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Quantum graph models for transport in filamentary switching
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The formation of metallic nanofilaments bridging two electrodes across an insulator is a mechanism for
resistive switching. Examples of such phenomena include atomic synapses, which constitute a distinct class
of memristive devices the behavior of which is closely tied to the properties of the filament. Until recently,
experimental investigation of the low-temperature regime and quantum transport effects has been limited.
However, with growing interest in understanding the true impacts of the filament on device conductance,
comprehending quantum effects has become crucial for quantum neuromorphic hardware. We discuss quantum
transport resulting from filamentary switching in a narrow region where the continuous approximation of the
contact is not valid, and only a few atoms are involved. In this scenario, the filament can be represented by a
graph depicting the adjacency of atoms and the overlap between atomic orbitals. Using the theory of quantum
graphs with locally diffusive node scattering, we calculate the scattering amplitude of charge carriers on this
graph and explore the interplay between filamentary formation and quantum transport effects.
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I. INTRODUCTION

There has been a huge interest in resistive switching and
memristive behavior, as the complexity of many nanoscale
devices requires new techniques to understand their behavior.
For instance, memristors offer the possibility of harnessing
both nonlinear behavior and nontrivial memory in electronic
circuits. Specialized circuits composed of large numbers of
such devices promise a new generation of computational
hardware operating orders of magnitude faster, and at far
lower power, than traditional digital circuitry [1–5]. Since
memristive behavior is associated to a one-port device which
is current or voltage controlled, these components support
volumetric memory scaling for dense storage capacity, with
the possibility of being simply operated on a crossbar ar-
ray [6–21]. Moreover, recent results suggest that networks of
memristive devices [22–24] can be used for various tasks in
analog computing, and exhibit chaos and system switching
phenomena [25,26].

One advantage of these nanoscale devices is that with
a displacement of a few atoms, we have possibly access
to resistive states at ultimately low energy costs. However,
device engineering lacks the complete quantum theoretical
characterization of resistive switching when driven by a con-
ductance change due to a filament formation, also considering
that the filament formation is inherently stochastic. Although
some analytical methods exist, these are restricted to the
semiclassical domain [27].

Filament formation, e.g., the nonequilibrium process of
chemically forming a filament in a narrow region [28–32], is a
mechanism for resistive devices. However, with the increasing
capability of scaling down to a few atoms, and the ability to
measure quantum effects in these filaments at a few Kelvins,
new techniques are necessary to capture the phenomenology
of these devices. For instance, with the gap region becoming

of the order of a few nm, the number of atoms involved in the
filament formation can be of the order of tens of atoms [33].

Quantum transport, on the other hand, has been extremely
successful in the study of nanoscale devices [34–36], whether
using the Kubo [37] or Landauer approach [38–46]. For the
case of nonfilamentary switching, nanoimaging techniques
have recently shown that charge density waves emerge when
two carriers of opposite charge are allowed in the narrow
region, for instance in the case of perovskite nickelates doped
with hydrogen [47]. The present paper focuses in particular
on nanoscale filamentary switching. Recently, state-of-the-
art experimental results managed, via Andreev reflection
processes [48–52], to measure quantum effects in niobium
pentoxide [53–58], emerging at the filament terminals when
superconducting electrodes are utilized [59–65]. In particu-
lar, the transmission probabilities of each conduction channel
contributing to the conductance of the nanojunctions can
be obtained [66] using Andreev reflections. These studies
suggest that atomic-size metallic filaments are indeed the
source of high conductance in niobium pentoxide (the so-
called ON state). These recent studies motivate the theoretical
investigation of transport in heterogeneous filamentary struc-
tures [28,67–69].

However, immediately one faces an obstruction. Previous
studies focusing on filament formation, directly simulating fil-
ament formation, have used either continuum models and/or
well-defined lattices or classical Kirchhoff’s and Ohm’s laws
to calculate the resistance. On the other hand, quantum
mesoscopic transport techniques are based, typically, on the
assumption of continuity, e.g., the conductor acts as a waveg-
uide for the charge carriers [34–36]. As such, the study of
quantum transport on this mesoscopic network is a chal-
lenging task already at the modeling level, even before any
calculation can be attempted.
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FIG. 1. Sketch of filamentary switching for a few atoms. The
structure is far from continuous, and the charge carriers hop across
the structure as induced by the voltage. The formalism we use is the
one by Landauer-Büttiker, with two reservoirs (leads).

For this reason, the general approach we consider in this
paper is represented in Fig. 1. We consider a left and right
lead and the dynamical formation of a filament in the region.
We assume that the filament formation is classical, and on a
timescale much longer than the effective speed of the electrons
across the filament. The filament is composed of an assembly
of N atoms, with overlapping bands. However, the scattering
process of the electron across the filament is quantum mechan-
ical, and thus one has to consider the scattering amplitude Ti j

from the lead i to the lead j quantum mechanically.
However, over the past three decades, the study of electri-

cal conductors has evolved considerably from a macroscopic
level of description to the nanoscale. Assuming that the char-
acteristic length of the quantum correlations is more or less
than a few atoms (e.g., dephasing or Fermi lengths are small),
we can assume coherent quantum transport of electrons. The
setup we study is the typical one of mesoscopic transport [37];
e.g., our system has two leads, denoted as left and right, and
a voltage applied to them. Such a picture has been extremely
successful in the study of molecular and atomic point con-
tacts [70–75], carbon nanotubes [76,77], or graphene [78–82].
More recently, atomic point contacts have been also investi-
gated for resistive switching [83,84] and there has been an
interest in generic quantum wires [85] or Josephson junction
networks [86].

The idea that the discreteness and yet heterogeneity of
the structure might play a role has been investigated as early
as the 1930’s by Pauling [87–90]. Thankfully, the study of
scattering on discrete structures has obtained some consider-
able attention over the past decades (the so-called quantum
graphs) [85,91–103], driven by the study of quantum chaotic
systems. Mathematically, the overlap between the atoms can
be described as a graph [104,105], with the atoms represented
as vertices and the overlap as edges of such graph.

The assumption is that electrons on the left or right
leads are asymptotically free and incoming and outgoing
states [106–110]. The electrons can propagate freely or in
a constant potential ui j along the edge of the graph (a one-
dimensional structure), the distance of which is assumed to be
constant �. Then, the problem of transport can be described
as the problem of calculating the scattering matrix which
transforms the incoming into outgoing free states on these
“quantum” graphs [96,111–122]. Intuitively, Kirchhoff’s cur-
rent conservation for all the nodes of a circuit, which is
classically written in terms of the directed incidence matrix
of a graph as Bt = �i = 0 [24,104], has to be replaced by a

quantum Kirchhoff law in which a unitary matrix has to be
inserted in the sum over currents at a node. In quantum graphs,
these unitary operators can be obtained by the scattering pro-
cess via a local one-body Hamiltonian.

For an entire network connecting two leads, such a uni-
tary matrix contains the information about the transmission
amplitudes; at this point, we can use the transmission ampli-
tudes within the context of a Landauer approach. In fact, the
probably best-known result in the theory of quantum transport
obtained using the scattering matrix approach is the Landauer
formula [38], which was the first to use scattering matrices to
describe transport problems. For multileads, we use a general-
ization of this approach, also known as the Landauer-Büttiker
formula. Specifically, we will treat our system as a particular
case of a multilead system, where however some of the leads
are identical. In the case of several channels, the expression
for the conductance

G = 2e2

h

∑
n,m

Tnm (1)

contains the sum of transmission probabilities Tnm from one
mode (channel) to another. The expression above will have to
be adapted to the case of quantum graphs, which we discuss
below. In the more specific case of a filament, we will see that
we can have K channels attached to the left and K ′ channels
attached to the right lead.

The approach we use here is different from the case of
the nonequilibrium Green’s function [35,36] in various ways.
First, the scattering process is on a discrete structure rather
than a continuous one, as it is commonly assumed in analytical
calculations [123–126]. Moreover, we make the simplify-
ing assumption that the electrons are faster than the typical
timescale of the filament formation. As such, we consider the
equilibrium Green’s functions on a particular structure. This is
motivated by the fact that the typical formation of a filament in
these materials is of the order of a few milliseconds, in which
this annealed approximation makes sense.

The paper is organized as follows. We first review the
standard Landauer-Büttiker approach for the multichannel
scattering. We then introduce the setup of this paper and
the construction of the scattering matrix based on quantum
graphs. We then discuss the molecular dynamics simulations
that we employed for the stochastic filament formation, and
give the assumptions on the dielectric. Conclusions follow.

II. STANDARD LANDAUER APPROACH AND GRAPH
SCATTERING MATRIX

The approach we consider here is the one introduced
in [42].

A. Landauer-Büttiker formalism

To describe a quasi-one-dimensional coherent conductor,
we first consider a purely one-dimensional problem [35,36].
We consider for instance, electrons with energies up to a
certain scale μ in a scattering state, moving (for instance) left
to right, in Lippmann-Schwinger scattering states [127,128]
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of the form

�L,E (x) =
{

eikx + r(E )e−ikx, x → −∞,

t (E )eikx, x → ∞,
(2)

where we introduced k = √
2mE/h̄, and we assume the state

above to be normalized. The quantities r(E ) and t (E ) are
the reflection and transmission amplitudes respectively. For
right-moving states, we have an analogous state to the one of
Eq. (2). The density of states in one dimension is given by
the expression ν(E ) = dk

dE = m
h̄2k

. Because of the electron’s
fermion statistics, the probability of having an electron at a
certain energy E is given by

f (E ) = 1

e(E−μ)/κT + 1
(3)

where μ is a chemical potential, which in the Landauer ap-
proach is assumed to be dependent on the voltage potential
at the lead. If we have two leads, then, the left and right
leads depend on two chemical potentials μL and μR, which we
assume to be dependent on the voltage at the two electrodes,
anodes and cathodes. The total current is the sum of the left
and right contribution, given by the expression [106–110]

I (V ) = IL(V ) + IR(V ) = 2e

h

∫ ∞

−∞
dE [ fL(E ) − fR(E )]T (E ),

(4)

where 2e
h = G0/e, where G0 is the conductance quantum. The

transmission probability from left to right, T = |t |2, is equal to
the transmission probability from right to left, T = T ′ = |t ′|2,
because of unitarity, and then in this sense all we need to know
is the scattering amplitudes for the system given the left and
right scattering.

The quantity T (E ) is the sum over all channels, T (E ) =
Tr[τ †(E )τ (E )], where τ (E ) is the transmission matrix of the
system.

We see that within this approach, we only need to solve
the scattering process across the structure, whether this is a
continuum or discrete. As we have said above, in this paper
we consider only local effective one-dimensional movements
of the electrons in between the underlying atoms forming
the filaments. For this purpose, then, we need to introduce
the graph scattering process associated with our generalized
Lippmann-Schwinger states.

In general, if the system has many leads, the total transition
probability can be written as

Ik (V ) = G0

e

∫ ∞

−∞
dE [ fL(E ) − fR(E )]

∑
j

Tk j (E ) (5)

where Tk j is the transition probability from the lead j to the
lead k.

If the leads k are then attached to the same contact, we can
write

Itot (V ) = G0

e

∫ ∞

−∞
dE [ fL(E ) − fR(E )]

∑
jk

Tk j (E ). (6)

Since in quantum graphs we do obtain the quantities Tk j ,
we will use this expression. At small temperatures and for

μL − μR ≈ eV , this reduces to

Itot (V ) = G0

e
e
∑

jk

Tk j (E f )V = G0

⎡
⎣∑

jk

Tk j (E f )

⎤
⎦V, (7)

where E f is the Fermi energy for the system and V the
applied voltage G0 ≈ (12 900 �)−1, the quantum of conduc-
tance. This equation cannot be directly applied in the theory of
quantum graphs in a sense we will see in the next subsection,
but a simple modification will be sufficient to allow us to
use it.

B. Adapting the LB formula to quantum graphs

Before we discuss the theory of quantum graphs, it is worth
discussing what one can calculate and how the results should
be interpreted. Quantum graphs are a generalization of the
one-dimensional Schrödinger equation, in which single parti-
cles enter along a one-dimensional path between the scattering
nodes, and the electron can move across a heterostructure.
In this sense, particles do not have any transverse modes,
and the scattering process is purely one dimensional. The
starting point is a certain graph representing the atomic struc-
ture and the overlapping orbitals. In such a graph, the nodes
represent where the particles scatter and the edges are the
one-dimensional paths in between scattering events.

What one can calculate with this mathematical construct is
the transmission probability Ti j (E ), e.g., the chances that the
particle being coherent along the mesoscopic region enters the
region through a certain node i and leaves from node j. Now
let us assume that our scattering region, approximated as a
graph, is attached via N nodes on the left lead and M nodes
on the right lead.

If the particle is incoming from the left lead, and we want
to calculate the right-moving current IL, then we assume that
we will have classical probability pL

i (E ) to enter at node i, sat-
isfying

∑
i=1N pL

i (E ) = 1. Then, the total current, following a
similar argument to the one of Landauer, is given by

IL(V ) = G0/e
∫

dE fL(E ,V )
N∑

i=1

M∑
j=1

Ti j (E )pL
i (E ). (8)

A similar argument can be made for the left moving
particles incoming from the right lead, obtaining

IR(V ) = −G0/e
∫

dE fR(E ,V )
N∑

i=1

M∑
j=1

Ti j (E )pR
j (E ), (9)

from which we get the total current expression

I (V ) = IL(V ) + IR(V )

= G0/e
∫

dE
N∑

i=1

M∑
j=1

(
fL pL

i − fR pR
j

)
Ti j (10)

where we have suppressed the functional dependence for sim-
plicity. We note that this expression is similar to the one of the
Landauer-Büttiker formula, except for the correcting factors
pL

i and pR
j . The method above is, however, time consuming,

as it requires the evaluation of ML channels’ probabilities. We
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FIG. 2. Reduction of the lead connections to a single channel and
incoming-outgoing Lippmann-Schwinger asymptotic states.

use instead the following trick, commonly used in the litera-
ture [129–131] of quantum dragons to study the transmissions
to a single channel. Instead of repeating the process ML times,
we attach two extra nodes to the graph attached to the bound-
ary nodes (connected to the leads). Using this method, we
reduce our problem to single Lippmann-Schwinger asymp-
totic in and out states. This is shown in Fig. 2. This same
method can also be used in the case in which multiple fil-
aments are present in parallel, while connected to the same
contacts.

C. Quantum graphs: Quantum scattering on graphs

In the Landauer-Büttiker approach all one needs to know
is the scattering amplitudes on the underlying structure. As
mentioned earlier, we take the point of view in which the
scattering occurs along one-dimensional paths connecting the
underlying atoms. This is a departure from previous works in
quantum transport, but it can be considered as a model approx-
imation to calculate the scattering amplitudes as a function of
the incoming energy. It is thus worth formalizing the process,
as it is not a standard approach in transport. The goal of this
and the next few sections is to introduce the formalism that
we use.

A graph G(V, E ) is the tuple given by the set of
vertices V (G) = {1, . . . , n} and the set of edges between
nodes, E (G) = {e1, . . . , el}, where each edge is a pair of
vertices [104].

In the near vicinity of any node, a quantum graph always
looks like a star graph of the type shown in Fig. 3.

The graph connectivity is encoded in the n × n adjacency
matrix A(G); Ai j is 1 if the vertices i and j are connected
and zero otherwise. The set Ei = { j : {i, j} ∈ E (G)} is the
neighborhood of the vertex i ∈ V (G) (e.g., at distance 1).
We denote with Ek

i = Ei \ {k} the set of neighbors of the
vertex i except for k. The degree of the vertex i is defined
as di = |Ei| = ∑n

j=1 Ai j (G). These definitions are standard in
graph theory and are called simple or discrete graphs.

However, since our graph is embedded in space, it is useful
to also consider metric graphs, in which the notion of distance

FIG. 3. Locally, any graph looks like a star graph.

is encoded. To discuss quantum graphs, it is necessary to equip
the graphs with a metric. A metric graph �(V, E ) is a graph in
which every edge is assigned a certain length �es ∈ (0,+∞),
defining � = {�e1 , . . . , �el }.

Given this definition, we call leads those edges that have a
semi-infinite length es (�es = +∞); these edges are associated
with the Lippmann-Schwinger states (in the literature, these
are also called “open quantum graphs”).

Quantum graphs are metric graphs in which the
Schrödinger operator is defined along the edges of the graph.
At every vertex, we have boundary conditions (BCs). The
triple {�(V, E ), H, bc} with H a differential operator and
bc a set of BCs defines a quantum graph. For instance,
along a certain edge {i, j}, the free Schrödinger opera-
tor Hi j = −(h̄2/2m)d2/dxei j

2 is associated to the eigenvalue
equation on the edge {i, j} given by

−ψ ′′
{i, j}(x) = k2ψ{i, j}(x), (11)

where k =
√

2mE/h̄2, m is the mass of the particle, E is its
energy, and ψ{i, j} is the wave function. We call naked quantum
graphs the triple in which H is the free evolution, e.g., there is
no potential, and dressed quantum graphs those in which edge
potentials are present.

In general, formally, the total wave function of the system
is a collection of local wave functions assigned to the edges.
We have

� =

⎛
⎜⎝ ψe1 (xea1b1

)
...

ψem (xeambm
)

⎞
⎟⎠ (12)

where the pairs (ambm) represent an edge, e.g., a pair of nodes,
and m is the total number of edges. In general, xei j is a local
parameter such that for x = 0 we have the wave function
on the vertex i, while for x = � we have the wave function
on the vertex j. We will often write ek to denote a certain
edge, dropping the two vertices notation unless necessary. The
Hamiltonian operator

Hek (xej ) = − h̄2

2m

d2

dx2
e j

+ V (xej ) (13)

is the standard one-dimensional particle Hamiltonian on the
compact domain [0, � j].
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FIG. 4. Graph with two leads added turning it into an open
quantum graph.

In the theory of quantum graphs, vertices are interpreted
as zero-range potentials, where boundary conditions need to
be supplied. The collection of boundary conditions is, for
every node, the continuity and differentiability of the wave
functions. If {e1, · · · , ek} are the edges adjacent to a certain
vertex n, then we must have

(1) ψe1 |n = ψe2 |n = · · · = ψek |n, (14)

(2)
k∑

j=1

∂xe j
ψe j |n = 0 (15)

(either at xej = 0 or xej = � j} depending on the definition. In
the case of zero potential for the edge, the wave function is
generically of the form

−d2ψek

dx2
ek

= k2ψek → ψe j (xej ) = c+
j eikxe j + c−

j e−ikxek . (16)

A Lippmann-Schwinger state is a particular choice of an
edge as in the incoming “left” state, and accordingly a right
state [127]. For instance, a left (incoming) state on the edge
i and a “right” (outgoing) state on the edge f is given by the
pair

ψLS,{ei,e f } =
{

eikxi + r(E )e−ikxi , xi → −∞,

t (E )eikx f , x f → ∞.
(17)

We write now the left and right in quotation simply because
our system is not simply one dimensional anymore, but the
notation stands.

Equations (14)–(16) give a solution of the quantum graph
equations plus the external boundary conditions given by the
Lippmann-Schwinger asymptotic states of Eq. (17); these are
called “open” quantum graphs, and are represented in Fig. 4.
In this state, the quantum graph formalism is equivalent to
the scattering approach necessary for the Landauer-Büttiker
approach, or Eq. (4). While the Green’s function approach
(GFA) is unitarily equivalent to the Schrödinger approach for

quantum graphs, the former can be automatized by using the
adjacency matrix, which is the technique we use here to study
transport numerically and we will review below.

An important quantity in the theory of quantum scattering
in general, and in particular in the theory of quantum graphs,
is the GFA. The Green’s function for a certain edge is defined
as

[E − H (x f )]G(x f , xi; E ) = δ(x f − xi ), (18)

which is the Green’s function of a one-dimensional quantum
particle. Formally, the solution of the equation above can be
written exactly, and we invite you to read the review [96]
on the subject. We only wish to add that there are a few
methods to calculate Green’s function exactly, including the
exact solution of the differential equation, using a spectral
representation of the exact solution, or alternatively using a
Feynman path integral representation.

The approach that we emphasize here is the path integral
approach. It is in fact remarkable that in fact for quantum
graphs the semiclassical approach introduced by Gutzwiller,
or the Gutzwiller trace formula, is exact [96]. As such, Green’s
function can be written exactly as the sum over all classical pe-
riodic orbits. Specifically, the Green’s function can be written
as [85,100] (see also [96])

G(x f , xi; E ) = m

ih̄2k

∑
SP

WSPe
i
h̄ Ssp(x f ,xi ;k), (19)

where SP stands for scattering paths: these are all the paths
that begin in xi and end in x f . Clearly, the sum above is
possibly over an infinite number of paths, given by the fact
that a particle can be in principle reflected in countable many
ways on an edge before leaving the graph. This sum can be
performed exactly. The quantity WSP is the quantum amplitude
of the path: for each time a particle is reflected, it is multiplied
by a factor r j (E ) on the specific edge if it is reflected, and
if transmitted it is multiplied by t j (E ). The quantity SSP is
instead the classical action of the particle over that specific
path: for each edge j the particle has traversed along the path,
we need to add Sj = � jk. Let us make a quick example which
shows why this is useful.

Let us use now the following notation: for a vertex j, r j

and t j are the reflection and transmission probabilities associ-
ated with the wave function parametrization. As an example,
let us look at Fig. 5. We have two incoming and outgoing
Lippmann-Schwinger states, and one internal edge bordered
by the vertices A and B, the distance of which we assume to
be simply l . It is not hard to see that any scattering path can
be written in the forms of SP1, . . . , SP3, . . . : if a particle is
reflected at A, then because the edge i is infinite it will never
return back, and it cannot be part of a scattering path.

The amplitude W1 associated with SP1 of Fig. 5 (top) is
simply tAtB, while the classical action is given by SSP1 =
kl + kxi + kx f . For SP2, we have W2 = tArBrAtB, and SSP1 =
3kl + kxi + kx f . For SP3, we have W2 = tA(rBrA)2tB, and
SSP1 = 5kl + kxi + kx f . Any path can be written in this form,
and it is not hard to see that the Green’s function can be written
as a geometrical series. We obtain then

G f i(x f , xi; k) = m

ih̄2k

tAtBeikl

1 − rArBe2ikl
eik(x f +xi ). (20)
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FIG. 5. Top: The simplest graph which has a nontrivial trans-
mission probability. The quantities tA and tB are the transmission
amplitudes for the incoming wave function, while rA and rB are the
reflection amplitudes. The two “open” edges, on the left and right,
are the semi-infinite leads associated with the asymptotic Lippmann-
Schwinger states. Calculating the Green’s function requires the
enumeration of all possible paths connecting the two asymptotic
states. Bottom: The equivalent shape of the potential associated with
the top graph.

What is interesting about this expression is that we can read
out the transmission amplitude for the whole system, Tf i,
given by

Tf i = tAtBeikl

1 − rArBe2ikl
. (21)

At this point, we see that this total scattering amplitude has
the exact same form as the scattering of a quantum particle in
one dimension in a potential V (x) of the form of Fig. 5 (bot-
tom). This example shows that the quantum graph technique
is a legitimate option to calculate the scattering amplitude
in a mesoscale system under the single-body approximation,
although it also provides a generalization to more complex
structures. In general, the Green’s function can then be written
as

G f i(x f , xi; k) = m

ih̄2k
T�eik(x f +xi ), (22)

where T� is the transmission, which is what we aim to
calculate.

In what follows, we will also use another technique to
evaluate the total transmission probability which has been
obtained recently and is based on the adjacency matrix of the
graph.

One of the main ingredients of the GFA is the local origin
of the total scattering amplitude and the fact that the scattering
at each vertex can be defined locally.

For each vertex, we generalize the local reflection and
transmission amplitudes into a tensor, σ j , depending on each
vertex j label. Locally, the scattering amplitudes are in fact

those of a star graph, a property which has been very fruitful in
the study of quantum graphs. More details on the connection
between the boundary conditions at each star, quantum prob-
ability flux conservation, and self-adjointness can be found
in [85]. We will now take a more practical approach, intro-
duced in [121]. For a star graph, let the local wave function be
given by �( j) = (ψ{ j,1}( j), . . . , ψ{ j,n}( j))T . The most general
BCs that are consistent with the self-adjoint condition [96] are
totally defined by two d j × d j matrices. At each node, in fact,
given two matrices A j and B j , the boundary conditions we
defined earlier can be generalized to

A j�( j) + B j�
′( j) = 0. (23)

Note that A j is not the adjacency matrix of the graph, but
represents the nodal boundary condition.

The only requirement is that the matrix AB∗ is self-adjoint,
while the matrix (A j,B j ) has the maximal rank d j [121].
We now want to see that defining a local scattering matrix
is equivalent to the boundary conditions. The boundary con-
ditions of Eqs. (23) can be in fact determined by considering a
plane wave on the edge ei, j incoming into the vertex j, which
we assume to be of degree d j .

Let us introduce the matrix σ j , which is related to the
reflection and scattering amplitudes as σ

[{ j,i},{i, j}]
j (k) =

r[{ j,i},{i, j}]
j (k) and σ

[{ j,p},{i, j}]
j (k) = t [{ j,p},{i, j}]

j (k), where

r[{ j,i},{i, j}]
j is the reflection in vertex j for the wave incoming

from i, while t [{ j,p},{i, j}]
j (k) is the transmission through vertex

j, for the wave incoming from i and scattering to p. Unitarity
typically requires that these are not independent quantities.

Given the definition above, the “local” Lippmann-
Schwinger states at the node j are given by

ψ{i, j}(x) = e−ikx + σ
[{ j,i},{i, j}]
j (k)eikx,

ψ{ j,l}(x) = σ
[{ j,l},{i, j}]
j (k)eikx. (24)

A direct application of Eq. (23) gives

σ j (k) = −(A j + ikB j )
−1(A j − ikB j ). (25)

A few comments are in order. First, one can either set the ma-
trix σ j or the boundary conditions [85]. Second, the scattering

matrix depends on k, and thus on the energy Ek = h̄2k2

2m , in a
nontrivial manner (although certain boundary conditions are k
independent [99]).

The conservation of probability is encoded in the unitar-
ity of the matrix σ j (k), e.g., σ j (k)σ†

j (k) = 1, with σ j (k) =
σ†

j (−k). These conditions are equivalent, in matrical form, to

σ
[{ j,l},{i, j}]
j (k) = [

σ
[{i, j},{ j,l}]
j (−k)

]∗
,∑

i∈Ej

σ
[{ j,l},{i, j}]
j (k)

[
σ

[{ j,m},{i, j}]
j (k)

]∗ = δlm, (26)

∑
i∈Ej

σ
[{i, j},{ j,l}]
j (k)

[
σ

[{i, j},{ j,m}]
j (k)

]∗ = δlm,

which can be seen as a generalization of one-dimensional scat-
tering amplitudes [101]. For instance, for a node of degree 2,
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FIG. 6. Transmission and reflection probabilities for an incoming
wave from i → j.

we can write

σ(k) =
(

r+(k) t−(k)

t+(k) r−(k)

)
, (27)

and the conditions σ(k)σ(k)† = σ(k)†σ(k) = 1 and σ(−k) =
σ(k)† reduce to

r+(k)r−(k) + t+(k)r−(k) = 0. (28)

Referring to Fig. 6, we must have at node j and for the
incoming wave i → j that

∣∣σ { j,i},{i, j}
j

∣∣2 +
d j−1∑
p=1

∣∣σ { j,p},{i, j}
j

∣∣2 = 1. (29)

Let us now introduce the adjacency matrix technique for
the evaluation of the Green’s function, Eq. (22). The goal of
this section is to state an alternative formulation based on the
adjacency matrix Ai j (not to be confused with A j), instead of
defining it in terms of the scattering paths. Such a formulation
is more compact and can be written, instead of having to
enumerate all possible scattering paths, by the solution of a
linear problem.

The construction of the total scattering amplitude T� is
equivalent to the following construction, based on the adja-
cency matrix. Given the adjacency matrix A(G), the Green’s
function between the incoming edge ei and the outgoing edge
e f can be written as [121]

G�, f i = m

ih̄2k
T�eik(xi+x f ), (30)

where, given Ni as the neighborhood of the node i (the nodes
at distance 1), we have that the total transmission probability
is given by

T� =
∑
j∈Ni

σ
[{i, j},ei]
i Ai j pi j, (31)

where i is the entry node and where the definition of pi j will be
given in a moment. The quantity σ

[{i, j},ei]
i is the transmission

probability incoming from the open edge ei, incoming to node
i, and scattering into edge j. Similarly, we define σ

[e f ,{i,n}]
n as

the transmission probability at the node n from the edge {i, n}
into the open edge e f .

Let us note that in the expression above, the sum over
the scattering paths has disappeared, and we are left with
an expression that depends only on the transmission and re-
flection probabilities, which are equivalent to the boundary
conditions, as we have seen. We will assume these as given
for the time being. The equivalence between the Green’s
function via the Gutzwiller formula relies upon the following
assumptions [121].

(1) At every vertex j of the graph we define a scattering
matrix σ j (k) associated with the boundary condition used at
the vertex j.

(2) A particle that propagates along the edge (i, j) (if
present) contributes a factor zi j = z ji = eik�i j , where �i j is
assumed to be the metric distance between the nodes i
and j.

(3) At each existing edge, let it be (i, j), we introduce a
factor pi j , representing the probability flowing between i and
j, and p ji, flowing in the opposite direction. The quantity pi j

is interpreted as the weight associated with the flow of the
particle on that edge. For each node j, N n

j is the neighborhood
of the node j minus the node n. For the unitary equivalence be-
tween the scattering path Green’s function of Eq. (22) and the
Green’s function based on the adjacency matrix of Eq. (30),
the functions pi j must satisfy the equation

pi j =
∑
l∈N n

j

zi jσ
[{ j,l},{i, j}]
j A jl p jl + δ jnzinσ

[e f ,{i,n}]
n , (32)

and similarly for p ji, provided that we simply swap the indices
i j. At each vertex i we associate one pi j for every j ∈ Ni. The
last term in (32) is, as said above, the transmission amplitude
at the vertex n from the edge {i, n} to the lead e f . By construc-
tion, the graph is simple, and the particle cannot hop on the
node, thus pii = 0 for all nodes.

Given the definition above of the pi j’s, Eq. (31) makes
sense: the total transmission probability is simply equal to the
total flow from the incoming node, which must be equal to the
flow to the exit node.

The remarkable property of the construction above is that
the infinite sum over the scattering paths is replaced by a finite
matrix inverse. This approach is powerful, as constructing the
Green’s function is equivalent to knowing everything about
our quantum system [103]. For instance, bound-state energies
can be obtained from the poles of the Green function, and
the wave functions from the associated residues [96]. In fact,
|T�|2 represents the global transmission probability from the
lead ei to the lead e f and it is constructed from the individual
quantum amplitudes. A similar construction was employed,
before [121], in [112,113].

An example at this point might be useful to clarify how to
use this construction. Consider for instance the graph in Fig. 5,
and the associated pAB and pBA, as in Fig. 7. Because there is
only one entry node of degree 2, then we have TG = tA pAB,
from Eq. (31). The equations for the p’s are then given by
Eqs. (32):

pAB = zAB(rB pBA + tB), (33)

pBA = zBArA pAB, (34)
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FIG. 7. The graph above is the same scattering problem as in
Fig. 5, but the quantities pAB and pBA contain the information on
the graph’s total Green’s function. Their definition is in Eq. (32).
The transmission and reflection probabilities are the same as those of
Fig. 5.

from which we obtain

pAB = zABtB
1 − zABzBArArB

,

and finally, using zAB = zBA = eikl ,

T� = tA pAB = tAtBeikl

1 − rArBe2ikl
, (35)

which is the same expression as in Eq. (21), and that we had
obtained earlier from the sum over the infinite scattering path.

The construction presented so far is for general quantum
graphs. But we need to supply the definitions for the transmis-
sion and reflection probabilities, which is where the physics of
the scattering is contained.

Clearly, we know from basic quantum mechanics that the
r’s and the t’s cannot be independent, and so the entries of the
matrix σ j cannot either. For instance, in a one-dimensional
scattering, it is known that we must have |r|2 + |t |2 = 1,
following the boundary conditions of Eqs. (14) and (15). In
the case of a star graph, if the wave is incoming from node
i to node n, the particle can be either reflected, or it can be
transmitted in multiple directions, and then we must have∣∣σ i,n,n,i

n

∣∣2 +
∑
s∈N i

n

∣∣σ i,n,n,s
n

∣∣2 = 1, (36)

or, written in terms of the elements of σ ,∣∣ri,n
n

∣∣2 +
∑
s∈N i

n

∣∣t i,s
n

∣∣2 = 1. (37)

We can write one of these for each scattering process where
the particle is incoming from one of the nodes and scatters into
the other neighbors at the given node n, and these represent
the constraints of our local scattering parameters. The equa-
tions above clearly generalize the standard one-dimensional
scattering on a heterogenous structure, like the one of a
filament with multiple branches.

For naked graphs, in which there are no potentials on the
edges, and the node is in a certain discrete sense isotropic, a
set of quantum parameters conditions is given by

rn = 2

d j
− 1, (38)

t j = 2

d j
, (39)

independently from the directionality. It is easy to see that
these satisfy the conditions above and physically represent
the particle diffusion isotropically at the node in all possible

directions, with a probability only dependent on the local
degree. For dressed graphs, e.g., a nonzero potential, this has
to be generalized. We could use other boundary conditions on
the vertices to model a microscopic structure of the vertices,
changing their scattering amplitudes. This situation will be the
subject of future work.

So far we have assumed that the propagation on the edge
of the graph is free. We wish now to introduce a potential on
the edges; e.g., if we have a local Hamiltonian of the form

−ψ ′′
{i, j}(x) = k2ψ{i, j}(x) + V{i, j}(x)ψ{i, j}(x), (40)

with a constant potential V{i, j} = ui j ≡ u along the edges and
across the graph, the formalism of the previous section still
applies, provided that we renormalize the edge length. This
effective energy ui j represents an effective barrier in the prop-
agation between sites. First, let us briefly explain both why
a constant potential can act as an approximation and why it
can be physically motivated. First, a constant approximation
of the potential is not uncommon in transport. In fact, the
Kronig-Penney potential [132–134] is a common approxi-
mation in one-dimensional transport on a lattice. Since here
our lattice is replaced by a generic graph, the assumption is
that the one-dimensional potential along each is the analog
of a Kronig-Penney on a quantum graph, and can be seen
merely as an approximation to estimate the dependence of the
transport on such potential. The second comment is that a con-
stant approximation can be solved exactly locally within the
framework we introduced, and thus it is not only physically
motivated but also of convenience. Nonetheless, we will then
consider the general case first, and reduce to the constant case
after.

As we have discussed earlier, in an arbitrary graph we
can always treat a vertex j with its edges as a star graph.
A star graph on n vertices, Sn, is a graph where one central
vertex has degree n − 1 and all other vertices have degree 1.
Consider a star graph as the one depicted in Fig. 3 and let
� = (ψ{ j,1}, . . . , ψ{ j,n})T . The scattering solutions are given
by

ψ{i, j}(x) = e−iki j x + r[{ j,i},{i, j}]
j eiki j x, (41)

ψ{ j,l}(x) =
√

ki j

k jl
t [{ j,l},{i, j}]

j eik jl x, (42)

where

ki j = k ji =
√

2m(E − ui j )

h̄2 = k

√
1 − ui j

E
, (43)

and ui j is the constant potential along the edge {i, j}. Note that
if ui j > E , then ki j becomes complex and thus modes become
evanescent. Thus, ui j acts as an effective cutoff for the energy
of the particles that are transmitted on the graph.

Assuming the Neumann boundary condition

ψ{ j,l} = ϕ j, ∀l ∈ Ej, (44)∑
l∈Ej

ψ ′
{ j,l} = 0, (45)
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we obtain the transmission and reflection amplitudes:

r[{ j,i},{i, j}]
j =

ki j − ∑
l∈Ei

j
k jl

K
,

t [{ j,l},{i, j}]
j = 2

√
ki jk jl

K
, (46)

where K = ∑
l∈Ej

k jl , Ej is the neighborhood of the vertex j,

and Ei
j is the neighborhood of the vertex j but with the vertex

i excluded.
For a vertex with degree 2

r[{ j,i},{i, j}]
j = ki j − k jl

ki j + k jl
, (47)

t [{ j,l},{i, j}]
j = 2

√
ki jk jl

ki j + k jl
, (48)

which are the quantum amplitudes for a one-dimensional step
potential.

III. SCATTERING GREEN’S FUNCTION

The exact scattering Green’s function for a dressed quan-
tum graph with adjacency matrix A(�) can be written as

G� = m

ih̄2k
T�eikixi+ik f x f , (49)

where T� = ∑
j∈Ei

σ
[{i, j},ei]
i Ai j pi j , and

pi j =
∑
l∈En

j

zi jσ
[{ j,l},{i, j}]
j A jl p jl + δ jnzinσ

[e f ,{i,n}]
n , (50)

with

zi j = eiki j�i j = eik
√

(1−ui j/Ek )�i j . (51)

Let us now assume that ui j = u and li j = l . Then, we can

replace l ≡ l (k) = l
√

1 − u
Ek

on every edge of the graph.

If all the wave vectors are equal, i.e, ki j = k, we have

r j = 2

d j
− 1, (52)

t j = 2

d j
, (53)

which are the well-known quantum amplitudes for the Neu-
mann boundary condition for “naked” quantum graphs we
discussed earlier. As such, we can use the same framework
as before, provided that we renormalize the length at each
particular value of k, which explains why these types of graphs
are “dressed.” Thus, in the dressed graph case, we will have
an extra parameter to analyze, which is u.

IV. CLASSICAL MODEL OF FILAMENT GROWTH
AND THE EFFECTIVE QUANTUM GRAPH

At this point, we need to discuss how the filaments are
formed in our model. Below, we provide the simplest non-
trivial model which incorporates the voltage for the filament
growth.

First, we consider a certain narrow atomic region, of size
W × W × H , where H is the horizontal line dimension of the
region, and H is its vertical dimension, in atomic units. Let

us now assume that the top (anode) and bottom (cathode) of
the region z = H and z = 1 are connected to a certain battery
applying a voltage V . We assume then that the anode and
cathode have a certain voltage va = V (t )

2 and vc = −V (t )
2 , and

with an opposite sign if the battery’s voltage changes sign.
These are the simplest boundary conditions. We follow the
following algorithm for every time t .

(1) We assume that at the anode and cathode, we have a
certain time-dependent voltage V (t ) applied, driven by the
battery. Inside the region, the vector field is given by �E (x) =
−�∇V (p), where V (p) is the potential inside the region. To
calculate the potential V (p), we solve for the equations


Vt (�x) = 0, (54)

V |Ba(t ) = V (t )

2
, (55)

V |Bc (t ) = −V (t )

2
, (56)

where Ba is the subset of points associated with the anode,
while Bc is associated with the cathode and 
 = �∇ · �∇. The
equation above can be solved numerically using an iterative
method. Once we have obtained the solution V (�x) everywhere,
�E (x) can be obtained.

(2) So far, however, we have not discussed how the filament
is formed dynamically. We assume that if V > 0, a certain
density per unit of time and unit of voltage ρ0 is associated
to the creation of particles of mass m, formed at the center
of the cathode, and if V < 0 it is formed at the center of the
anode, with zero momentum. Then, we solve numerically for
the equation of motion for each particle i, which are assumed
to be all identical ions of charge ec and mp:

d2�xi

dt2
= − ec

mp

�E (�x) + W (t ). (57)

It is easy to see from Eq. (57) that we are using a molec-
ular dynamics approach to the construction of the filament
between the two leads. If a particle reaches the anode, or
cathode, or touches another particle, a filament is formed. If
the filament touches the cathode, then the number of particles
is associated with Bc(t ), and if at the anode they are associated
with Ba(t ). Following this prescription, the electric field �Et is
also dynamic, but the time label is only to capture the electric
field at a particular time t in the simulation. Because the speed
of the particles is assumed to be much lower than the speed
of light (V small enough), pi/m � c, we are still solving for
electrostatic equations. The quantity W (t ) is a Wiener noise
associated with the random formation of the filament. Because
of this, filament formation is a stochastic process. Particles can
also tick to the partly formed filament: if a certain particle is
directly in the vicinity of the filament, the particle can stick
and grow the filament. Thus, in principle, the filament can
grow both in horizontal and vertical directions.

(3) If the electrodes are connected by a sequence of parti-
cles, we construct the connected component of the effective
graph G(t ), which encodes the adjacency of the atoms. We
construct the set of vertices Nc and Na which are the ver-
tices connected to the cathode and anode respectively via a
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FIG. 8. In the center images, we show a filament formed during an aggregation process, due to the ion migration, induced by the electric
field, and equivalent to a quantum graph. We see the transmission spectrum in the top right panel. The voltage is shown in the left panels.
In the central figure, the size of the atoms has been reduced to a point to show the connectivity graph. For this figure, we have chosen an
insulator with constant conductance. At the bottom of the graph in the center panel, all the points on the surface are connected to a single
node as in Fig. 2. Five cycles of filament formation are shown (color coded). In the bottom panels, we see the final cycle filament formed.
In the corresponding I-V curves, the color-coded hysteresis curves are shown. The corresponding currents are shown on the left of each I-V
curve panel. The difference between the left and right is the choice of the insulator. In the case of the right, we have chosen a Poole-Frenkel
insulator, with exponential leakage. The Schottky barrier is approximately V0 = 0.3V . This implies an exponential envelope, usually observed
in experiments [66]. In the left panel, we have chosen an insulator constant with respect to the voltage. The transmission probabilities as a
function of the energy are shown in the bottom right of each filament.

depth-first-search algorithm. These are the vertices associated
with the Lippmann-Schwinger states.

(4) If the voltage flips sign, then the graph G(t ) can decay.
We associate a certain probability pd per unit of time such
that the vertices (the atoms) can be removed. In parallel, the
growth process can restart from the other lead, and particles
appear at random at the other end. The filament formation then
restarts. As such, the device we are simulating is apolar.

An example of the filament formed via this process is
shown in Fig. 8, with the corresponding current and voltage
cycle, the I-V diagram, and the transmission probability as a
function of the energy for the final junction.

An important comment is that at this point, the device’s
effective conductivity can be calculated from the Landauer
formula, using σr = It

Vt
, where It is the effective one. However,

in experimental realizations, it is hardly possible to isolate the
filament uniquely. As a result, the effective conductivity of
the device is typically the one of the filament plus a parallel

conductive device, whether this is a dielectric or an actual re-
sistor. It is often argued in fact that even at a few Kelvins, it is
not possible to isolate the linear resistive switching effect, but
one has to consider other types of tunneling effects [66]. For
this reason, we add to the resistivity an effective conductivity,
mimicking a classical or semiclassical resistor. The effective
current is then given by

I (V ) = IL(V ) + IR(V )

= G0

∫ ∞

−∞
dE ( fL(E )/N − fR(E )/M )

×
(

h

2e2
σ0(V ) + T (E )

)
. (58)

For this paper, we use a classical resistor and thus σ0 can either
be a constant or a voltage-dependent quantity. In the case in
which the insulator has a constant resistance, then we will
observe at low temperatures just a resistive switching, without
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nonlinearity, but even if the device’s filament is not present
a current. If σ0(V ) is nonlinear, then the observed device’s
current can be nonlinear. In this paper we also consider a
tunneling effect [135,136], with σ0(V ) ∼ σ0eV/Vc , with Vc ≈
0.15 V, with h

2e2 σ0 ∼ 103 �−1. This is the number of the same
order of magnitude as the one typically observed in tunneling
experiments, and such that at voltages of the order V ≈ 1 V,
we obtain currents of the order of microamperes.

V. NUMERICAL SIMULATIONS

We now discuss the results of our numerical experiments.
The goal is to provide some qualitative I-V curves and the
dependence on some key underlying parameters.

A. Parameters choice

In our simulations, the parameters have been chosen as fol-
lows. First, the depth of the region is such that approximately
ten atoms can be in a straight line, a number compatible with
the approximations we wished to make from the start (e.g.,
a discrete rather than continuous filament). In particular, we
have chosen an arbitrary time unit fixed, however, by the
following prescription. In the molecular dynamics of Eq. (57)
the parameters have been chosen such that within 10–50 time
units, we observe a filament formation at a certain target fre-
quency ω∗, assuming V (t ) = V0 cos(ω∗t ), with V0 = 0.35 V.
In terms of the voltage drive, the time units can be expressed
such that under the sinusoidal drive at V ≈ 0.3 we do observe
a switching, which is a physically plausible number for the
switching.

Also, for simplicity, we have assumed that the Fermi chem-
ical energy μF is much smaller than the voltage applied, eV .
In doing so, we have essentially constrained our parameters
to be at the typical frequency at which, depending on the ions
that form the filament, the observation of the I-V hysteresis
first shows a memristive effect. At this point, the free param-
eters are then the strength of the stochastic force in Eq. (57)
and the potential u in the quantum graph. The strength of the
stochastic force has been chosen to be 〈W (t )2〉t = √

0.005,
which was the smallest value such that at every single simu-
lation we could obtain a different filament. This is dictated by
the necessity that we wish to perform a Monte Carlo analysis
of the I-V curves. The molecular dynamics simulations were
instead performed integrating the Newtonian equations of mo-
tion for the particles in the electric field in the narrow region.

B. Analysis of the results

Provided that our model of filament growth is limited in
many ways, let us first comment that we had first written a
two-dimensional code. In spirit, the results are similar to those
that we have obtained here, but some comments are in order.
In the three-dimensional case we discussed here, the filament
attracts particles from three dimensions, meaning that it is
much more likely for a shortcut to be found. This is why we
found that there are many more ways to have significant jumps
in current in three dimensions rather than two. Moreover, we
have found that a good model for the growth of the filament
in two dimensions, as an alternative to the voltage-induced
molecular dynamics, was a diffusion-limited aggregation

process [137], without having to solve for the Laplace equa-
tion. These results will be discussed elsewhere, but from the
point of view of the present paper, it is experimentally more
relevant to study the three-dimensional case.

While this paper aims to provide a qualitative agreement
between previously obtained experimental results and theo-
retical ones, some comments are in order. For that purpose, let
us look at Fig. 8, where several voltage cycles were applied
to the device with u = 0. We see the filament formed on the
negative voltage side at the center [138].

We have found that in the vast majority of our numerical
experiments, only one filament was formed. The reason is
that as the filament is formed, it attracts any free particle in
the vicinity as a result of Eq. (56). This implies that although
the filament has a finite thickness, the charge propagation is
quasi-one-dimensional. However, gaps in the filaments can
be filled by floating particles, leading to discrete jumps in
the resistivity. This is the jump we see for instance in Fig. 8
(bottom left IV ). The middle right shows the voltage profile
applied to the device. The vertical jumps, both on the positive
and negative side, are due to the resistive switching, e.g., the
filament reaching the cathode/anode. The curves in Fig. 8
represent several realizations of the filament. The averaged
curves are shown in Fig. 9 for various sizes of the junction
and values of the parameter u.

We have also performed a slightly more refined statisti-
cal analysis of the conductance distributions. In particular,
in Fig. 9 we plot the averaged hysteresis curve over 100
realizations of the filament, and for three values of u =
0, 0.01, and 0.05 and junction sizes of 5, 10, 15, and 20
atoms. The shadow region represents the error across various
realizations of the filament. We see that for larger values of the
gap, the memory effect is more noticeable, due to the intuitive
fact that there are more possibilities for the filament to be
formed. In Fig. 8 (bottom) we show different cycles of hys-
teresis for two types of insulators [139]. We then note that, for
u = 0.01, the switching to the ON state is to a lower resistive
state. In particular, because of this, the tunneling phenomenon
is such that the switching to the ON state is almost hidden in
the nonlinearity caused by the tunneling. This feature was also
observed in the measurements of niobium oxides [66]. Thus,
this qualitative behavior of the pinched hysteresis obtained by
this model is realistic. The distribution of the conductance is
plotted in Fig. 10. Overall, this provides a hint about the rela-
tionship between the size of the gap and the conductance (see
for instance [140], Fig. 19), expected from an Anderson model
with finite localization length [141]. An important point to
make is that the parameter u, in particular for larger values,
can be interpreted in terms of an (effective) Schottky barrier
to electron propagation.

VI. DISCUSSION

The present paper introduced a framework to study quan-
tum transport within the context of filamentary switching. The
method we developed is not based on the quantum scattering
in a continuum or a lattice approximation but assumes that the
filament is finite dimensional and discrete, e.g., charge carriers
can move on a discrete graph. This paper is based on the
Landauer-Büttiker formula applied to quantum graphs, which
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FIG. 9. Current-voltage characteristic within the context of the model developed in this paper averaged over 100 Monte Carlo samples,
and as a function of the dressing parameter u, for u = 0, 0.01, and 0.05 and x = 0.

provides the theory to study one-body scattering on discrete
structures such as metric graphs. In addition, we have used a
model for the filament growth which is based on a molecular
dynamics simulation. The molecular dynamics we used is the
simplest model that supports filament growth and is based on
the solution of the Laplace equation and the derivation of the
electrical vector field in the narrow region.

Although our results are not compatible with previ-
ous numerical studies for a continuous saddle for silver
ions [68], or with the experimental results for niobium pen-
toxide [66] in which filamentary switching occurs, they are
more similar to the junction model by Milano and col-

laborators [27,142,143], for which stochastic models are
currently being developed [144,145]. In addition, the distribu-
tion of conductances in Fig. 10 qualitatively is consistent with
the conductance distributions arising from random matrix
theory [140].

A non-many-body quantum approach has been used for
a realistic dynamical filament formation, and we model
the discrete nature of the filament rather than it being
assumed continuous. In this sense, we believe our paper pro-
vides a methodology to analyze quantum transport on these
structures. The advantage is in the scalability of our numer-
ical codes: our codes scale as O(E3) (which comes from
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FIG. 10. Conductance distribution as a function of the gap size (in atoms, Dim) and the parameter u. For smaller regions, we see that the
probability of having a conductance near 1 is nonzero. For larger gaps, the probability decreases and peaks near smaller values. The parameter
u broadens the distribution. Each figure is averaged over 100 realizations of the filament.

the matrix inversion for evaluating pi j), where E is the
number of active channels, or edges of the graph (between
atoms/molecules) in the narrow region. For the case with
ballistic motion, the code scales as O(dmaxNE3), but still
subexponentially, where N is the number of atoms and dmax

the maximum graph degree. As we discussed in the text, this
extra factor comes from the construction of the scattering
amplitudes σ j’s. This paper did not consider a particular type
of material, but we focused on generic features of the I-V
curves which are phenomenological in nature. While this is
just a first step in this direction, various improvements can
be made. First of all, a more precise model of the filament
formation can be introduced, which carefully models the

evolution of the filament over time. Moreover, it allows the
introduction of a variety of modeling assumptions about the
scattering and channel properties of the filament and atoms.
One important simplifying assumption used here was that all
the graph edges were of equal length l , the unit of distance
between atoms. Relaxing such an assumption allows us also
to have localization phenomena and drastic reductions of the
conductance (induced by small Tf i between the leads) due to
chaotic scattering in the graph [114].

One drawback of our methodology is that the evaluation of
the scattering amplitudes scales with the number of edges of
the graph, the reason for which we needed to focus on a few
atoms. However the calculation of the scattering amplitude
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can be scaled, and we can study larger graphs and larger
regions. In fact, the technique scales most quadratically in
the number of nodes or atoms, and while challenging, it is
feasible using a proper computing architecture. Also, because
the method requires the inversion of a large matrix, it is also
possible to use GPUs for this purpose.

Nonetheless, some of the findings of this paper are par-
ticularly interesting. For instance, the nonmonotonicity of the
ON state on the dressing parameter is an interesting feature
that can be studied experimentally. Moreover, this approach
can be extended also beyond the one-body Hamiltonian,
which can be generalized to a local one-dimensional quantum
field [146–149].

These and other generalizations and improvements will be
considered in future papers.
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