field B = 1 T.
(a) and (c) The pseudospin textures of the electron and the hole
in interlayer exciton in MoS2/MoS2 double-layer QDs with radii
Re = Rh = 20nm, respectively. The distance between the two layers
is 5 nm. (b) and (d) The pseudospin textures of the electron and
the hole in interlayer exciton in MoS2/WS2 double-layer QDs with
Rh = 20nm and Re = 30nm. The distance between the two layers is
10 nm.

follows:

σα
x,y(r) =

∑
i,k

C∗
i Ckδiᾱ ,kᾱ

(
χα∗

2i χα
1k ± χα∗

1i χα
2k

)
× exp

[
iθ

( ± τ + jkα
− jiα

)]
, (18)

and the density is given by

nα (r) =
∑
i,k

C∗
i Ckδiᾱ ,kᾱ

(
χα∗

1i χα
1k + χα∗

2i χα
2k

)
× exp

[
i
(

jkα
− jiα

)
θ
]
, (19)

where α denotes the electron or hole, ᾱ denotes the hole or
electron, respectively, and χα correspond to two components
in the spinor wave function of a state. The in-plane pseudospin
field is represented by φα (rα ) = (σα

x , σ α
y ). A winding number

Q describes the topological property of the textures of the in-
plane (pseudo)spin fields in real space and is defined as [68]

Q = 1

2π

∮
dφ = 1

2π

∮
σx(r)dσy(r) − σy(r)dσx(r)

σx(r)2 + σy(r)2
.

In Fig. 7, two examples of the pseudospin fields of the
ground states are displayed. The pseudospins of the elec-
tron and hole are textured with nontrivial topological charge
Q = 1 [69]. The topological spin fields in QDs induced by
Rashba or Dresselhaus SOC usually have zero vorticity, while
both topological charge and vorticity are nonzero here since
the exciton is in the K valley with τ = 1. We note that in
the K ′ valley, the pseudospin textures are more like those
with Dresselhaus SOC given that τ = −1. The pseudospin
textures of the first excited state of the exciton are shown in
Fig. 8. Similar to the QD with Rashba or Dresselhaus SOC,
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FIG. 8. The same as Fig. 7, but depicting the pseudospin texture
for the first excited state under a magnetic field of B = 5 T.

the topological charge of the pseudospin remains unchanged,
but its vorticity is inverse.

E. Light absorption

Far-infrared (FIR) magneto-optical absorption spec-
troscopy is a technique used to study and utilize the optical
properties of materials. In QDs, the optical selection rules
are primarily governed by spatial confinement and the sys-
tem’s geometric characteristics. The confinement of the QD
converts the energy bands into discrete energy levels akin to
atomic systems, i.e., making QDs the artificial atoms [70].
This pronounced confinement effect, raising angular momenta
of Jtot , governs their optical properties with unique light-
matter interaction behaviors [45,46,48,49]. The radius of the
QD discussed here is typically only tens of nanometers, i.e.,
significantly smaller than the wavelength of far-infrared light
corresponding to the energy gaps of the system, if only the
transitions between the exciton levels are considered. There-
fore, we can compute the exciton light absorption using the
dipole approximation [71–73]. The incident light is supposed
to be perpendicular to the plane of TMDs. The dipole tran-
sition matrix element from state |k〉 to state |i〉 is denoted as
Dik = 〈i|ε · r|k〉, where ε represents the polarization vector ly-
ing in the xOy plane. The dipole transition matrix element de-
pends on the polarization of the incident light. Generally, we
consider the incident light to be unpolarized. For a single par-
ticle in QDs, the dipole transition matrix element is given by

Dik = π (�x + i�y)
∫

r2dr(χ∗
1iχ1k + χ∗

2iχ2i ), (20)

where �x,y = δmk+1,mi ± δmk−1,mi , m is the orbital angular
momentum quantum number, and χ12 is spinor corresponds
to two sublattices.

According to the transition selection rule, only transi-
tions with �m = mi − mk = ±1 are allowed between the
initial state |i〉 and final state |k〉. Note that this selection
rule is only valid for the intra-exciton transitions between
the exciton states. The transition between an exciton state
and the vacuum, as the exciton recombination discussed
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FIG. 9. Dipole-allowed optical absorption spectra of MoS2/

MoS2 double-layer QDs for various interlayer distances. The left
panels show the results with electron spin up, while the right panels
illustrate for spin down. (a), (b) Results with interlayer distance of
d = 5 nm, (c), (d) for an interlayer distance of d = 10 nm, and (e),
(f) for d = 15 nm. The radii of the QDs in both layers are 20 nm.
The size of the points is proportional to the intensity of the light
absorption.

in Ref. [74], is not considered here. We calculate the am-
plitude of the dipole transition matrix element as Ak→i =∑

i,k C∗
i Ck〈ie, ih|rh − re|ke, kh〉. The intensity of absorption is

proportional to |Ak→i|2. We consider only the transition from
ground state to excited state.

Figure 9 illustrates the dipole-allowed light absorption of
interlayer excitons across different interlayer distances under
varying magnetic fields. Without interactions, some transition
modes are allowed by the selection rules, but Coulomb inter-
actions make them forbidden. Comparing cases with different
interlayer distances, we notice that dipole-allowed transitions
in systems with smaller interlayer distances favor modes with
higher energy. The intensity of the transition modes increases
with larger interlayer distances. Moreover, Fig. 10 shows
dipole-allowed optical absorption spectra of a MoS2/MoS2

heterostructure for QDs with radii Re = 30 nm and Rh =
20 nm. We find that light absorption varies with interlayer
distance similarly to Fig. 9, but more transition modes are
available.

IV. RESULTS ON BIEXCITON

We have discussed the physical quantities of a single in-
terlayer exciton in the previous section. It is worthwhile to
explore the case of interacting interlayer excitons, which is
described by the full many-body Hamiltonian in Eq. (13).
For simplicity, here we consider a biexciton system con-
taining two electrons and two holes. The electrons and
holes still locate in the upper and lower layers, respectively.
The Hamiltonian contains intralayer electron-electron and
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FIG. 10. The same dipole-allowed optical absorption spectra as
Fig. 9, but the radii of the electron and hole layer are Re = 30 nm and
Rh = 20 nm, respectively.

hole-hole interactions compared to that of a single exciton
system. We discuss two scenarios, where electrons either have
identical or opposite spins, and the spin of the holes is fixed.
The biexciton system exhibits more complex interactions than
the single exciton system, resulting in different features.

Again, by employing the ED, the energy spectra are shown
in Fig. 11, indicating rich energy-level structures due to many-
body correlations. As the interlayer distance increases, the

FIG. 11. The dependence of low-lying energy spectra of biex-
citons on the magnetic field, where the electrons and holes are
confined within MoS2/MoS2 double-layer QDs with the same radius
of 10 nm. (a)–(c) The system containing two electrons with the same
spin; (d)–(f) two electrons with different spins. (a)–(c) The energy
spectra with interlayer distances 5, 10, and 15 nm, respectively.
(d)–(f) The same distance as (a)–(c), respectively.

FIG. 12. Magnetic field dependence of the binding energy of a
biexciton ground state and the first excited state. (a)–(f) correspond
to the cases in Figs. 11(a)–11(f), respectively. (a)–(c) The biexciton
containing two electrons with spin up; (d)–(f) two electrons with
different spins.

ground state and low-lying excited states exhibit higher en-
ergy. Remarkably, the four low-lying states are well gapped
from higher states with sufficiently large interlayer distance
when the two electrons have the same spin, as shown in
Figs. 11(b) and 11(c). By comparing the energy spectra in
Figs. 11(a)–11(c) and Figs. 11(d)–11(f), when the electrons
have different spins, we find that some levels emerge. Par-
ticularly, the new ground state with twofold degeneracy at
zero magnetic field due to the Kramers pair appears, and its
energy is significantly suppressed by the exchange interac-
tion between two different spins. Moreover, the gap between
low-lying levels and higher levels becomes not obvious; it
only exists in weak magnetic fields, as shown in Figs. 11(e)
and 11(f). For more information, the binding energies of the
ground state and the first excited state are displayed in Fig. 12.
The mutations in binding energies arises from the transition of
the ground state with an increase of the magnetic field.

The dipole-allowed light absorptions of biexciton systems
across different interlayer distances under varying magnetic
fields are shown in Fig. 13. Compared to the case of a single
interlayer exciton, more absorption modes are visible. The

0
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FIG. 13. Dipole-allowed optical absorption spectra of a biexciton
for various interlayer distances. (a)–(c) The biexciton containing two
electrons with spin up; (d)–(f) two electrons with different spin. (a),
(d) Results with interlayer distance of d = 5 nm; (b), (e) interlayer
distance of d = 10 nm; and (c), (f) d = 15 nm. The radii of the QDs
in both layers are 10 nm.
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exciton biexciton

FIG. 14. The schematic double-layer system and band structure of TMDs near the Fermi surface. (a) An electron confined in a TMD layer
and a hole in the other TMD layer. (b) The lower bands in the valence band are neglected since they are far away from the Fermi surface. Only
one valley, say, valley K , is considered. The right panel indicates the bands (dashed lines) shift by Zeeman coupling in a magnetic field [43].
Electrons and holes are marked in different bands, as well as in different layers.

mutation of the absorption intensity is attributed to the tran-
sition of the ground state when the two electrons have the
same spin. For the case that two electrons have different spins,
no transition occurs in the ground state. The level crossing in
higher levels does not significantly influence the absorption.
Consequently, by measuring the light absorption spectra, one
can distinguish the electron spins in the biexciton systems.

It is noted that only biexcitons in MoS2/MoS2 double-layer
QDs are studied here. The energy spectra and light absorp-
tions should remain qualitatively unchanged in MoS2/WS2

double-layer QDs, as the physical properties of a single ex-
citon (with the exception of the electron-hole separation) are
not significantly altered by the transition from MoS2/MoS2

double-layer QDs to MoS2/WS2 double-layer QDs.

V. SUMMARY

We constructed a double-layer TMD QDs model with
adjustable interlayer distance based on analyzing a single
particle in a hard-wall potential TMD QD subjected to an
external magnetic field. Impurities and edge deformations
may affect the transport properties [72,75], but their impact
is expected to be minimal if the quantum dots studied in this
work are well constructed. If the edge of the QD is only
slightly deformed, our results remain unchanged qualitatively.
This nanostructure enables the formation of interlayer exci-
tons, which can be achieved through the modulation of band
energies via external voltage or by leveraging the intrinsic
properties of TMDs, and represent one or more interlayer
excitons with electron-electron, hole-hole, and electron-hole
correlations. By employing ED, we numerically explore this
interlayer system with Coulomb interaction. We report on
several characteristics of an interlayer exciton, including
energy spectrum, binding energy, spatial distribution of elec-
tron and hole topological pseudospin textures, and optical
absorption spectrum with external magnetic fields in ad-
justable interlayer distances. Remarkably, the Landau-level
gap, i.e., the electron-hole separation in an exciton, varies
nonmonotonously with the increase of the interlayer dis-
tance due to the sublattice pseudo-spin-orbit coupling in
TMDs. Moreover, the ground state and excitation states of the

interlayer exciton are all pseudospin textured topologically by
this pseudo-spin-orbit coupling.

Furthermore, we studied many-body systems with two
interacting interlayer excitons which contain two electrons
and two holes. The energy spectra and light absorptions
are also numerically calculated. Our numerical calculations
show energy spectra with interaction-driven spectral splitting
and enhanced binding energies. The optical absorption shifts
under magnetic fields emerge, which are not observed in
simpler systems. These findings highlight the tunable poten-
tial of TMD QDs for advanced quantum and optoelectronic
technologies, allowing precise control of excitonic properties
through external fields and structural tuning. Our detailed
analysis of their response to magnetic fields and interlayer
distance fills in gaps in knowledge about the mechanism of
formation and possible consequences within the nanoelectron-
ics and quantum computing research domains.
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APPENDIX A: TMD DOUBLE LAYERS
AND BAND STRUCTURE

The double-layer structure and band selection scenario is
schematically illustrated in Fig. 14. The valley is supposed to
be polarized. Electrons and holes are from different layers.
Building on this framework, double TMD QDs can be engi-
neered using gate control or nanoflakes.

APPENDIX B: DERIVATION OF BASIS

In this Appendix, we derive the eigenstates of the TMD
QD, which are utilized as the basis for deriving the matrix
elements in our numerical calculations. The derivation be-
gins with the general form of the TMD QD Hamiltonian, as
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detailed in Eq. (2),

H =
(

�
2

at
h̄ [τ (px + eAx ) − i(py + eAy)]

at
h̄ [τ (px + eAx ) + i(py + eAy)] −�

2 + λτ s

)
+ V (r)

(
1 0
0 −1

)
. (B1)

By using the symmetric gauge A = B
2 (−y, x, 0), we can get

at

h̄
[τ (px + eAx ) − i(py + eAy)] = −iat exp (−iτθ )

(
τ

∂

∂r
− i

1

r

∂

∂θ
+ e

B

2h̄
r

)
, (B2a)

at

h̄
[τ (px + eAx ) + i(py + eAy)] = −iat exp (iτθ )

(
τ

∂

∂r
+ i

1

r

∂

∂θ
− e

B

2h̄
r

)
. (B2b)

Then the Hamiltonian of the TMD QD in the polar coordinates becomes

H =
(

�
2 −iat exp (−iτθ )

(
τ ∂

∂r − i 1
r

∂
∂θ

+ e B
2h̄ r

)
−iat exp (iτθ )

(
τ ∂

∂r + i 1
r

∂
∂θ

− e B
2h̄ r

) −�
2 + λτ s

)
+ V (r)σz. (B3)

1. Zero magnetic field

In the absence of a magnetic field, the Dirac equation can
be reformulated into two coupled differential equations using
the eigenstates defined in Eq. (4) and expressed in dimension-
less units,

at

[
τ

∂

∂r
+ 1

r

(
j + τ

2

)]
χ2(r) =

(
E − �

2

)
χ1(r), (B4a)

at

[
τ

∂

∂r
− 1

r

(
j − τ

2

)]
χ1(r) = −

(
E + �

2
− λτ s

)
χ2(r).

(B4b)

We can deduce that
[τ ∂

∂ρ
+ 1

ρ
( j+ τ

2 )]χ2(r)

(ε− 1
2 δ)

= χ1(r) and subse-

quently apply it to Eq. (B4a), and χ2(ρ) yields the following
differential equation:

ρ2 ∂

∂ρ2
χ2(ρ) + ρ

∂

∂ρ
χ2(ρ)

−
(

j + τ

2

)2

χ2(ρ) + κ2ρ2χ2(ρ) = 0. (B5)

Equation (B5) is a Bessel differential equation, for which a
specific solution is obtained. Following this, the solution is
incorporated into Eq. (B4a) and, with the subsequent applica-
tion of the Bessel function relations,

d

dx
[xvJv (x)] = xvJv−1(x), (B6a)

d

dx
[x−vJv (x)] = −x−vJv+1(x). (B6b)

The wave function is successfully derived,

ψ = N

(
ei( j− τ

2 )θ 2at
2E−�

√
κ�J( j− τ

2 )(
√

κr)

iei( j+ τ
2 )θ�J( j+ τ

2 )(
√

κr)

)
, (B7)

where

� =
{

1, j + τ
2 � 0

(−1) j+ τ
2 , j + τ

2 < 0.
(B8)

2. Nonzero magnetic field

Continuing with the analysis of magnetic field flux within
the QDs, we arrive at the following expressions:

at

[
τ

∂

∂r
+ 1

r

(
j + τ

2

)
+ e

B

2h̄
r

]
χ2(r) =

(
E − �

2

)
χ1(r),

(B9a)

−at

[
τ

∂

∂r
− 1

r

(
j − τ

2

)
− e

B

2h̄
r

]
χ1(r)

=
[

E −
(

−�

2
+ λτ s

)]
χ2(r). (B9b)

Adopting dimensionless units, we obtain[
τ

∂

∂ρ
+ 1

ρ

(
j + τ

2

)
+ βρ

]
χ2(ρ) =

(
ε − 1

2
δ

)
χ1(ρ),

(B10a)[
τ

∂

∂ρ
− 1

ρ

(
j − τ

2

)
− βρ

]
χ1(ρ)

= −
(

ε + 1

2
δ − �τ s

)
χ2(ρ), (B10b)

and we get − [τ ∂
∂ρ

− 1
ρ

( j− τ
2 )−βρ]χ1(ρ)

ε+ 1
2 δ−�τ s

= χ2(ρ) from Eq. (B10b);

subsequently, that is substituted into Eq. (B10a), yielding

∂

∂ρ2
χ1(ρ) −

(
j − τ

2

)2 1

ρ2
χ1(ρ) + 1

ρ

∂

∂ρ
χ1(ρ)

− 2

(
j + τ

2

)
βχ1(ρ) − β2ρ2χ1(ρ) +

(
ε + 1

2
δ − �τ s

)

×
(

ε − 1

2
δ

)
χ1(ρ) = 0. (B11)
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FIG. 15. This figure provides a zoomed-in view of the electron
states from Fig. 1, illustrating the low-lying energy spectra of a single
electron in TMD QDs with R = 20 nm. (a) MoS2 QD; (b) WS2 QD.
Blue and red lines represent spin-up and spin-down states, respec-
tively, plotted together for comparison.

We make the ansatz χ1(ρ) = ρ| j− τ
2 | exp

( − βρ2

2

)
χ0(ρ2) and

define x = βρ2, which enables us to derive

x
∂2

∂x2
χ0(x) +

(∣∣∣ j − τ

2

∣∣∣ + 1 − x

)
∂

∂x
χ0(x)

−
[

1

2

(
j + τ

2
+

∣∣∣ j − τ

2

∣∣∣ + 1

)

−
(
ε + 1

2δ − �τ s
)(

ε − 1
2δ

)
4β

]
χ0(x) = 0, (B12)

where we introduce the definitions b = | j − τ
2 | + 1 and

α = 1
2 ( j + τ

2 + | j − τ
2 | + 1) − (ε+ 1

2 δ−�τ s)(ε− 1
2 δ)

4β
. The result-

ing equation is identified as a confluent hypergeometric
equation, from which the solution is deduced, χ1(ρ) =
Cρ| j− τ

2 | exp(− βρ2

2 )1F1(α, b, βρ2). By incorporating another
component into Eq. (B10b) and substituting it, we derive the
wave function in the presence of a magnetic field,

ψ = N

⎛
⎝ei( j− τ

2 )θρ| j− τ
2 | exp

( − βρ2

2

)
1F1 (α, b, βρ2)

iei( j+ τ
2 )θρ| j− τ

2 |−1 exp
( − βρ2

2

)
γ�(ρ)

⎞
⎠,

(B13)

where we define �(ρ) = ξ1F1(α, b, βρ2) +
τ 2α

b βρ2
1 F1(α + 1, b + 1, βρ2) with ξ = τ | j − τ

2 | − j +
τ
2 − (τ + 1)βρ2 and γ = −(ε + 1

2δ − �τ s)−1.

3. Eigenvalues equations

Upon deriving the wave function, the energy quantization
condition is obtained by applying the infinite-mass boundary
condition at the quantum dot radius R. By numerically solving
Eq. (8), the eigenvalue E (τ, n, j, s) is determined, where the
negative energy corresponds to the hole states and the posi-
tive energy corresponds to the electron states. The resulting
energy levels are presented in Fig. 1, with Fig. 15 offering a
zoomed-in view. For the electron states, both spin orientations
are plotted together for comparison.

APPENDIX C: COULOMB INTERACTION
MATRIX ELEMENTS

The Hamiltonian of the many-exciton system is given by
Eqs. (13)–(16). To numerically solve the many-body Hamil-
tonian, it is essential to first derive the matrix elements of
the Coulomb interaction. The Coulomb potential between the
electron and hole across different layers is given by Veh =

−e2

ε
√

|re−rh|2+d2
, with dielectric constant ε = 7.1. The Coulomb

interaction matrix elements are established by the field opera-
tors,

�e(re) =
∑
s,n, j

ψ j,n,K,s(re)c j,n,s, (C1)

�h(rh) =
∑
n, j

ψ j,n,K,↓(rh)d j,n, (C2)

where we include the quantum numbers in the wave func-
tions and operators, including angular momentum j, principal
quantum number n, and electron spin index s. We froze the
spin of the valence band to ↓ and suppose the valley is polar-
ized to K . By defining

�
(e) jk ,nk ,τk ,sk
ji,ni,τi,si

(q) =
∫ Re

0
dreψ

∗
ji,ni,τi,si

(re)ψ jk ,nk ,τk ,sk (re)eiq·re ,

�
(h) jk ,nk ,τk ,sk
ji,ni,τi,si

(q) =
∫ Rh

0
drhψ

∗
ji,ni,τi,si

(rh)ψ jk ,nk ,τk ,sk (rh)eiq·rh ,

the interlayer electron-hole Coulomb interaction matrix ele-
ment is

V (eh)n1,n2,n3,n4
j1, j2, j3, j4

= −
∫

qdqdθ
2πe2

εq
e−qd�

(e) j4,n4,K,s
j1,n1,K,s (q)

× �
(h) j3,n3,K,↓
j2,n2,K,↓ (−q), (C3)

where d is the interlayer separation. For the intralayer
Coulomb potential, Vee = e2

ε
√

|re1 −re2 |2 , the Coulomb interac-

tion matrix element with different spins in Hee is

V (ee)n1,n2,n3,n4
j1, j2, j3, j4

=
∫

qdqdθ
2πe2

εq
�

(e) j4,n4,K,s
j1,n1,K,s (q)

× �
(h) j3,n3,K,s′
j2,n2,K,s′ (−q), (C4)

and the hole-hole interaction term in Hhh with the Coulomb
potential, Vhh = e2

ε
√

|rh1 −rh2 |2 , is

V (hh)n1,n2,n3,n4
j1, j2, j3, j4

=
∫

qdqdθ
2πe2

εq
�

(h) j4,n4,K,↓
j1,n1,K,↓ (q)

× �
(h) j3,n3,K,↓
j2,n2,K,↓ (−q).

1. Zero magnetic field

In the absence of a magnetic field, we initiate from
Eq. (C3) to derive the Coulomb interaction matrix element.
The derivation is concerned with function � and can be
numerically calculated by setting layer distance d = 0. By
using the wave function without magnetic field in Eq. (B7),
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we have

�
(e) jk ,nk ,τk ,sk
ji,ni,τi,si

(q) = M jk ,nk ,τk ,sk
ji,ni,τi,si

∫ Re

0
redre

∫ 2π

0
dθeeiq·re

{
C jk ,nk ,τk ,sk

ji,ni,τi,si
e−i[( ji− τi

2 )−( jk− τk
2 )]θe J( ji− τi

2 )

(√
κ ji,ni,τi,si re

)
J( jk− τk

2 )

(√
κ jk ,nk ,τk ,sk re

)
+e−i[( ji+ τi

2 )−( jk+ τk
2 )]θe J( ji+ τi

2 )

(√
κ ji,ni,τi,si re

)
J( jk+ τk

2 )
(√

κ jk ,nk ,τk ,sk re
)}

, (C5)

where we define

C jk ,nk ,τk ,sk
ji,ni,τi,si

= (2aete)2
√

κ ji,ni,τi,si

2Esi,τi,ni, ji − �e

√
κ jk ,nk ,τk ,sk

2Ejk ,nk ,τk ,sk − �e
, (C6)

M jk ,nk ,τk ,sk
ji,ni,τi,si

= N∗
ji,ni,τi,si

Njk ,nk ,τk ,sk � ji,τi� jk ,τk , (C7)

with ae and te being the lattice constant and the hopping parameter of the electron layer, respectively. Subsequently, we acquire

�
(e) jk ,nk ,τk ,sk
ji,ni,τi,si

(q) = M jk ,nk ,τk ,sk
ji,ni,τi,si

R2
e

∫ 1

0
r′

edr′
e

{
C jk ,nk ,τk ,sk

ji,ni,τi,si
i|( jk− τk

2 )−( ji− τi
2 )|J|( jk− τk

2 )−( ji− τi
2 )|(qer′

e)J( ji− τi
2 )

(
Ke

i r′
e

)
J( jk− τk

2 )

(
Ke

k r′
e

)
+ i|( jk+ τk

2 )−( ji+ τi
2 )|J|( jk+ τk

2 )−( ji+ τi
2 )|(qer′

e)J( ji+ τi
2 )

(
Ke

i r′
e

)
J( jk+ τk

2 )

(
Ke

k r′
e

)}
, (C8)

where we define Ke
i = Re

√
κ ji,ni,τi,si , Ke

k = Re
√

κ jk ,nk ,τk ,sk with dimensionless integral variables qe = Req, r′
e = re

Re
. Similarly,

we can obtain the function for the hole,

�
(h)Jk ,Nk ,Tk ,Sk
Ji,Ni,Ti,Si

(q) = MJk ,Nk ,Tk ,Sk
Ji,Ni,Ti,Si

R2
h

∫ 1

0
r′

hdr′
h

{
CJk ,Nk ,Tk ,Sk

Ji,Ni,Ti,Si
i|(Jk− Tk

2 )−(Ji− Ti
2 )|J|(Jk− Tk

2 )−(Ji− Ti
2 )|(−qhr′

h)J(Ji− Ti
2 )

(
Kh

i r′
h

)
J( jk− τk

2 )

(
Kh

k r′
h

)
+ i|(Jk+ Tk

2 )−(Ji+ Ti
2 )|J|(Jk+ Tk

2 )−(Ji+ Ti
2 )|(−qhr′

h)J(Ji+ Ti
2 )

(
Kh

i r′
h

)
J(Jk+ Tk

2 )

(
Kh

k r′
h

)}
, (C9)

with Kh
i = Rh

√
κ ji,ni,τi,si and qh = Rhq, r′

h = rh
Rh

. We need to choose appropriate dimensionless integral variables to improve the
efficiency of the numerical integration.

2. With magnetic field

In the presence of a magnetic field, only the function � needs to be modified. It is given by using the wave function in
Eq. (B13),

�
(e) jk ,nk ,τk ,sk
ji,ni,τi,si

(q) = N∗
ji,ni,τi,si

Njk ,nk ,τk ,sk ae
L

∫ 1

0
dr′

e

(
ae

Lr′
e

)| ji− τi
2 |+| jk− τk

2 |+1
exp

[−βe
(
ae

Lr′
e

)2]
× {

i|( jk− τk
2 )−( ji− τi

2 )|J|( jk− τk
2 )−( ji− τi

2 )|(qer′
e)1F1

[
α ji,ni,τi,si , b ji,τi , βe

(
ae

Lr′
e

)2]
1F1

[
α jk ,nk ,τk ,sk , b jk ,τk , βe

(
ae

Lr′
e

)2]
+ γ ji,ni,τi,siγ jk ,nk ,τk ,sk i|( jk+ τk

2 )−( ji+ τi
2 )|(ae

Lr′
e

)−2
J|( jk+ τk

2 )−( ji+ τi
2 )|(qer′

e)� ji,ni,τi,si

(
ae

Lr′
e

)
� jk ,nk ,τk ,sk

(
ae

Lr′
e

)}
, (C10)

where we define Re
ae

= ae
L, r′

e = re
Re

, and qe = Req. Here, the function �(ρ) and γ are defined in Eq. (B13). Additionally, we

expand upon the established definitions and, similarly, we can deduce �
(h) jk ,nk ,τk ,sk
ji,ni,τi,si

. Then all the Coulomb interaction matrix
elements can be obtained.
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alizing topological superconductivity in tunable Bose-Fermi
mixtures with transition metal dichalcogenide heterostructures,
Phys. Rev. Lett. 133, 056902 (2024).

[53] J. Li, Y. Zhong, and D. Zhang, Excitons in monolayer transition
metal dichalcogenides, J. Phys.: Condens. Matter 27, 315301
(2015).

[54] D. Luo, A. P. Reddy, T. Devakul, and L. Fu, Artificial intelli-
gence for artificial materials: Moiré atom, arXiv:2303.08162.

[55] M. V. Berry and R. Mondragon, Neutrino billiards: Time-
reversal symmetry-breaking without magnetic fields, Proc. R.
Soc. London A 412, 53 (1987).
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