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We use dynamical mean-field theory to study how electronic transport in multiorbital metals is influenced by
correlated (nominally) empty orbitals that are in proximity to the Fermi level. Specifically, we study 2 + 1 orbital
and 3 + 2 orbital (i.e., &, + ¢,) models on a Bethe lattice with a crystal field that is set so that the higher lying
orbitals are nearly empty at low temperatures but get a non-negligible occupancy at elevated temperature. The
high temperature regime is characterized by thermal activation of carriers leading to higher magnetic response
(i.e., thermally induced low-spin to high-spin transition) and substantial influence on resistivity, where one can
distinguish two counteracting effects: increased scattering due to formation of high spin and increased scattering
phase space on one hand and additional parallel conduction channel on the other. The former effect is stronger
and one may identify cases where resistivity increases by a factor of 3 at high temperatures even though the
occupancy of the unoccupied band remains small (<10%). We discuss implications of our findings for transport

properties of correlated materials.
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I. INTRODUCTION

How resistivity depends qualitatively on temperature pro-
vides a basic characterization of electronic state in solids: a
resistivity p that drops with temperature indicates a semicon-
ducting state, a p oc T? behavior indicates electron-electron
scattering dominated metallic Fermi-liquid behavior [1,2],
certain power laws indicate proximity to distinct magnetic
instabilities [3], and the T -linear resistivity indicates electron-
phonon dominated [4] simple metallic conduction (but also
electron-electron dominated strange-metal behavior notori-
ous in cuprates). More rarely (but attracting increasingly
more attention) the quantitative values of resistivity are used
to characterize the behavior as well. One such example is
the Mott-loffe-Regel minimal conduction criterion distin-
guishing good and bad metals [5,6]. Recently significant
attention was attributed to the prefactor of T'-linear resistiv-
ity and argued to be often such that the scattering rate is
“Planckian” [7-9].

Clearly, in calculations of transport within specific mod-
els the obtained magnitude of scattering should be given the
necessary attention. For instance, SrVO; that was always
considered to be in an electron-electron scattering domi-
nated Fermi liquid state was recently shown to be actually
dominantly affected by phonon scattering [10]. On the applied
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side likewise the magnitude of scattering is important; for in-
stance, in applications of transport calculations in geophysics
the electron-electron vs electron-phonon scattering are widely
debated [11-14].

Even if one considers the electron-electron interactions
alone, the details of the considered model may have a sig-
nificant influence on the result. Namely, in transition metal
oxides where the #,, manifold is partially occupied, one often
disregards e, states (see Ref. [15] for a recent example) for
simplicity and computational efficiency. But this may become
increasingly inaccurate at elevated temperatures because the
bottom of the e, band is not far above the Fermi level and is
eventually populated by thermally activated electrons, which
are strongly coupled to #,, electrons through the Hund’s rule
coupling. One can envisage different counteracting influences
of these nearly empty bands (which we will call minority
bands from now on): (i) the electrons in those minority bands
can increase the scattering (either due to additional phase
space for the final states or via additional interactions or due
to the changes in occupancy of the majority band manifold,
bringing it closer to half filling); (ii) electrons in minority
bands might scatter less due to the small electron density and
hence act as an efficient parallel conduction channel leading
to increased conduction.

Due to Hund’s coupling, the thermal population of e, states
will lead to an increased magnetic response. This phenomenon
is known as spin crossover or low-spin to high-spin transi-
tion [16,17] and has been widely explored in transition-metal
organic complexes [18-22], in d® oxides such as LaCoO;
[23-28] and in iron periclase [29,30] materials, to name a few
examples. In the quoted cases the phenomenon is strong and
involves large redistribution of the carriers and is accompa-
nied by large structural changes.
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FIG. 1. Noninteracting density of states for the 2 + 1 orbital
model on the Bethe lattice for crystal fields Acg = 4 (left), Acg =
2.5 (middle), and Acg = 1.6 (right). The filling at 7 = 0 K is de-
picted in light blue color.

Of interest to the present work is the onset of phenomena
when the occupation of ¢/ s remain mild, say less than 10%.
Might the onset of formation of large spin importantly affect
the scattering, the resistivity, and magnetic response even
there? A specific example where all these effects might play
a role are early transition metal oxides, such as ruthenates
[31] and rhodates [32]. Especially ruthenates were extensively
studied in dynamical mean-field theory [33-54] with calcu-
lations with the exception of [55] being done within the
subspace.

In this paper we investigate these questions in the context
of a simple model with 24 1 and 3 4 2 orbitals, with the
notation M + M’, where M indicates the degeneracy of the
majority manifold at the Fermi level and M’ the minority
orbital manifold, respectively. The crystal field is tuned such
that the higher lying minority orbitals are practically empty
at very low temperatures, but get a non-negligible occupancy
at elevated temperature. We solve the model with dynami-
cal mean-field theory (DMFT) and find that, especially for
strong interactions, an additional coupled orbital does indeed
have a strong influence on resistivity, mainly by introducing
additional scattering for the majority carriers which has a
larger influence than the opening of an additional conduction
channel. We want to note that earlier DMFT model studies
have explored the effects of crystal field, but mainly focus on
the ground state phase diagram [56-59].

II. METHODS

We consider a multiorbital problem on a Bethe lat-
tice described by a semicircular density of states p,,(€) =
2/(xD)y/1 — (¢/D)? for each of the orbital subspaces m,
leading to the kinetic part of the Hamiltonian Hy,. We
also consider a term that breaks crystal-field degeneracys; it
increases the energy for the orbitals in the high-energy sub-
space; see also Fig. 1. Hence the noninteracting Hamiltonian
can be written as

Hy = Hin + Ack Y, fng. ey
neM’,o

For the interaction term, we use the Kanamori Hamiltonian
[60] parametrized by Coulomb interaction U and Hund’s cou-
pling J,

I_Iim =U ZﬁmTﬁm¢ + U/ Z ﬁmTﬁm/l

m mz#m’

+ (U/ _J) Z ﬁmaﬁm’a

m<m',o

+J Z C;Tc;n’icmlcm’T
m#m'’

+J Z CLTC;¢C’”'¢CWT' 2)

m=#m'’

The indices m, m’ run over all M + M’ orbitals and we set
U’ =U —2J to make the Hamiltonian rotationally invari-
ant in orbital space. We solve the impurity model using the
CTHYB solver [61,62] as implemented in the TRIQS package
[63]. We performed analytic continuation of the Matsubara
self-energies X(iw,) to the real frequency axis using the
stochastic maximum entropy method [64] and Padé contin-
uations. The considered density of states is schematically
presented in Fig. 1 for a few values of crystal field.

The main quantity of interest in this work is the electric
conductivity . On a Bethe lattice, it is given [6,65-68] by

+00 +oo
_ e Z/ de @(e)/ ( af(w))Aﬁ,e(w),
A3)
where
B(e) = ——OD — |e|)(D* — €%) )

3nD?

is the transport function on the Bethe lattice and

Ave(0) = —%Im(w +i0" —e+p—S@) ()
is the spectral function of each orbital v that depends on
band energy €. The calculations were done in paramagnetic
state: we are interested in the high temperature regime above
any possible magnetic ordering temperature. The integrals
necessary to obtain the temperature dependent resistivity were
numerically calculated using an integrator based on the glob-
ally adaptive interval subdivision [69]. In the remainder of
the paper we will give all energies in units of the half band
width D of the Bethe lattice, and the conductivity in units of
oy = €*¢(0)/(hD) [6].

In order to get insight into the degree of correlation in
the different regimes, we extracted the quasiparticle scattering
rate through extrapolation of the Matsubara self-energies to
zero through a polynomial fit,

7' = —ZIm 2(iw, — 0), 6)

where Z is the quasiparticle weight

-1
Z = (1 - iImE(ia))|w_>0+) . @)
ow

085131-2



STRONG EFFECTS OF THERMALLY INDUCED LOW-SPIN ...

PHYSICAL REVIEW B 111, 085131 (2025)

1.0{(a) (b)

\ w 0.25

— U=13 —— U=13
08/ u=30 020l — U=3.0

—— U=5.0
06 0.15
c <
0.4 0.10
0.2 0.05
0.0 0.00 SR
00 25 5.0 0.05 0.10
ACF T

FIG. 2. (a) Occupancy of the minority orbitals when varying the
crystal field at T = 0.025 (8 = 40). (b) Occupancy of the minority
orbitals with rising temperatures at fixed crystal field indicated by the
squares in (a) for respective values of interaction.

Strictly speaking, this definition is valid in the low-
temperature limit. However, we adopt it also at higher
temperatures, as long as it gives physically sensible results,
ie,0<Z < 1.

We relate the behavior in transport also to the magnetic
response that we monitor using the local spin susceptibility

B
Xioc =/0 dT(S*(7)S°(0)), ®)

$i(r) = % D (1) — A (1)), ©

v

where 8 = 1/T is the inverse temperature (we set kg = 1).
The correlation function can be measured directly during the
QMC solution of the Anderson impurity problem [62].

III. 2 +1 ORBITAL MODEL

First, we consider a 2 + 1 orbital model. We set the total
occupancy to a total number of N = 3 electrons. We con-
sider three different interaction strengths U = 5.0, 3.0, 1.3
and fix J/U = 0.2. The calculated dependence of occupancy
of the minority orbital n on the crystal field Acp is shown
in Fig. 2(a). One sees a crossover from the fully orbitally
polarized (low-spin) to an unpolarized (high-spin) situation
that becomes abrupt for large interactions. In the atomic
limit, the criterion for the crossover is given by equating
the crystal field energy cost to the Hund’s energy gain
which for the 2 4 1 orbital model (S = 3/2 vs S = 1/2 state)
reads Acr = 4J. One sees that this criterion indeed explains
the behavior.

Next, respectively for each U value, we choose the crystal
fields close to the crossover point Acp = 4.0, 2.5, 1.6 mark-
ing the corresponding points by squares in Fig. 2(a) and plot
the electronic density (occupancy) in the minority orbital n(7T)
in Fig. 2(b). The occupancy of the nominally empty orbital,
which is small at low temperatures, grows significantly with
temperature and the growth is more rapid for larger interaction
strengths.

In Fig. 3(a), we plot the local susceptibility of the 2
and 2+ 1 orbital models at U = 5.0, Acg = 4.0 (symbols)
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FIG. 3. (a) Local magnetic susceptibility and magnetic moment
as a function of temperature for U = 5.0, Acg =4.0. In (a) we
show the local magnetic susceptibility of the 2 orbital model (red
triangles) and of the 2 + 1 orbital model (violet squares) calculated
using Eq. (9), as well as a corresponding fit after Eq. (B2) that is
discussed in detail in Appendix B. In panel (b), the correspond-
ing (spin dependent) magnetic moment /s = X101 is plotted. The
dashed horizontal lines mark the saturated moments—red for the
2 orbital model and green for the 2 4 1 orbital model.

as function of temperature. Whereas the magnetic suscep-
tibility of the 2-orbital model falls monotonously with T
and is roughly described by a Curie-Weiss law, the one
calculated for the 2 4 1 orbital model is nonmonotonous
and has a clear maximum at 8 =~ 20. One can fit the be-
havior quite well using a formula with two fit parameters
only, Eq. (B2). A discussion on the fit procedure and the
parameters can be found in Appendix B. The equation is
in agreement with early general results of Van Vleck [70],
where a general expression [Eq. (B1)] for a susceptibility
with contributions from several multiplets split by energies
Eg in an atom has been derived. Each of these multiplets
show a Curie-Weiss—like behavior, but the contribution of
energetically higher orbitals is thermally activated, thus giv-
ing rise to the possibility of a nonmonotonic susceptibility,
such as in Fig. 3. Materials showing such nonmonotonous
behavior have been discussed for example in [21,71,72] and
the appearance of such a susceptibility has even been sug-
gested to be an experimentally accessible way of evaluating
if a low-spin high-spin transition occurs [21]. Note, however,
that the existence of a local maximum is is not a necessary
feature of such a transition, as we will see for example in
Fig. 8(a). It is interesting that this effect is apparent already
for a moderate occupancy (n ~ 0.15 at the maximum) of the
minority orbital. Figure 3(b) shows the paramagnetic moment
s = XiocI . One sees a clear enhancement of ug over the
S = 1/2 value of 1/4 (indicated by the red dashed horizontal
line), but the system is still far from the full HS behavior
that is characterized by us = 5/4 (indicated by the green
dashed line).

How does the presence of the additional orbital affect scat-
tering? In Fig. 4 we show the Matsubara self-energies for the
minority (a) and the majority orbital (b). We compare them
to the 2 orbital model result (c). The data is compiled in
Figs. 4(d) and 4(e), where we plot the temperature dependence
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FIG. 4. (a) Imaginary part of the Matsubara self-energies at U =
5.0, Acr = 4.0 for several T indicated by a color gradient from blue
(T =0.01) tored (T = 0.1) for (a) minority and (b) majority orbital
of the 2 + 1 orbital model. (¢) The two orbital model result. (d),(e)
Quasiparticle scattering rate for U = 5.0, Acp = 4.0, and U = 3.0,
Acg = 2.5, respectively. We are showing data only up to temper-
atures where the definition of the quasiparticle renormalization is
valid; see Eq. (7).

of the quasiparticle scattering rate for U = 5.0, Acp = 4.0,
and U = 3.0, Acp = 2.5, respectively.

At low temperatures, the self-energies of the majority or-
bitals of the 2 4+ 1 orbital model match the ones of the 2
orbital model but, upon increasing temperature, the magnitude
of the self-energy in the 2 4- 1 case increases more rapidly. At
high T the 2 4 1 orbital result indicates a significantly more
correlated state. This behavior likely results from the more
strongly correlated high-spin states, even though the self-
energies are significantly smaller than the ones found in the
unpolarized three-orbital model (i.e., Acg = 0.0) at half fill-
ing. One can also interpret it in terms of reduced occupancy
in the majority orbitals, although the filling n & 2.8 in these
orbitals is still far away from the majority orbital half filling
of n =2.0.

Interestingly, the scattering in minority orbital is quite
high and is larger than what one would think considering the
small number of electrons there (the imaginary part [ImX|
of a single-orbital model in the same low-density regime is
an order of magnitude smaller). Similar large scattering in
nominally unactive orbitals has been seen in nickelates [73].
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FIG. 5. Resistivity and conductivity as a function of temperature.
In the upper panels, the resistivity of the 2 + 1 orbital model (orange)
and the 2 orbital model (blue) is plotted for U = 5.0, Acg = 4.0 in
(a) and U = 3.0, Acg = 2.5 in (b). The symbols indicate stochastic
maximum entropy and the dashed lines Padé results. In (c),(d) we
show the channel resolved conductivities: we plot the contribution
of the minority orbitals (green) and the contribution of the majority
orbitals (magenta) and compare them to the conductivity of the
2 orbital model (blue).

So how do these effects manifest in transport? In Figs. 5(a)
and 5(b) we show the temperature dependence of the total
resistivity of the 2 (blue) and the 2 4 1 orbital model (orange).
Consistent with the behavior seen in the scattering rate, the
two calculations behave similarly at low temperatures, but at
higher temperatures we see a significantly higher resistivity in
the 2 4 1 orbital model (with the distinction becoming more
pronounced at higher interaction strengths). We can attribute
this to the stronger correlations due to the onset of the spin
CrOSsOVver.

The orbitally resolved contributions to conductivity are
shown in Figs. 5(c) and 5(d). The minority orbital contribution
in the 2 + 1 orbital model remains significantly smaller than
the majority orbital contribution also at high temperatures. In
terms of the Boltzmann picture, at lower temperatures, scat-
tering in the minority orbital is small but the minority states
contribute negligibly due to the low density of electrons there;
at high temperature the growth of the density is counteracted
by the growth in the scattering rate.

IV. 3+ 2 ORBITAL MODEL

We now turn to the 3 + 2 orbital model. We consider two
cases—one with a total filling of N = 4 electrons, as well as
a total filling of N =5 electrons per atom. Here, we chose
an interaction strength U = 2.4 and again J/U = 0.2, which
are reasonable values for many real materials, and yield a
correlated metallic state with Z at 8 = 100 being 0.3 and
0.7 for N =4 and N =5, respectively. The atomic criterion
for the spin-crossover is Acp = 5J = 2.4 for both N = 4 and
N =5 and we chose the crystal field to be slightly larger—
Acr = 2.5 for both fillings. The temperature dependence of
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FIG. 6. (a) Total density in the minority orbitals as a function
of temperature for N = 4 (blue) and N = 5 (orange). The error bars
were obtained by calculating the standard error of the densities over
the last five (converged) iterations. (b) The quasiparticle scattering
rate for the case N =4 for the minority (blue) and the majority
(orange) orbital of the 3 4 2 orbital model compared to the refer-
ence unpolarized 3 orbital model (green). Panel (c) shows the same
quantities as panel (b), but for N = 5.

the total minority orbital occupancy n is shown in Fig. 6(a).
The data shows an increase from 0.01 at low T to about 0.18
for N =4 and 0.22 for N = 5, respectively, at 7 = 0.1.

The scattering rates are shown in Figs. 6(b) and 6(c) for
N =4 and 5, respectively. The majority electrons behave
qualitatively similarly for both cases: their scattering increases
faster with temperature (orange lines) compared to the refer-
ence 3-orbital case (green lines). The minority electrons on
the other hand show an important difference. For N = 4, the
scattering rate does not increase at the same extent as for
N =5, where for the highest temperatures it even exceeds the
one in the majority orbitals.

Let us look now at the impact on resistivities. We show the
results of our calculations in Fig. 7, in panel (a) for N =4
and in panel (b) for N = 5. We see in both cases a similar
effect as before, namely that the total resistivity increases,
when additional thermally activated orbitals are taken into
consideration, both for N = 4 and N = 5. However, forN =5
the effect is much stronger, similar in size to the case of U = 5
in the 2 + 1 model. Also the origin of this effect is similar,
namely that the scattering in the majority orbitals is increased
significantly, thus lowering the conductivity there. But, at
the same time, the additional minority orbital also sees large
scattering and, together with the still small electron density, its
contribution to conductivity is negligible. This is seen clearly
in Fig. 7(d), where we show the orbitally resolved conductiv-
ities. The minority orbital, shown with green triangles, even
at highest temperatures contributes to the conductivity two
orders of magnitude less than the majority orbitals.

This is rather different in the case N = 4. On the one hand,
the effect on the majority orbitals is still similar, meaning that
the scattering is increased, which reduces the conductivity.
The inset in Fig. 7(c) shows this nicely. On the other hand,
the contribution of the minority, thermally activated orbitals,
is different. As already shown in Fig. 6(b), the scattering in
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FIG. 7. Resistivities (a),(b) and channel resolved conductivities
(c),(d) plotted following the same color code as in Fig. 5. The inset
in the left lower panel shows resistivity of the 3 orbital model (blue
triangles) and of the majority orbitals of the 3 + 2 orbital model
(violet squares).

these orbitals does not increase that much and stays moder-
ate. Therefore, the additional electronic degrees of freedom
there can indeed contribute to conductivity, as shown in the
orbitally resolved conductivities shown in Fig. 7(c). Note that
we show them on a logarithmic scale, spanning four orders of
magnitude of N = 4, compared to seven orders of magnitude
for N =5.

As a result, we have two counteracting effects; first, the
increased resistivity in the majority orbitals, which is obvious
from the inset in Fig. 7(c), and second the increased conduc-
tivity in the minority orbitals. The first effect is quantitatively
larger, so there remains an increase in total resistivity, as
shown in Fig. 7(a).

We also calculated the local magnetic susceptibility, which
is shown in Fig. 8. The fits that follow the same structure
[Eq. (B2)] as in the 2 4 1 orbital model are again in very good
agreement with the data. For N = 5 we see a nonmonotonous
behavior as before, just more pronounced (eventually x,. for
the 3 + 2 model decreases again for very large temperatures).
For N = 4, however, there is no maximum as a function of T
for the considered crystal field. Similarly in the local moment
shown in Fig. 8(b) the distinction between the full calculation
and the smaller 3 orbital calculation is smaller for N = 4 than
for N = 5. For the 3 +2 model and N = 5, the difference
between the low-spin and the high-spin state in terms of total
spin is large (S =1/2 vs § =5/2), whereas for N =4 it
is just S =1 vs S = 2. One should note that the values of
magnetic moment are again well below the saturation value
S(S§+1)/3, giving us =2.0and 2.92 for § =2 and § = 5/2,
respectively.

V. CONCLUSIONS

In summary, we studied how the onset of spin crossover
caused by thermal activation of carriers to nearly empty
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FIG. 8. Local magnetic susceptibility and magnetic moment as a
function of temperature. In the upper panels (a), (c), we show the
local magnetic susceptibility of the 3 orbital model (circles) and
of the 3 + 2 orbital model (diamonds) for both N =4 (left) and
N =5 (right) calculated using Eq. (9), as well as a corresponding
fit discussed in the Appendix. In (c),(d) the corresponding magnetic
moment s = xjo. 1 is plotted.

correlated orbitals in close proximity impacts the electronic
transport and magnetic response of correlated metals. We
found rather strong effects, even when the minority orbital
carrier density remains small and correspondingly the mag-
netic moments are still far below the asymptotic high-spin
ones. Universally, we found that transfer of electrons to the
minority orbitals increases the scattering in the majority ones
and leads to a resistivity that is significantly increased. For the
case of four electrons in 3 + 2 orbitals, the minority carriers
scatter less and there is a counteracting effect of a parallel
conduction channel. However, this effect is less strong and the
total resistivity still increases.

We envisage our results to be relevant for correlated ma-
terials and ruthenate and rhodate compounds in particular.
Signatures of spin crossover are seen experimentally [32,74]
and in particular in Sr,RhOy the resistivity is remarkably high
reaching (300 u€2 cm at room temperature), which is difficult
to understand within a f,, picture, as correlations in rhodates
are believed to be less important compared to the Hund metal
ruthenate compounds [60].
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FIG. 9. Imaginary part of the self-energy of the 2 + 1 orbital
model, shown for J/U = 0.18 (a)-(c) and J/U = 0.22 (d)—(f). Plots
(a) and (d) show the minority orbitals, (b) and (e) the majority
orbitals, and (c) and (f) show the corresponding 2-orbital model.
Different temperatures are indicated by different colors (blue = low
temperatures; red = high temperatures). Interaction strength U = 5.0
and crystal field Acg = 4.0 are fixed.

APPENDIX A: DEPENDENCY ON HUND’S
COUPLING J

In the main text we have determined the parameters of the
Hamiltonian, i.e., U, J, and Acr such that we are at the point
in phase space where the low-spin to high-spin transition, and
therefore thermal activation, occurs. In order to understand the
influence of variations of parameters, in particular J, a bit bet-
ter, we present here results for fixed U = 5.0 and Acr = 4.0,
but for J/U = 0.18 and J/U = 0.22.

We see that for a fixed crystal field we quickly leave
this point in phase space where low-spin to high-spin tran-
sitions occur. If Hund’s coupling is too small (J/U = 0.18),
no thermal activation happens and there is no effect on the
resistivities—plots (a) to (c) in Fig. 9. If, on the other hand,
the Hund’s coupling is too strong (J/U = 0.22), the system
is already Mott insulating at lowest temperatures—plots (d)
to (f) in Fig. 9. In both cases, the variation of this state with
temperature is small and not relevant for the physical effect
that we are interested in.

APPENDIX B: SUSCEPTIBILITY FOR
NONDEGENERATE MULTIPLETS

We take the ionic approximation for the case of nongener-
ate multiplets S with energy Egs. The general expression for
the spin susceptibility then reads

1 Y g gs((S?)/3) exp(—BEs)
d —
T Y ggsexp(—BEs)

where g, are the degeneracy factors and (S?) is the size of the
spin squared. The above expression is in agreement with early

, (BI)
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general results of Van Vleck [70]. We adapt this general form
for our case with two multiplets (one at energy Es = 0 and
one at Es = AZ) and use for fitting

y <Tst/T§ +7 (SZT)/3 o~ AL kT
T e ®2

The parameters Ty and Aecflf: are fitting parameters which we

obtained using a least squares fitting procedure and have the
physical interpretation of the Fermi liquid cutoff and the effec-
tive energy level of the upper orbitals, respectively. The (S?)
and (s?) are taken to be the high- and low-spin expectation
values, respectively, and y and y are the degeneracies of
the multiplets, obtained by diagonalizing the atomic Hubbard
Kanamori Hamiltonian with crystal field. Here it should be
noted that there is some ambiguity in the 3 + 2 orbital model
in the case N = 4, as the degeneracy of the high spin state

TABLE 1. Fit parameters T and AE‘? of Eq. (B2) for the sus-
ceptibilities shown in Fig. 3 and Fig. 8, as well as the according
degeneracies y and ¥ and expectation values of the spin opera-
tors for the low-spin state and high-spin state, (s?)/3 and (S?)/3,
respectively.

Model T ASE (3 (SHB3 Yy
241,U=5 004  0.09 1/4 5/4 4 4
3+2,N=4 003 029 2/3 4 9 10
3+2,N=5 0.1 025 1/4 35/12 6 6

7 depends on whether the crystal field is included (y = 10)
or if the degeneracy is calculated using the S =2 and L = 2
degeneracies of four electrons in the d shell, which would lead
to = 25. The fits do not change significantly if one uses this
definition. All parameters of the curves shown in the main text
are listed in Table I.
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